Phd Lamprianidou Fani 2

Total Page:16

File Type:pdf, Size:1020Kb

Phd Lamprianidou Fani 2 DEVELOPMENT OF A MODEL FOR EVALUATING AND OPTIMIZING THE PERFORMANCE OF INTEGRATED MULTITROPHIC AQUACULTURE (IMTA) SYSTEMS A THESIS SUBMITTED TO THE UNIVERSITY OF STIRLING FOR THE DEGREE OF DOCTOR OF PHILOSOPHY by FANI LAMPRIANIDOU UNIVERSITY OF STIRLING, INSTITUTE OF AQUACULTURE NOVEMBER 2015 In loving memory of Herta 2 ABSTRACT Earth’s population is expected to reach 9 billion by 2050. Ensuring food security for the growing world population is one of today’s society’s major challenges and responsibilities. Aquatic products have the potential to contribute significantly in the growing population’s dietary requirements. Since increasing the pressure on most natural fish stocks is now widely agreed not to be an option, the aquaculture sector needs to grow. The challenge is to increase aquaculture production without depleting natural resources or damaging the environment but also in a financially sustainable way. Integrated Multitrophic Aquaculture (IMTA) is one method of sustainable aquatic production. Integrating bioremediatory organisms that extract particulate organic matter or dissolved inorganic nutrients with monocultures of fed species has the potential of reducing the particulate and soluble waste loads from effluents, whilst producing a low-input protein source that may also increase the farm income. IMTA is a viable solution for mitigating the environmental impact of waste released from fish farms. The fish waste is exploited as a food source for lower trophic, extractive organisms giving an added value to the investment in feed. Studies up to now have shown that under experimental conditions as well as in small-scale commercial studies, various filter-feeding, deposit-feeding and grazing species can ingest fish waste particles. The aim now is to achieve IMTA optimization, where extractive organisms can ingest most of the finfish waste food and excretions. Any such design is likely to be complex incorporating a multidisciplinary approach, and therefore to date a reason why most studies have failed to prove the environmental and economic benefits of IMTA. Consequently, the aim of this study is to develop ways of selecting an ideal combination of species for a specific locality, manage the cultures in a way that ensures the maximum nutrient recycling feasible per unit of area; and ensure high growth rate of the extractive organisms while being financially beneficial. The approach taken was a combination of investigative literature reviews, computer modelling work and small-scale growth trials to determine the relative growth of extractive organisms fed fishfeed and waste, followed by the iii development of a systems-based model of interaction and growth efficiency for combinations of organisms within an IMTA system. This study starts by investigating, with small-scale laboratory experiments, the potential of two organic extractive species, the lugworm, Arenicola marina and the sea urchin, Psammechinus miliaris, as organic extractive components of IMTA systems. Their ability to consume and assimilate salmon faeces was evaluated as well as their remediation efficiency. This was done by comparing the carbon, nitrogen and phosphorus content of the pellet-faeces mixture to that of the sea urchin faeces and sea urchin gonad content. Their growth, gonadosomatic index (GSI) (for the sea urchins), tissue carbon, nitrogen and phosphorous content were compared between seaweed diets and a diet consisting of a mixture of salmon faeces and feed pellets. The results showed statistically significant gonad carbon content for the sea urchins fed with faeces. Similarly, statistically significant higher phosphorous content was found in the tissues of the lugworms fed with the mixture of salmon faeces and pellets than in the lugworms of the other two groups. The subsequent and main phase of this study was the development of a model for optimising IMTA performance. The modelling process included model development, run, optimization and risk assessment. The IMTA model developed consisted of Atlantic salmon Salmo salar, the sea urchin Paracentrotus lividus and the macroalgae Ulva sp.. It simulates the growth as well as the uptake and release of nitrogen by these organisms under environmental conditions of a hypothetical site on the west coast of Scotland. The aim of the model was to maximize the potential of IMTA in terms of productivity and to reduce the amount of nutrients that are released in the environment, and thus to contribute towards a more sustainable and productive form of aquaculture. The IMTA model developed can be re-parameterised to simulate the growth and nutrient uptake of different species and the growth and nutrient uptake under different environmental conditions. This capacity of the model was used in order to do a comparative study of the nitrogen bioremediation potential of three different invertebrate species, cultivated as part of an IMTA. These species were the lugworm (Arenicola marina), the blue mussel (Mytilus edulis) iv and the purple sea urchin (Paracentrotus lividus). The results of this comparative study showed that weight for weight, M. edulis is more efficient in removing POM than P. lividus that is in turn better than A. marina with regard to the amount of nitrogen they can assimilate. But in terms of cultivation area required for the production of the same total biomass, P. lividus was better at removing POM followed by M. edulis and then by A. marina. v Acknowledgements I would like to express my gratitude to my supervisors Prof. Trevor Telfer and Prof. Lindsay Ross for all their support and for trusting me to steer my research in the right direction. I would also like to thank the University of Stirling and the Marine Alliance for Science and Technology (MASTS) for their financial support. I am thankfull to all the people that have made these last few years so enjoyable. In particular my office mates and