Copyright© 2018 Mediterranean Marine Science

Total Page:16

File Type:pdf, Size:1020Kb

Copyright© 2018 Mediterranean Marine Science Mediterranean Marine Science Vol. 19, 2018 Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea) DUCHAUD SOPHIE Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte, France Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia DURIEUX ERIC Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia COUPE STEPHANE Univ Toulon, Aix Marseille Univ, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde PASQUALINI VANINA Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia TERNENGO SONIA Univ Toulon, Aix Marseille Univ, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde http://dx.doi.org/10.12681/mms.14184 Copyright © 2018 Mediterranean Marine Science http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 04:47:03 | To cite this article: DUCHAUD, S., DURIEUX, E., COUPE, S., PASQUALINI, V., & TERNENGO, S. (2018). Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea). Mediterranean Marine Science, 19(3), 620-641. doi:http://dx.doi.org/10.12681/mms.14184 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 04:47:03 | Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available online at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14184 Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea) SOPHIE DUCHAUD1, 2, ERIC D. H. DURIEUX1, 2, STEPHANE COUPE3, VANINA PASQUALINI1, 2 and SONIA TERNENGO1, 2 1 Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte, France 2 Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia, France 3 Université Toulon, Aix Marseille Univ, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France Corresponding author: [email protected] Handling Editor: Xavier Turon Received: 12 July 2017; Accepted: 12 September 2018; Published on line: 14 December 2018 Abstract Sea urchins were harvested for decades in many areas throughout its distribution range, potentially leading to population collapse. In France, the purple sea urchin Paracentrotus lividus is intensively harvested. Yet, the demography and population dynamics remained under-documented, particularly in Corsica. In this context, we have characterized the fluctuations in density of several size classes at 8 sites around the island, and assessed the genetic diversity and structuring of the population. Densities recorded lie between 0 and 2.18 (± 0.41) individuals.m-2 and spatio-temporal variabilities have also been highlighted. The study of the influ- ence of vegetation cover on the size classes suggests that small- and medium- sized individuals prefer substrates of intermediate heights, whereas individuals with a diameter ≥ 5 cm are more often observed on encrusting substrates, and may be responsible for the continuation of this type of benthic community. The genetic study indicates a high genetic diversity with a low genetic struc- turing. The Ne values obtained are similar to those described in previous papers. Due to estimates of local contemporary Ne and the homogeneous genetic diversity, our data tend to show that the Corsican population of P. lividus is not overexploited. Keywords: Paracentrotus lividus; Abundances; Population dynamics; Vegetation cover; Substrates; Demographic history; Effective population size. Introduction sea urchin Arbacia lixula (Linnaeus, 1758) (Echinoidea: Arbaciidae) can affect the spatial repartition of P. lividus The purple sea urchin Paracentrotus lividus (La- (Chelazzi et al., 1997; Bulleri et al., 1999). Anthropic fac- marck, 1816) (Echinoidea: Parechinidae) is a species tors such as the destruction of habitats (Prado et al., 2012) commonly observed in coastal ecosystems and subtid- or harvesting (Andrew et al., 2002; Pais et al., 2007; Cec- al zones (Boudouresque & Verlaque, 2001), at shallow cherelli et al., 2011) can also impact population structure depths between 0 and 30 m (Mortensen, 1927) but with and especially size classes greater than 5 cm (minimum decreasing abundances after 10 m (Chelazzi et al., 1997). harvestable size). In particular, sea urchin fishing is com- In the Mediterranean Sea, it can be found on rocky reefs, mon in many Mediterranean countries as part of both in meadows of Zostera marina or in Posidonia ocean- professional and recreational practices (Guidetti, 2004), ica seagrass beds (Verlaque, 1987), where it can find a and the impact of overfishing