Protein and Energy Digestibility and Gonad Development of the European Sea Urchin Paracentrotus Lividus (Lamarck) Fed Algal and Prepared Diets During Spring and Fall

Total Page:16

File Type:pdf, Size:1020Kb

Protein and Energy Digestibility and Gonad Development of the European Sea Urchin Paracentrotus Lividus (Lamarck) Fed Algal and Prepared Diets During Spring and Fall UC Davis UC Davis Previously Published Works Title Protein and energy digestibility and gonad development of the European sea urchin Paracentrotus lividus (Lamarck) fed algal and prepared diets during spring and fall Permalink https://escholarship.org/uc/item/2q5151zv Journal Aquaculture Research, 36 Author Schlosser, Susan Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Aquaculture Research, 2005, 36, 972^982 doi:10.1111/j.1365-2109.2005.01306.x Protein and energy digestibility and gonad development of the European sea urchin Paracentrotus lividus (Lamarck) fed algal and prepared diets during spring and fall Susan C Schlosser1, Ingrid Lupatsch2, John M Lawrence3, Addison L Lawrence4 & Muki Shpigel2 1California Sea Grant Extension Program, Eureka, CA, USA 2National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel 3Department of Biology,University of South Florida,Tampa, FL, USA 4Texas A&M Shrimp Mariculture Project, Port Aransas,TX, USA Correspondence: S C Schlosser, California Sea Grant Extension Program, 2 Commercial St., Ste. 4, Eureka, CA 95501, USA. E-mail: [email protected] Abstract from the higher dietary energy content of the pre- pared diet. Protein and energy are two of the main limiting fac- tors for sea urchin growth. However, the requirement Key words: Paracentrotus lividus, sea urchin, of daily protein and energy to maximize gonadal pro- gonad, protein, energy,diet duction is still unknown. Paracentrotus lividus were fed three experimental diets: Ulva lactuca, Gracilaria conferta and a prepared diet for 2 months in the fall of 1999 and spring of 2000. Sea urchins from a Introduction laboratory-cultured population of equal age, weight and test diameter were used. Apparent digestibility Aquaculture of sea urchins requires understanding coe⁄cients (ADC%) for protein and energy, using the quantity and quality of algal and prepared feeds acid-insoluble ash as a marker, were measured for for successful gonad production. Paracentrotus lividus all experimental diets. Apparent digestibility coe⁄- (Lamarck) is a commercially important species in the cients for protein was high (475%) for all diets. En- Mediterranean region (Boudouresque & Verlaque ergy digestibility varied among the diets and was 2001). Many aspects of P. l i v i d u s nutrition have been lowest for G. conferta (50^62%). The three diets con- studied including feed type (Fernandez & Boudour- tained varying digestible protein (DP) to digestible esque 1997; Ferenandez & Pergent 1998); comparison energy (DE) ratios of 25,26 and12 mg kJ À1 for U. lac- of di¡erent algal diets (Frantzis & Gre¤ mare 1992) and tuca, G. conferta and the prepared diet respectively. e¡ects of prepared diets (Fernandez & Boudouresque Digestible protein intake was similar for all treat- 2000; Spirlet, Grosjean & Jangoux 2001). The advan- ments, but DE intake was greater for sea urchins fed tage of prepared diets over natural algal diets on sea the prepared diet in both seasons. As a result, the go- urchin gonad growth is known for some species nad production was signi¢cantly higher for urchins (Lawrence, Olave, Otaiza, Lawrence & Bustos 1997; fed the prepared diet, suggesting that energy was lim- Barker, Keogh, Lawrence & Lawrence 1998; Cook, iting in the algal diets. Paracentrotus lividus spawned Kelly & McKenzie 1998) but has not been tested for during the spring experiment, resulting in protein P. l i v i d u s. The cause of greater gonad growth with loss in all treatments. Protein loss was lowest in the prepared diets is not clear. sea urchins fed the prepared diet. Enhanced gonadal Protein, as a main factor in sustaining gonadal growth and gamete development of P. l i v i d u s resulted growth has been examined.Varying dietary content 972 r 2005 Blackwell Publishing Ltd Aquaculture Research, 2005, 36, 972^982 Protein and energy e¡ects on sea urchin gonad development SCSchlosseret al. and using plant or animal protein sources a¡ects bio- ments day À1) in the fall and 21.4 Æ 0.7 1C(n 5120) chemical composition of gonads (Fernandez 1997) in the spring. Dissolved oxygen was 90^100% satura- and gonad production (Lawrence, Fenaux, Corre & tion and mean pH was 8.17 Æ 0.05 (n 512 per experi- Lawrence1991). However, little is known about the ef- ment, one sample week À1 for dissolved oxygen, pH fect of dietary energy and especially the balance be- and salinity). Salinity was constant at 41ppt.The sea- tween protein and energy in the feeds. Most sea water system supplied a continuous £ow of seawater urchin