friends Cai, Lynne, Joly, Neil, Olga, Taslima, Aliya and Giuseppe. Finally, I would like to thank my father for his endless support and devotion and Chris for always being there for me and bearing with me during the challenging phases of the PhD. vi Table of Contents ABSTRACT .............................................................................................................................. iii Acknowledgements ............................................................................................................. vi List of Figures ....................................................................................................................... xii List of Tables ......................................................................................................................... xv List of Abbreviations and Acronyms ............................................................................ xvi CHAPTER 1 ........................................................................................................................... 17 Introduction ......................................................................................................................... 17 1.1 Curent state of global marine resources and increasing demand for aquaculture .................................................................................................................................... 17 1.2 Environmental impact of aquaculture wastes ........................................................ 18 1.2.1 Quantification of salmon aquaculture nutrient release ............................................. 20 1.3 Sustainable aquaculture and integrated multitrophic aquaculture (IMTA) 21 1.4 IMTA; what is it? ................................................................................................................ 22 1.4.1 IMTA benefits for the cultured species ............................................................................. 23 1.5 IMTA benefits ..................................................................................................................... 24 1.5.1 IMTA environmental benefits ............................................................................................... 24 1.5.2 IMTA economic benefits and economic potential ............................................................ 24 1.6 Setting up an IMTA system ............................................................................................. 27 1.6.1 IMTA limitations ............................................................................................................................. 27 1.6.2 Practical considerations .............................................................................................................. 30 1.7 Investigation of possible IMTA extractive species, choosing the most suitable extractive species ......................................................................................................................... 34 vii 1.7.1 Seaweed species as IMTA inorganic extractive species ................................................. 36 1.7.2 Organic extractive organisms .................................................................................................... 39 1.8 Review of polyculture and IMTA studies ...................................................................... 41 1.9 Objectives of the thesis ....................................................................................................... 44 CHAPTER 2 ..........................................................................................................................
Recommended publications
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • (Psammechinus Miliaris) and Their Response to Phenanthrene Exposure
    Marine Environmental Research xxx (2010) 1e9 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Sex-specific biochemical and histological differences in gonads of sea urchins (Psammechinus miliaris) and their response to phenanthrene exposure Sabine Schäfer*,1, Doris Abele, Ellen Weihe, Angela Köhler Alfred Wegener Institute for Polar and Marine Research within the Helmholtz Association, Am Handelshafen 12, 27570 Bremerhaven, Germany article info abstract Article history: Female and male individuals of the same species often differ with respect to their susceptibility to Received 16 August 2010 toxicant stress. In the present study, sea urchins (Psammechinus miliaris) of both sexes were exposed to À À Received in revised form high (150 mgL 1) and environmentally relevant (5 mgL 1) concentrations of phenanthrene over 10 days. 14 October 2010 À While food intake was significantly decreased following exposure to 150 mgL 1 phenanthrene, histo- Accepted 19 October 2010 logical indices (lipofuscin accumulation, fibrosis, oocyte atresia), energetic status (energy charge, sum adenylates, AMP/ATP ratio) as well as ascorbate levels in the gonads showed either little or no effect upon Keywords: phenanthrene exposure. However, most parameters (vitamin C, energy charge, sum adenylates, AMP/ATP Sea urchin fi fi Gonad ratio, ATP and ADP concentrations, lipofuscin content, brosis) signi cantly differed between male and fi Lipofuscin female animals. This study illustrates the dif culties to identify toxic injury in reproductive tissue as it Energy charge may be superimposed by gametogenesis and spawning of gametes. Phenanthrene Ó 2010 Elsevier Ltd. All rights reserved. Ascorbate Sex-specific differences ATP ATP/AMP ratio Gametogenesis 1.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Eliane De-Bastos & Jacqueline Hill 2016-01-28 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1068]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: De-Bastos, E.S.R. & Hill, J., 2016. [Ophiothrix fragilis] and/or [Ophiocomina nigra] brittlestar beds on sublittoral mixed sediment. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1068.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here.