onP. lividus has been high- suitable habitat and food resources (Prado et al., 2007). lighted (Andrew et al., 2002; Pais et al., 2012; Bertocci Sometimes sea urchins can be observed in coastal la- et al., 2014). Finally, global warming and the ensuing in- goons such as in Urbinu and Thau, where it lives on mud creasing water temperature could lead to the collapse of substrata or coarse sand (Fernandez et al., 2006, 2012). P. lividus populations (Yeruham et al., 2015; Rilov, 2016) The complexity and dependence of sea urchins in relation and promote the development of A. lixula (Privitera et al., to their habitat influence the population structure (Pra- 2011). As a result, in many areas, P. lividus populations do et al., 2012) and many factors like temperature and/ have been extensively surveyed over several successive or salinity can affect sea urchin abundances (Fernandez generations (see e.g. Hereu et al., 2012; Pais et al., 2012). et al., 2006). Presence of other species such as the black Sea urchins have a complex life cycle. During each Medit. Mar. Sci., 19/3, 2018, 620-641 620 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 04:47:03 | reproductive season, P. lividus benthic adults produce of genetically diverse recruits. A similar pattern of genet- pelagic larvae, that can potentially disperse across long ic structure has been observed, overall, within the Med- distances from their place of birth (Cowen et al., 2006). iterranean basin, in the related sea urchin Arbacia lixula The new recruits that settle within a population, thus en- (Pérez-Portela et al., 2018). sure the demographic maintenance of the recipient pop- The measure of the effective population sizeN e, which ulations and influence its genetic diversity. As is the case is defined as the size of an ideal population that has the for most marine species with a pelagic developmental life same rate of change in allele frequencies or heterozy- stages, P. lividus presents high variability in both the level gosity, as the observed population, also gives an inter- of recruitment (Hereu et al., 2004) and the reproductive esting insight into the demographic history of a species. success (Hedgecock, 1994; Calderón et al., 2012), which Fluctuations of Ne estimates actually provide information may lead to a transient genetic structure within cohorts on variations of population sizes, across different time (Johnson & Black, 1982; Couvray & Coupé, 2018). frames (i.e. ancient to contemporary times) and spatial P. lividus populations are characterized by a high ge- scales (Wang, 2005). Thus, Ne estimates are interesting in- netic diversity within both Atlantic and Mediterranean dicators for the management and conservation of natural basins. Using either nuclear or mitochondrial markers, populations (Frankham, 2010; Hare et al., 2011; Ruggeri spatial structure has been evidenced between the Atlan- et al., 2016). Indeed, as the genetic diversity accounts for tic and the Mediterranean basins (Duran et al., 2004; the adaptive potential of a species, there are great con- Calderón et al., 2008), and between the Atlantic basin, cerns when consistent demographic decreases are ob- the Adriatic basin and the western and eastern Mediter- served. For instance, overharvesting has been shown to ranean basins (Maltagliati et al., 2010). More recently, substantially reduce the genetic diversity of numerous Paterno et al. (2017), using more than 1 000 single nu- marine species, and adversely affect their biology and cleotide polymorphisms (SNPs), revealed a differenti- natural sustainability. In the case of P. lividus, Calderón ation between the northern and southern regions of the et al. (2009a) have estimated the local Ne in a site of the Western Mediterranean basin. In addition, weak genetic Iberian coast at around three hundred individuals. structures, potentially below the larval dispersion range, In the end, although a growing number of works re- could be observed within basins and even within regions, ports that Ne can reliably estimate census Nc population these being explained by both the variability of reproduc- sizes (Ovenden et al., 2016), its use as a proxy of Nc tive success and putative, relatively stable, hydrological remains unsuitable for many marine species with high features (Penant et al., 2013; Couvray & Coupé, 2018). fecundity
Recommended publications