prepared diets contain 20^40% protein and ¢ltered to100 mm to the experimental aquaria. Aqua- digestibility is generally greater than 60% (Frantzis ria dimensions were 20 Â 35 Â 15cm. Each aqua- &Gre¤ mare 1992; Klinger, Lawrence & Lawrence rium was vigorously aerated and contained 10.5 L of 1998; McBride, Lawrence, Lawrence & Mulligan seawater. Sea urchins were always in close proximity 1998; Akiyama, Unuma & Yamamoto 2001), but in- to their food and were checked every morning and formation about energy content or digestibility is evening when temperatures were recorded. generally lacking. The total energy or protein of an Adult P. l i v i d u s were selected from a cohort pro- algal or prepared diet may not represent the quantity duced by spawning individuals in the laboratory in of these nutrients that are available to P. l i v i d u s.Asin December 1997. Animals were starved for 1 week ecological studies, digestibility values of protein and prior to starting both studies to ensure similar nutri- energy of the food consumed are necessary to deter- tional condition for each individual. Sea urchins mine the amount of each nutrient utilized by were measured (horizontal test diameter, HD) to P. l i v i d u s (McClintock1986). the nearest 0.01mm, weighed (whole wet weight, Gonads of sea urchins vary in size and gameto- Æ 0.01g) and placed in replicate, randomly genic state during the year. Gonad production is arranged, glass aquaria (n 5 3 aquaria diet À1, greater in the post-spawning season than in the 10 u rc h i n s a qua r ia À1). Initial mean test diameter spawning season (Lozano, Galera, Lopez, Turon, and whole animal wet weight were 30.7 Æ 1.5 mm Palacin & Morera 1995; Unuma, Kooichi, Furuita, and 13.1 Æ 1.5 g in the fall and 34.3 Æ 1.4 mm and Yamamoto & Akiyama 1996; Lawrence et al.1997; 18.7 Æ 1.7 g in the spring. Klinger et al. 1998). Protein and energy are allocated An initial sample (n 5 20) of P. l i v i d u s, and all ani- to increases in body size or to gonadal production, mals at the conclusion of both studies, were dis- depending on the animals’ reproductive condition sected.Wet body compartments (gonad, gut, lantern, (Edwards & Ebert 1991; Pearse & Cameron 1991; test) were weighed to the nearest 0.01g. The body Fernandez & Boudouresque 2000). compartments were dried at 105 1C for 24 h and re- The purpose of this study is to compare the e¡ects weighed. Interstitial water and coelmic £uid lost dur- of protein and energy on gonad production and body ing dissection and desiccation is not relevant to composition in adult P. l i v i d u s fed algal and prepared protein and energy intake, e⁄ciency or gonad pro- diets during and after the spawning season. Applica- duction. Whole animal dry weight in this study is tion of this information will help improve and opti- the sum of the dry body compartments. Gonad index mize diet formulations for the culture of sea urchins. (%) was calculated as (dry gonad weight (g)/dry body weight (g) Â 100) and as (wet gonad weight (g)/ whole animal weight (g) Â 100). Dry body compart- Materials and methods ment indices are given for gut, lantern and test. One gonad section from each animal in the initial Two identical,60-day studies were conducted during sample (n 5 20) and a sub-sample from each treat- fall (October^December 1999) and spring (March^ ment (n 510 per diet treatment, ¢ve females, ¢ve May 2000). All methods apply to both studies unless males) were preserved in neutral-bu¡ered formalin otherwise stated. All reported values are mean Æ SD. to determine the reproductive state according to By- rne (1990).These were: (1)recovering stage with small previtellongenic oocytes or primary spermatocytes; Experimental conditions (2) growing stage with many large nutritive phago- Seawater £ow from a common manifold was cytes; (3) mature stage with no or few nutritive pha- 0.5 L min À1 to each aquarium with temperature re- gocytes around oocytes or spermatozoa; (4) partly corded twice daily.Dissolved oxygen, pH and salinity spawned stage with some void spaces containing few were measured weekly. Mean seawater tempera- nutritive phagocytes and loosely packed gametes and ture was 24.2 Æ 0.9 1C(n 5120, two measure- (5) spent stage with gonads appearing empty. r 2005 Blackwell Publishing Ltd, Aquaculture Research, 36, 972 ^ 982 973 Protein and energy e¡ects on sea urchin gonad development S C Schlosser et al. Aquaculture Research, 2005, 36, 972^982 Feeding study Table 1 Composition of algae and prepared diet fed to Para- centrotus lividus in the fall and spring experiments (perg dry The diets fed P. l i v i d u s were fresh, cultured Ulva lactu- matter) ca and Gracilaria conferta (Cohen & Neori 1991) and an extruded moist pellet, hereafter referred to as the Ulva Gracilaria Prepared prepared diet. The prepared diet was manufactured lactuca conferta diet by Wenger International (Kansas, MO, USA).