    [Show full text]
  • Effect of Diatom Based Biofilms on Paracentrotus Lividus Competent Larvae Marta Castilla-Gavilán, Meshi Reznicov, Vincent Turpin, Priscilla Decottignies, Bruno Cognie
    Journal Pre-proof Sea urchin recruitment: Effect of diatom based biofilms on Paracentrotus lividus competent larvae Marta Castilla-Gavilán, Meshi Reznicov, Vincent Turpin, Priscilla Decottignies, Bruno Cognie To cite this version: Marta Castilla-Gavilán, Meshi Reznicov, Vincent Turpin, Priscilla Decottignies, Bruno Cognie. Jour- nal Pre-proof Sea urchin recruitment: Effect of diatom based biofilms on Paracentrotus lividus com- petent larvae. Aquaculture, Elsevier, 2020, 515, pp.734559. 10.1016/j.aquaculture.2019.734559. hal-02378591 HAL Id: hal-02378591 https://hal.archives-ouvertes.fr/hal-02378591 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal Pre-proof Sea urchin recruitment: Effect of diatom based biofilms on Paracentrotus lividus competent larvae Marta Castilla-Gavilán, Meshi Reznicov, Vincent Turpin, Priscilla Decottignies, Bruno Cognie PII: S0044-8486(19)31658-8 DOI: https://doi.org/10.1016/j.aquaculture.2019.734559 Reference: AQUA 734559 To appear in: Aquaculture Received Date: 5 July 2019 Revised Date: 13 September 2019 Accepted Date: 1 October 2019 Please cite this article as: Castilla-Gavilán, M., Reznicov, M., Turpin, V., Decottignies, P., Cognie, B., Sea urchin recruitment: Effect of diatom based biofilms on Paracentrotus lividus competent larvae, Aquaculture (2019), doi: https://doi.org/10.1016/j.aquaculture.2019.734559.
    [Show full text]
  • The Marine Fauna of Lundy Ecidnodermata
    Rep. Lundy Fld Soc. 29 (1978) THE MARINE FAUNA OF LUNDY ECIDNODERMATA P. A. TYLER Department of Oceanography, University College, Swansea, S. Wales, U.K. INTRODUCTION The five classes of echinoderms are a conspicuous element of the fauna in truly marine areas. The British echinoderm fauna has been treated in detail by Mortensen (1927). In shelf sea areas they are usually found below LWN tide level with occasional species moving up into the littoral zone. Examples of the dominant extant groups are found in all types of substrates, the ophiuroids and the heart urchins being particularly important in the determination of soft substrate benthic communities (Thorson, 1947). SOURCES OF MATERIAL The collections made by divers during marine surveys of Lundy have pro­ duced a considerable record particularly of the conspicuous epifaunal asteroids, regular echinoids and holothurians. Observations of the less conspicuous in­ faunal ophiuroids and irregular echinoids have been obtained by divers and by benthic surveys using R.V. 'Ocean Crest'. THE LUNDY FAUNA- GENERAL CONSIDERATIONS To date, 24 species of echinoderm have been recorded around Lundy. Of these species only 8 were recorded by Harvey (1950, 1951) at Lundy. The most noteable exceptions to the fauna are Acrocnida brachiata and Spatangus purpureus, both of which have been found further up the Bristol Channel and may be supposed to be found round Lundy where a suitable substrate exists for these infaunal species. A number of species appear to be common all round the island. These include Asterias rubens, Marthasterias glacia/is, Luidia ciliaris, Echinus esculentus and Holothuria forskali. The very rare sea cucumber Lepto­ synapta decaria has been reported as occurring round Lundy (Hoare & Wilson, 1976).
    [Show full text]
  • Sea Urchin Aquaculture
    American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988).