  • Grazing by the Sea Urchins Arbacia Lixula L. and Paracentrotus Lividus Lam. in the Northwest Mediterranean
    Journal of Experimental Marine Biology and Ecology, L 241 (1999) 81±95 Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean Fabio Bulleri, Lisandro Benedetti-Cecchi* , Francesco Cinelli Dipartimento di Scienze dell'Uomo e dell'Ambiente via A. Volta 6, 56126 Pisa, Italy Received 2 October 1998; received in revised form 12 April 1999; accepted 5 May 1999 Abstract The sea urchins Arbacia lixula and Paracentrotus lividus are common on shallow subtidal reefs in the Mediterranean. Previous studies on the ecology of these species reported that P. lividus is generally more abundant on horizontal or gently sloping substrata, where it forages mainly on erect algae. In contrast, A. lixula is more common on vertical substrata and it is considered a main grazer of encrusting coralline algae. Observations on some rocky shores in the Ligurian sea indicated that P. lividus occurs mainly in crevices at the bottom of the vertical walls, and that neither species is present on horizontal or sub-horizontal substrata. In this study we investigated the distribution and abundance of the two species of sea urchins on vertical substrata at different spatial scales and through time. A ®eld experiment was used to test whether A. lixula constrained the distribution of P. lividus on vertical substrata, and to test for the predicted differences in the effects of the 2 species on assemblages of algae and invertebrates. Four treatments were used: (1) control (sea urchins left untouched); (2) A. lixula removed, P. lividus present; (3) A. lixula present, P. lividus removed, and (4) both species removed.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Uranium Uptake in Paracentrotus Lividus Sea Urchin, Accumulation
    Uranium Uptake in Paracentrotus lividus Sea Urchin, Accumulation and Speciation Benjamin Reeves, Maria Rosa Beccia, Pier Lorenzo Solari, Danil Smiles, David Shuh, Catherine Berthomieu, Didier Marcellin, Nicolas Bremond, Luisa Mangialajo, Sophie Pagnotta, et al. To cite this version: Benjamin Reeves, Maria Rosa Beccia, Pier Lorenzo Solari, Danil Smiles, David Shuh, et al.. Uranium Uptake in Paracentrotus lividus Sea Urchin, Accumulation and Speciation. Environmental Science and Technology, American Chemical Society, 2019, 53 (14), pp.7974-7983. 10.1021/acs.est.8b06380. hal-02196756 HAL Id: hal-02196756 https://hal.archives-ouvertes.fr/hal-02196756 Submitted on 12 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Environmental Science & Technology This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Uranium uptake in Paracentrotus lividus sea urchin, accumulation and speciation Journal: Environmental Science & Technology Manuscript ID es-2018-06380c.R1 Manuscript Type: Article Date Submitted by the 10-May-2019 Author: Complete List of Authors: Reeves, Benjamin; Universite Cote d'Azur, ICN Beccia, Maria Rosa; Universite Cote d'Azur, Institut de Chimie de Nice Solari, Pier Lorenzo; Synchrotron Soleil, Smiles, Danil; Chemical Sciences Division, Glenn T.
    [Show full text]
  • Males and Females Gonad Fatty Acids of the Sea Urchins and (Echinodermata) Inés Martínez-Pita, Francisco J
    Males and females gonad fatty acids of the sea urchins and (Echinodermata) Inés Martínez-Pita, Francisco J. García, María-Luisa Pita To cite this version: Inés Martínez-Pita, Francisco J. García, María-Luisa Pita. Males and females gonad fatty acids of the sea urchins and (Echinodermata). Helgoland Marine Research, Springer Verlag, 2009, 64 (2), pp.135-142. 10.1007/s10152-009-0174-7. hal-00535207 HAL Id: hal-00535207 https://hal.archives-ouvertes.fr/hal-00535207 Submitted on 11 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Helgol Mar Res (2010) 64:135–142 DOI 10.1007/s10152-009-0174-7 ORIGINAL ARTICLE Males and females gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata) Inés Martínez-Pita · Francisco J. García · María-Luisa Pita Received: 25 May 2009 / Revised: 18 September 2009 / Accepted: 24 September 2009 / Published online: 15 October 2009 © Springer-Verlag and AWI 2009 Abstract The aim of this study was to analyze male and 20:5n-3 and 22:6n-3 found in males and females of the female gonad fatty acids of two sea urchin species, Para- Mediterranean specimens compared to those of the Atlantic centrotus lividus and Arbacia lixula, from the south coast coast.