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Uranium Uptake in Paracentrotus Lividus Sea Urchin, Accumulation
    Uranium Uptake in Paracentrotus lividus Sea Urchin, Accumulation and Speciation Benjamin Reeves, Maria Rosa Beccia, Pier Lorenzo Solari, Danil Smiles, David Shuh, Catherine Berthomieu, Didier Marcellin, Nicolas Bremond, Luisa Mangialajo, Sophie Pagnotta, et al. To cite this version: Benjamin Reeves, Maria Rosa Beccia, Pier Lorenzo Solari, Danil Smiles, David Shuh, et al.. Uranium Uptake in Paracentrotus lividus Sea Urchin, Accumulation and Speciation. Environmental Science and Technology, American Chemical Society, 2019, 53 (14), pp.7974-7983. 10.1021/acs.est.8b06380. hal-02196756 HAL Id: hal-02196756 https://hal.archives-ouvertes.fr/hal-02196756 Submitted on 12 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Environmental Science & Technology This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Uranium uptake in Paracentrotus lividus sea urchin, accumulation and speciation Journal: Environmental Science & Technology Manuscript ID es-2018-06380c.R1 Manuscript Type: Article Date Submitted by the 10-May-2019 Author: Complete List of Authors: Reeves, Benjamin; Universite Cote d'Azur, ICN Beccia, Maria Rosa; Universite Cote d'Azur, Institut de Chimie de Nice Solari, Pier Lorenzo; Synchrotron Soleil, Smiles, Danil; Chemical Sciences Division, Glenn T.
    [Show full text]
  • Pdf Underwater Routes
    UNDERWATER ROUTES of the western Algarve CONTENTS CREDITS COORDINATION: Jorge M. S. INTRODUCTION 3 Gonçalves e Mafalda Rangel TEXT: Mafalda Rangel DIVING IN THE ROUTES 5 RESEARCH TEAM: Mafalda Rangel, Luís Bentes, Pedro MAP OF THE NETWORK OF UNDERWATER ROUTES 8 Monteiro, Carlos M. L. Afonso, Frederico Oliveira, Inês Sousa, SCUBA DIVING ROUTES 10 Karim Erzini, Jorge M. S. Gonçalves (CCMAR – Centre of GRUTA DO MARTINHAL (SAGRES) 10 Marine Sciences) PHOTOGRAPHY: Carlos M. L. PONTA DOS CAMINHOS (SAGRES) 12 Afonso, David Abecasis, Frederico Oliveira, João Encarnação/ “POÇO” (ARMAÇÃO DE PERA) 14 Subnauta (p.7), Jorge M. S. Gonçalves, Nuno Alves (p.19), SNORKELING ROUTES 16 Pedro Veiga ILUSTRATION_ Underwater P. 2 PRAIA DA MARINHA (LAGOA) 16 slates: Frederico Oliveira GRAPHIC DESIGN AND PRAIA DOS ARRIFES (ALBUFEIRA) 18 ILUSTRATION: GOBIUS Comunication and Science PHOTOS 20 COLABORATION: Isidoro Costa ADB COORDINATION: José CURIOSITIES 25 Moura Bastos TRANSLATION: Mafalda DANGERS 26 Rangel, Fátima Noronha CONTACTS: INTEREST FOR CONSERVATION 26 _CCMAR - Centro de Ciências do Mar do Algarve: Universidade do READING SUGGESTIONS 27 Algarve, Campus de Gambelas, FCT Ed7, 8005-139 Faro Telf. 289 800 051 http://www.ccmar.ualg.pt HOW TO QUOTE THIS PUBLICATION: _ADB - Agência Desenvolvimento Rangel, M.; Oliveira, F.; Bentes, L.; Monteiro, P.; Afonso, C.M.L.; do Barlavento, Rua Impasse à Rua Sousa, I.; Erzini, K.; Gonçalves, J.M.S.. 2015. Underwater Routes Poeta António Aleixo, Bloco B, GENTES D’MAR of the windward Algarve. Centre of Marine Sciences (CCMAR), R/c, 8500-525 Portimão, Portugal Algarve University; Agência Desenvolvimento do Barlavento Telf. 282 482 889 (ADB). GOBIUS Communication and Science, 27p.