    [Show full text]
  • Annual Macrofauna Production in a Hard-Bottom Reef Community
    J. mar. biol. Ass. U.K. (1985), 65, 713-735 713 Printed in Great Britain ANNUAL MACROFAUNA PRODUCTION IN A HARD-BOTTOM REEF COMMUNITY C. L. GEORGE AND R. M. WARWICK Natural Environment Research Council, Institute for Marine Environment Research, Prospect Place, The Hoe, Plymouth PLi 3DH (Figs. 1-6) Estimates of annual production of the major component species of macrofauna comprising a hard-bottom community at a depth of 41 m in the Bristol Channel have been made. The sea-bed in this region is covered with extensive reefs of the tube-building polychaete Sabellaria spinulosa. Total production is 34-1 g dry wt m~2 y"1, the mean annual biomass 245 g m~2 and the P/B ratio 14. Production is overwhelmingly dominated by the suspension-feeding brittlestar Ophio- thrix fragilis, resulting in a strongly concave species production-rank curve. In addition, there is a diverse fauna of nestling species with slow growth rates which reach maturity at a small body size: production rates for these species are low, but accurate production estimates are sometimes difficult. It is suggested that slow growth rates and small size may result partly from the physical restriction of the reef interstices but principally from the fact that Ophiothrix monopolizes the suspended food resource with an umbrella of feeding arms, and that the infauna of the reef is thus resource-limited. The production ecology at this site is compared with that of other benthic communities in the Bristol Channel. We have limited the detailed presentation of data to a few typical examples; however, data for other species of size frequency, biomass and production are available on request from the authors.
    [Show full text]
  • Genomics of the Globally Distributed Echinoid Genus Tripneustes
    GENOMICS OF THE GLOBALLY DISTRIBUTED ECHINOID GENUS Tripneustes A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY,EVOLUTION,&CONSERVATION BIOLOGY) May 2018 BY Áki Jarl LÁRUSON DISSERTATION COMMITTEE: Floyd A. Reed, Chairperson Robert C. Thomson Robert J. Toonen Daniel Rubinoff David B. Carlon Keywords: Marine Invertebrate, Phylogenomics, Transcriptomics, Population Genomics © Copyright 2018 – Áki Jarl Láruson All rights reserved i DEDICATION I dedicate this dissertation to my grandfather, Marteinn Jónsson (née Donald L. Martin). ii Acknowledgements Every step towards the completion of this dissertation has been made possible by more people than I could possibly recount. I am profoundly grateful to my teachers, in all their forms, and especially my undergraduate advisor, Dr. Sean Craig, of Humboldt State Uni- versity, for all the opportunities he afforded me in experiencing biological research. My dissertation committee deserves special mention, for perpetually affording me pressing encouragement, but also providing an attitude of support and positivity that has been formative beyond measure. My mentor and committee chair, Dr. Floyd Reed, has pro- vided me with perspectives, insights, and advise that I will carry with me for the rest of my life. My family, although far from the tropical shores of Hawai‘i, have been with me in so many ways throughout this endeavor, and I am so profoundly grateful for their love and support. iii Abstract Understanding genomic divergence can be a key to understanding population dynam- ics. As global climate change continues it becomes especially important to understand how and why populations form and dissipate, and how they may be better protected.
    [Show full text]
  • Metallothionein Gene Family in the Sea Urchin Paracentrotus Lividus: Gene Structure, Differential Expression and Phylogenetic Analysis
    International Journal of Molecular Sciences Article Metallothionein Gene Family in the Sea Urchin Paracentrotus lividus: Gene Structure, Differential Expression and Phylogenetic Analysis Maria Antonietta Ragusa 1,*, Aldo Nicosia 2, Salvatore Costa 1, Angela Cuttitta 2 and Fabrizio Gianguzza 1 1 Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; [email protected] (S.C.); [email protected] (F.G.) 2 Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, 91021 Trapani, Italy; [email protected] (A.N.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +39-091-238-97401 Academic Editor: Masatoshi Maki Received: 6 March 2017; Accepted: 5 April 2017; Published: 12 April 2017 Abstract: Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive.