    [Show full text]
  • Pdf Underwater Routes
    UNDERWATER ROUTES of the western Algarve CONTENTS CREDITS COORDINATION: Jorge M. S. INTRODUCTION 3 Gonçalves e Mafalda Rangel TEXT: Mafalda Rangel DIVING IN THE ROUTES 5 RESEARCH TEAM: Mafalda Rangel, Luís Bentes, Pedro MAP OF THE NETWORK OF UNDERWATER ROUTES 8 Monteiro, Carlos M. L. Afonso, Frederico Oliveira, Inês Sousa, SCUBA DIVING ROUTES 10 Karim Erzini, Jorge M. S. Gonçalves (CCMAR – Centre of GRUTA DO MARTINHAL (SAGRES) 10 Marine Sciences) PHOTOGRAPHY: Carlos M. L. PONTA DOS CAMINHOS (SAGRES) 12 Afonso, David Abecasis, Frederico Oliveira, João Encarnação/ “POÇO” (ARMAÇÃO DE PERA) 14 Subnauta (p.7), Jorge M. S. Gonçalves, Nuno Alves (p.19), SNORKELING ROUTES 16 Pedro Veiga ILUSTRATION_ Underwater P. 2 PRAIA DA MARINHA (LAGOA) 16 slates: Frederico Oliveira GRAPHIC DESIGN AND PRAIA DOS ARRIFES (ALBUFEIRA) 18 ILUSTRATION: GOBIUS Comunication and Science PHOTOS 20 COLABORATION: Isidoro Costa ADB COORDINATION: José CURIOSITIES 25 Moura Bastos TRANSLATION: Mafalda DANGERS 26 Rangel, Fátima Noronha CONTACTS: INTEREST FOR CONSERVATION 26 _CCMAR - Centro de Ciências do Mar do Algarve: Universidade do READING SUGGESTIONS 27 Algarve, Campus de Gambelas, FCT Ed7, 8005-139 Faro Telf. 289 800 051 http://www.ccmar.ualg.pt HOW TO QUOTE THIS PUBLICATION: _ADB - Agência Desenvolvimento Rangel, M.; Oliveira, F.; Bentes, L.; Monteiro, P.; Afonso, C.M.L.; do Barlavento, Rua Impasse à Rua Sousa, I.; Erzini, K.; Gonçalves, J.M.S.. 2015. Underwater Routes Poeta António Aleixo, Bloco B, GENTES D’MAR of the windward Algarve. Centre of Marine Sciences (CCMAR), R/c, 8500-525 Portimão, Portugal Algarve University; Agência Desenvolvimento do Barlavento Telf. 282 482 889 (ADB). GOBIUS Communication and Science, 27p.
    [Show full text]
  • Underwater High Frequency Noise Biological Responses in Sea Urchin Arbacia Lixula
    Comparative Biochemistry and Physiology, Part A 242 (2020) 110650 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part A journal homepage: www.elsevier.com/locate/cbpa Underwater high frequency noise: Biological responses in sea urchin Arbacia lixula (Linnaeus, 1758) T ⁎ Mirella Vazzanaa, , Manuela Mauroa, Maria Ceraulob, Maria Dioguardia, Elena Papalec, Salvatore Mazzolab, Vincenzo Arizzaa, Francesco Beltramed, Luigi Ingugliaa, Giuseppa Buscainob a Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi,18– 90123 Palermo, Italy b BioacousticsLab, Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS), Unit of Capo Granitola, National Research Council, Via del Mare 3, 91021 Torretta Granitola (TP), Italy c Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy d Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Via All'Opera Pia, 13, 16145 Genova, Italy ARTICLE INFO ABSTRACT Keywords: Marine life is extremely sensitive to the effects of environmental noise due to its reliance on underwater sounds Echinoderms for basic life functions, such as searching for food and mating. However, the effects on invertebrate species are HSP70 not yet fully understood. The aim of this study was to determine the biochemical responses of Arbacia lixula Marine invertebrates exposed to high-frequency noise. Protein concentration, enzyme activity (esterase, phosphatase and peroxidase) Noise and cytotoxicity in coelomic fluid were compared in individuals exposed for three hours to consecutive linear Acoustic stimulus sweeps of 100 to 200 kHz lasting 1 s, and control specimens. Sound pressure levels ranged between 145 and Physiological stress 160 dB re 1μPa.