    [Show full text]
  • The Effects of Multiple Predators on the Size Structure of Red Urchin Populations in British Columbia
    The Effects Of Multiple Predators On the Size Structure of Red Urchin Populations in British Columbia An undergraduate Directed Studies (BISC 498) research project by Christine Stevenson Introduction Predator-prey body size relationships influence trophic structure, transfer efficiency, and interaction strength within a food web (Jonsson and Ebenman 1998). Size distributions of both predators and prey are an important component to the population dynamics of a community. Knowledge of the strength of predatory interactions within a food web can provide insight to the relationships between the sizes of prey and their predators. Predators are generally larger than the size their prey and predator size is often positively correlated to prey size (Vezina 1985, Warren and Lawton 1987, Cohen et al. 1993). The relative body size of a predator and its prey largely contribute to the ecology and evolutionary consequences of predator-prey relationships. This is most defined in systems involving size- dependent predators. These predators are effective agents of selection among prey species that differ in body size or growth rate. Size dependent predators therefore influence the structure of prey populations by diminishing prey species of a preferred size (Kerfoot and Peterson 1980). Prey species that can reach a large size through embellishments of the exoskeleton can often attain a size refuge from predators (Sousa 1992). Thus, the risk of predation may be lower for larger prey compared to smaller individuals. The risk of an individual prey being consumed may also depend on the size- structure of the predator population, as larger predators generally have the ability to handle and consume larger prey (Sousa 1992).
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • Tool Use by Four Species of Indo-Pacific Sea Urchins Glyn Barrett1,2, Dominic Revell1, Lucy Harding1, Ian Mills1, Axelle Jorcin1, Klaus M
    bioRxiv preprint doi: https://doi.org/10.1101/347914; this version posted June 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Tool use by four species of Indo-Pacific sea urchins Glyn Barrett1,2, Dominic Revell1, Lucy Harding1, Ian Mills1, Axelle Jorcin1, Klaus M. Stiefel1,3,4* 1. People and the Sea, Malapascua Island, Daanbantayan, Cebu, Philippines 2. School of Biological Sciences, University of Reading, UK. 3. Neurolinx Research Institute, La Jolla, CA, USA 4. Marine Science Institute, University of the Philippines, Dilliman, Quezon City, Philippines. *Corresponding author, [email protected] Abstract We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneutes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type of covering material on each urchin, and, in several cases, the recovery of debris cover after stripping the animal of its cover. We found that Tripneustes gratilla and Salmacis sphaeroides have a higher preference for plant material, especially sea-grass, compared to Pseudoboletia maculata and Toxopneutes pileolus, which prefer to cover themselves with coral rubble and other calcified material. Only for Toxopneutes pileolus did we find a decrease in cover with depth, confirming previous work that the covering behavior serves UV protection. We found no dependence of particle size on either species or urchin size, but we observed that larger urchins carried more and heavier debris.
    [Show full text]
  • Spawning of Gametes in Paracentrotus Lividus
    Spawning of gametes in Paracentrotus lividus 1. Randomly select 4-5 adult animals (sex determination in P. lividus is not possible by visual inspection; only after the spawning female and male will be Paola Cirino, Alfonso Toscano easily distinguished by gametes: eggs are yellow-orange, sperm are white) Stazione Zoologica Anton Dohrn, It. Animals: Adult sea urchins collected from 2. Apply one of the following stimulus in order to induce the spawning (the 3 natural population. methods (a – c) are progressively more invasive and can be applied successively Apparatus: filtered seawater 0,22µ, or alternatively, according to the quantity of gametes needed). various size glass beakers, Pasteur pipets a) Shaking: shake vigorously animals wrapping them in common and pipet bulbs , Petri dishes, eppendorf paper. Place the animals with the oral side down on a Petri dish. Wait for a tubes, syringes (2 – 5 ml) and needles. few minutes and check the spawning of gametes from the aboral surface. An electrical device (9 – 12 V): two b) Electrical shock: place the urchin with the oral side down on a Petri dish metallic paddles with insulated handles with a thin layer of sea water just lapping the animal. Apply the paddle to (electrodes) connected to a battery. the opposite sides of animal near the gonopore and give an electrical Chemicals: potassium chloride (KCl) 0,5M discharge lasting a few seconds. Repeat this electrical shock for 3 – 4 times. in distilled water. Wait for a few minutes and check the spawning of gametes from the Parameters: T 20 °C aboral surface. c) Intracoelomic injection : place the urchin with the oral side up.