    [Show full text]
  • Psammechinus Miliaris (P.L.S. Müller, 1771)
    Psammechinus miliaris (P.L.S. Müller, 1771) AphiaID: 124319 OURIÇO-DO-MAR-VERDE Animalia (Reino) > Echinodermata (Filo) > Echinozoa (Subfilo) > Echinoidea (Classe) > Euechinoidea (Subclasse) > Carinacea (Infraclasse) > Echinacea (Superordem) > Camarodonta (Ordem) > Echinidea (Infraordem) > Parechinidae (Familia) © Vasco Ferreira - OMARE - Observatório Marinho de Esposende / Out. 06 © Vasco Ferreira - OMARE - Observatório Marinho de Esposende / Out. 05 2017 2017 Karls Van Ginderdeuren v_s_ - iNaturalist.org Facilmente confundível com: 1 Sphaerechinus Echinus esculentus granularis Ouriço-do-mar Ouriço-do-mar Strongylocentrotus Paracentrotus lividus droebachiensis Ouriço-do-mar . Sinónimos Echinus (Psammechinus) korenii Desor in L. Agassiz & Desor, 1846 Echinus basteri Gmelin, 1791 Echinus miliaris P.L.S. Müller, 1771 Echinus pustulatus L. Agassiz, 1841 Echinus virens Düben & Koren, 1844 Parechinus miliaris (P.L.S. Müller, 1771) Parechinus miliaris Mortensen, 1903 Psammechinus korenii Desor in L. Agassiz & Desor, 1846 Psammechinus pustulatus (L. Agassiz, 1841) Referências additional source Massin, C.; Norro, A.; Mallefet, J. (2002). Biodiversity of a wreck from the Belgian Continental Shelf: monitoring using scientific diving. Preliminary results. Bull. IRSNB (Biologie) 72, pp 67-72. [details] basis of record Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels,. 50: pp. 336-351. [details] redescription Mortensen, T. (1943). A Monograph of the Echinoidea. III, 3. Camarodonta. II. Echinidæ, Strongylocentrotidæ, Parasaleniidæ, Echinometridæ. 446 pp., C. A. Reitzel, Copenhagen. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56.
    [Show full text]
  • Annual Report 2000.Pdf
    REPORT AND ACCOUNTS OF The Scottish Association for Marine Science for the period 1 April 1999 to 31 March 2000 The Dunstaffnage Marine Laboratory, Firth of Lorn, with the Laboratory’s larger research vessel Calanus at the pontoon (right). © John Anderson, Highland Image Contents The cold water coral Lophelia - see page 12 for report Director’s introduction 6 Geochemistry North Sea drill cuttings 8 Baltic Sea System Study 9 Restricted Exchange Environments 10 Deep-Sea Benthic Dynamics Deep-Sea macrofauna 11 Cold water coral Lophelia 12 Continental slope environmental assessment 13 Deep-Water Fish Otolith microchemistry 14 West of Scotland angler fish 15 Deep-water elasmobranchs 16 Invertebrate Biology and Mariculture Sea urchin cultivation 17 Bioaccumulation of chemotherapeutants 18 Microalgal dietary supplements 19 Amnesic shellfish poisoning 19 Marine Biotechnology Natural products research 20 Marine carotenoids 21 Microbial ecotoxicology 21 Microbial Ecology Interannual variability in Antarctic waters 22 Coastal waters of Pakistan 23 Zooplankton Dynamics 24 Clyde time-series 25 Modelling vertical migration 25 Active flux 25 Effects of delousing chemicals 26 Marine Biogenic Trace Gases Light and the dimethylsulphide cycle 27 Sediment trap investigations 28 SAMS/UHIp Marine science degree team 29 Phytoplankton and protozoan dynamics 29 Marine geomorphology of Loch Etive 30 Marine Physics 31 Biogeochemistry 32 Report from the SAMS Honorary Fellows Marine ornithology 33 Geology 34 Data Warehouse progress report 35 4 Annual Report 1999-2000
    [Show full text]
  • The Final Published Version Is Available Direct from the Publisher Website At: 10.1016/J.Lwt.2014.05.016 Link to Author Version on UHI Research Database
    UHI Research Database pdf download summary Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin, Psammechinus miliaris Powell, C; Hughes, AD; Kelly, MS; Conner, S; McDougall, GJ Published in: LWT-Food Science and Technology Publication date: 2014 The Document Version you have downloaded here is: Early version, also known as pre-print The final published version is available direct from the publisher website at: 10.1016/j.lwt.2014.05.016 Link to author version on UHI Research Database Citation for published version (APA): Powell, C., Hughes, AD., Kelly, MS., Conner, S., & McDougall, GJ. (2014). Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin, Psammechinus miliaris. LWT-Food Science and Technology, 59(1), 455-460. https://doi.org/10.1016/j.lwt.2014.05.016 General rights Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights: 1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research. 2) You may not further distribute the material or use it for any profit-making activity or commercial gain 3) You may freely distribute the URL identifying the publication in the UHI Research Database Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details; we will remove access to the work immediately and investigate your claim.
    [Show full text]