    [Show full text]
  • The Effects of Multiple Predators on the Size Structure of Red Urchin Populations in British Columbia
    The Effects Of Multiple Predators On the Size Structure of Red Urchin Populations in British Columbia An undergraduate Directed Studies (BISC 498) research project by Christine Stevenson Introduction Predator-prey body size relationships influence trophic structure, transfer efficiency, and interaction strength within a food web (Jonsson and Ebenman 1998). Size distributions of both predators and prey are an important component to the population dynamics of a community. Knowledge of the strength of predatory interactions within a food web can provide insight to the relationships between the sizes of prey and their predators. Predators are generally larger than the size their prey and predator size is often positively correlated to prey size (Vezina 1985, Warren and Lawton 1987, Cohen et al. 1993). The relative body size of a predator and its prey largely contribute to the ecology and evolutionary consequences of predator-prey relationships. This is most defined in systems involving size- dependent predators. These predators are effective agents of selection among prey species that differ in body size or growth rate. Size dependent predators therefore influence the structure of prey populations by diminishing prey species of a preferred size (Kerfoot and Peterson 1980). Prey species that can reach a large size through embellishments of the exoskeleton can often attain a size refuge from predators (Sousa 1992). Thus, the risk of predation may be lower for larger prey compared to smaller individuals. The risk of an individual prey being consumed may also depend on the size- structure of the predator population, as larger predators generally have the ability to handle and consume larger prey (Sousa 1992).
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • Tool Use by Four Species of Indo-Pacific Sea Urchins Glyn Barrett1,2, Dominic Revell1, Lucy Harding1, Ian Mills1, Axelle Jorcin1, Klaus M
    bioRxiv preprint doi: https://doi.org/10.1101/347914; this version posted June 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Tool use by four species of Indo-Pacific sea urchins Glyn Barrett1,2, Dominic Revell1, Lucy Harding1, Ian Mills1, Axelle Jorcin1, Klaus M. Stiefel1,3,4* 1. People and the Sea, Malapascua Island, Daanbantayan, Cebu, Philippines 2. School of Biological Sciences, University of Reading, UK. 3. Neurolinx Research Institute, La Jolla, CA, USA 4. Marine Science Institute, University of the Philippines, Dilliman, Quezon City, Philippines. *Corresponding author, [email protected] Abstract We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneutes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type of covering material on each urchin, and, in several cases, the recovery of debris cover after stripping the animal of its cover. We found that Tripneustes gratilla and Salmacis sphaeroides have a higher preference for plant material, especially sea-grass, compared to Pseudoboletia maculata and Toxopneutes pileolus, which prefer to cover themselves with coral rubble and other calcified material. Only for Toxopneutes pileolus did we find a decrease in cover with depth, confirming previous work that the covering behavior serves UV protection. We found no dependence of particle size on either species or urchin size, but we observed that larger urchins carried more and heavier debris.
    [Show full text]
  • Spawning of Gametes in Paracentrotus Lividus
    Spawning of gametes in Paracentrotus lividus 1. Randomly select 4-5 adult animals (sex determination in P. lividus is not possible by visual inspection; only after the spawning female and male will be Paola Cirino, Alfonso Toscano easily distinguished by gametes: eggs are yellow-orange, sperm are white) Stazione Zoologica Anton Dohrn, It. Animals: Adult sea urchins collected from 2. Apply one of the following stimulus in order to induce the spawning (the 3 natural population. methods (a – c) are progressively more invasive and can be applied successively Apparatus: filtered seawater 0,22µ, or alternatively, according to the quantity of gametes needed). various size glass beakers, Pasteur pipets a) Shaking: shake vigorously animals wrapping them in common and pipet bulbs , Petri dishes, eppendorf paper. Place the animals with the oral side down on a Petri dish. Wait for a tubes, syringes (2 – 5 ml) and needles. few minutes and check the spawning of gametes from the aboral surface. An electrical device (9 – 12 V): two b) Electrical shock: place the urchin with the oral side down on a Petri dish metallic paddles with insulated handles with a thin layer of sea water just lapping the animal. Apply the paddle to (electrodes) connected to a battery. the opposite sides of animal near the gonopore and give an electrical Chemicals: potassium chloride (KCl) 0,5M discharge lasting a few seconds. Repeat this electrical shock for 3 – 4 times. in distilled water. Wait for a few minutes and check the spawning of gametes from the Parameters: T 20 °C aboral surface. c) Intracoelomic injection : place the urchin with the oral side up.