    [Show full text]
  • The Role of Trophic Interactions Between Fishes, Sea Urchins and Algae in the Northwest Mediterranean Rocky Infralittoral
    The role of trophic interactions between fishes, sea urchins and algae in the northwest Mediterranean rocky infralittoral Bernat Hereu Fina Departament d’Ecologia Universitat de Barcelona 2004 Tesi Doctoral Universitat de Barcelona Facultat de Biologia – Departament d’Ecologia The role of trophic interactions between fishes, sea urchins and algae in the northwestern Mediterranean rocky infralittoral Memòria presentada per Bernat Hereu Fina per a optar al títol de Doctor en Biologia al Departament d’Ecologia, de la Universitat de Barcelona, sota la direcció dels doctors Mikel Zabala Limousin i Enric Sala Gamito Bernat Hereu Fina Barcelona, Febrer de 2004 El director de la Tesi El director de la Tesi Dr. Mikel Zabala Limousin Dr. Enric Sala Gamito Professor titular Assistant professor Facultat de Biologia Scripps Institution Oceanography Universitat de Barcelona University of California Contents Contents....................................................................................................................................................3 Chapter 1- General introduction..............................................................................................................1 The theoretical framework: trophic models.............................................................................................4 Trophic cascades: evidence of “top-down” control................................................................................6 Trophic cascades in marine systems........................................................................................................7
    [Show full text]
  • Sibling Bald Sea Urchin Disease Affecting the Edible [I
    Sibling Bald Sea Urchin Disease affecting the edible Paracentrotus lividus (Echinodermata: Echinoidea) in Sardinia (Italy) Grech, D., Guala, I., Farina, S. IMC - International Marine Centre - Loc. Sa Mardini, Torregrande, 09170 Oristano, Italy Corresponding Author: Daniele Grech Email address: [email protected] Different species of echinoids and bivalves are suffering infectious diseases as the effect of ocean warming. In Sardinia (Western Mediterranean Sea) the keystone sea urchin species Paracentrotus lividus (Lamarck 1816) is widely appreciated as edible resource. Recently, a number of individuals were found to be infected by a no specified bacterial morphologically matching to a “bald sea urchin disease” (Fig. 1). In February 2019, a sampling campaign took place in two locations in the West and East Coast, inside and in proximity of local Marine Protected Areas. Field samplings were approved by the Regione Autonoma Sardegna (Fishing License for scientific purposes n.310/AP SCIE/N.1 10/01/2019). Samplings were carried out at the end of February 2019, when water temperature was 13°C. For each sampled site we performed two replicates of fast 50 m belt transects to estimate the infection rate as the total individuals infected on the total counted. The estimated infection rate was around 5% in both of sampled locations. A higher level of preyed sea urchins was observed, compared to natural predatory level previously observed in all the surveyed sites. Moreover, an unusual amount of dead sea urchins has been observed stranded on the storm berm, neighbouring one of the sampled sites. Microbiological analysis puts in evidence bacterial infection as the potential causal agent that could be temperature-related.
    [Show full text]
  • Spatial Distribution of Two Maternal Messengers in Paracentrotus
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5622-5626, June 1994 Developmental Biology Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis (sea urchin/in situ hybridization/mRNA localIzation/cel surface proteins/proteilocalizain) M. Di CARLO*t, D. P. ROMANCINO*t, G. MONTANA*, AND G. GHERSI* *Istituto di Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, 90123 Palermo, Italy; and *Dipartimento di Biologia Cellulare e deilo Sviluppo, 90123 Palermo, Italy Communicated by A. A. Moscona, February 28, 1994 (receivedfor review October 22, 1993) ABSTRACT We demonstrated that two mRNAs that are structures; while observation indicated the presence of some synthesized during the vitellogenic period ofoogenesis and that asymmetry along the animal/vegetal axis of the unfertilized code for cell surface proteins are asymmetrically distributed in sea urchin egg, no satisfactory explanation for this asymme- the unfertilized egg of Paracentrotus lividus. At fertilization, try was provided, except for the suggestion of a double these RNAs rapidly localize in the cortical zone at the animal gradient proposed in 1928 by Runnstrom (10, 11). There was pole of the egg. They are then detected in the mesomeres and no evidence of a differential RNA localization in echinoderm the macromeres, but not in the micromeres, and thereafter are eggs, as has been demonstrated in Xenopus and Drosophila found in the ectoderm but not in the vegetal plate, mesenchyme eggs. cells, or early intestine. They disappear in late gastrula. The We report here that two maternal mRNAs, bepi and bep4, proteins synthesized by these mRNAs show the same territorial both of 1.4 kb, are asymmetrically distributed in the unfer- location during the period examined here, which included the tilized egg of Paracentrotus lividus.
    [Show full text]
  • Recovery Trends of Commercial Fish: the Case of an Underperforming Mediterranean Marine Protected Area
    RESEARCH ARTICLE Recovery Trends of Commercial Fish: The Case of an Underperforming Mediterranean Marine Protected Area Stefano Marra1,2*, Stefania Coppa1, Andrea Camedda1, Carlotta Mazzoldi3, Francesco Wrachien4, Giorgio Massaro4, G. Andrea de Lucia1 1 Institute for Coastal Marine Environment-National Research Council (IAMC-CNR), Oristano, Italy, 2 Department of Ecology and Biology, University of Tuscia, Viterbo, Italy, 3 Department of Biology, University of Padua, Padua, Italy, 4 Marine Protected Area “Penisola del Sinis-Isola di Mal di Ventre”, Cabras, Italy * [email protected] Abstract Temporal trends in the recovery of exploited species in marine protected areas (MPAs) are useful for a proper assessment of the efficacy of protection measures. The effects of protec- OPEN ACCESS tion on the fish assemblages of the sublittoral rocky reefs in the “Penisola del Sinis-Isola di Citation: Marra S, Coppa S, Camedda A, Mazzoldi Mal di Ventre” MPA (W. Sardinia, Italy) were evaluated using a multi-year series of data. C, Wrachien F, Massaro G, et al. (2016) Recovery Trends of Commercial Fish: The Case of an Four surveys, conducted 7, 10, 13 and 15 years after the area was designated as an MPA Underperforming Mediterranean Marine Protected and carried out in the period spanning June and July, were used to estimate the abundance Area. PLoS ONE 11(1): e0146391. doi:10.1371/ and biomass of commercial species. The surveys were carried out in zones with decreasing journal.pone.0146391 levels of fishing restrictions within the MPA (zones A, B, C) and in unprotected zones Editor: George Tserpes, Hellenic Centre for Marine (OUT1 and OUT2), and underwater video visual census techniques were used.
    [Show full text]
  • Sea Urchin <I>(Paracentrotus Lividus)
    CryoLetters 35 (6), 482-494 (2014) © CryoLetters, [email protected] SEA URCHIN (PARACENTROTUS LIVIDUS) CRYOPRESERVED EMBRYOS SURVIVAL AND GROWTH: EFFECTS OF CRYOPRESERVATION PARAMETERS AND REPRODUCTIVE SEASONALITY E. Paredes1* and J. Bellas2 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Estrada Colexio Universitario s/n, 36310 Vigo, Galicia, Spain. 2Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Cabo Estai – Canido, 36200 Vigo, Galicia, Spain *Corresponding author email: [email protected] Abstract BACKGROUND: The cryopreservation of embryos can be a powerful biotechnological tool to supply all year-round biological material for sea urchin aquaculture production. This study investigates different methodological and biological factors that may affect the result of the cryopreservation process of sea urchin (Paracentrotus lividus) embryos. Our data indicate that neither embryo density nor the use of different cryopreservation containers presented effect on the cryopreservation outcome. Contrary to other marine invertebrates, for sea urchin embryo cryopreservation ultrapure water cannot be used as CPA solvent, yielding zero survival. After studying the reproductive parameters along the reproductive season, we found a positive correlation between both male and female Condition Index (C.I.), and between the oocyte weight and C.I. Both the histology study of female gonads and the C.I. variation, suggest that the sea urchin natural spawning period in the Ría de Vigo occurs between June and July.
    [Show full text]