    [Show full text]
  • The Role of Trophic Interactions Between Fishes, Sea Urchins and Algae in the Northwest Mediterranean Rocky Infralittoral
    The role of trophic interactions between fishes, sea urchins and algae in the northwest Mediterranean rocky infralittoral Bernat Hereu Fina Departament d’Ecologia Universitat de Barcelona 2004 Tesi Doctoral Universitat de Barcelona Facultat de Biologia – Departament d’Ecologia The role of trophic interactions between fishes, sea urchins and algae in the northwestern Mediterranean rocky infralittoral Memòria presentada per Bernat Hereu Fina per a optar al títol de Doctor en Biologia al Departament d’Ecologia, de la Universitat de Barcelona, sota la direcció dels doctors Mikel Zabala Limousin i Enric Sala Gamito Bernat Hereu Fina Barcelona, Febrer de 2004 El director de la Tesi El director de la Tesi Dr. Mikel Zabala Limousin Dr. Enric Sala Gamito Professor titular Assistant professor Facultat de Biologia Scripps Institution Oceanography Universitat de Barcelona University of California Contents Contents....................................................................................................................................................3 Chapter 1- General introduction..............................................................................................................1 The theoretical framework: trophic models.............................................................................................4 Trophic cascades: evidence of “top-down” control................................................................................6 Trophic cascades in marine systems........................................................................................................7
    [Show full text]
  • Protein and Energy Digestibility and Gonad Development of the European Sea Urchin Paracentrotus Lividus (Lamarck) Fed Algal and Prepared Diets During Spring and Fall
    UC Davis UC Davis Previously Published Works Title Protein and energy digestibility and gonad development of the European sea urchin Paracentrotus lividus (Lamarck) fed algal and prepared diets during spring and fall Permalink https://escholarship.org/uc/item/2q5151zv Journal Aquaculture Research, 36 Author Schlosser, Susan Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Aquaculture Research, 2005, 36, 972^982 doi:10.1111/j.1365-2109.2005.01306.x Protein and energy digestibility and gonad development of the European sea urchin Paracentrotus lividus (Lamarck) fed algal and prepared diets during spring and fall Susan C Schlosser1, Ingrid Lupatsch2, John M Lawrence3, Addison L Lawrence4 & Muki Shpigel2 1California Sea Grant Extension Program, Eureka, CA, USA 2National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel 3Department of Biology,University of South Florida,Tampa, FL, USA 4Texas A&M Shrimp Mariculture Project, Port Aransas,TX, USA Correspondence: S C Schlosser, California Sea Grant Extension Program, 2 Commercial St., Ste. 4, Eureka, CA 95501, USA. E-mail: [email protected] Abstract from the higher dietary energy content of the pre- pared diet. Protein and energy are two of the main limiting fac- tors for sea urchin growth. However, the requirement Key words: Paracentrotus lividus, sea urchin, of daily protein and energy to maximize gonadal pro- gonad, protein, energy,diet duction is still unknown. Paracentrotus lividus were fed three experimental diets: Ulva lactuca, Gracilaria conferta and a prepared diet for 2 months in the fall of 1999 and spring of 2000. Sea urchins from a Introduction laboratory-cultured population of equal age, weight and test diameter were used.
    [Show full text]