Wiki Page Related to Species Information Including from D4.X.1 WP5: Citizen Science Initiative - Involving People in Ecosystems Restoration

Total Page:16

File Type:pdf, Size:1020Kb

Wiki Page Related to Species Information Including from D4.X.1 WP5: Citizen Science Initiative - Involving People in Ecosystems Restoration RECONNECT Regional cooperation for the transnational ecosystem sustainable development Interreg V-B “Balkan-Mediterranean 2014-2020” Deliverable 5.X.4 Wiki page related to species information including from D4.X.1 WP5: Citizen science Initiative - Involving people in ecosystems restoration Responsible Partner: Department of Biological Sciences, University of Cyprus Deliverable team: DBS-UCY (AP Marine Ltd & G.E GEOMETRIKI LTD) HCMR, IBER-BAS June, 2020 Project co-funded by the European Union and National Funds of the participating countries 1 DOCUMENT DATA Title Wiki page related to species information including from D4.X.1 Authors Yiota Lazarou1, Antonis Petrou2, George Othonos3, Soteria- Irene Hadjieftychiou2, Evi Geka3, Thanasis Mantes3, Dimitar Berov4, Stefania Klayn4, Christina Pavloudi5, Giorgos Chatzigeogriou5, Pavlos Diplaros1, Spyros Sfenthourakis1, Christos Arvanitidis5 Affiliation Department of Biological Sciences of the University of Cyprus1, AP Marine Environmental Consultancy Ltd 2, G.E GEOMETRIKI LTD3, Institute of Biodiversity and Ecosystem Research4, Hellenic Centre for Marine Research5 Point of Contact Yiota Lazarou Note: AP Marine Environmental Consultancy Ltd and G.E GEOMETRIKI LTD are the External Experts of DBS-UCY for project RECONNECT Project co-funded by the European Union and National Funds of the participating countries 2 CONTENTS 1. INTRODUCTION ........................................................................................................... 5 1.1 Deliverable’s objective .................................................................................................................... 5 2. INFORMATION COLLECTED FOR THE WIKI PAGES ..................................................... 6 2.1 Agelas oroides (Schmidt, 1864) ................................................................................................... 7 2.2 Alosa immaculata Bennett, 1835 ................................................................................................ 9 2.3 Anadara kagoshimensis (Tokunaga, 1906) .......................................................................... 11 2.4 Arca noae Linnaeus, 1758 .......................................................................................................... 13 2.5 Beroe ovata Bruguière, 1789 ..................................................................................................... 16 2.6 Branchiostoma lanceolatum (Pallas, 1774) ......................................................................... 18 2.7 Caretta caretta (Linnaeus, 1758) ............................................................................................ 20 2.8 Chamelea gallina (Linnaeus, 1758) ........................................................................................ 25 2.9 Chromis chromis (Linnaeus, 1758) ......................................................................................... 30 2.10 Cystoseira barbata (Stackhouse) C. Agardh, 1820 ......................................................... 33 2.11 Cystoseira bosphorica Sauvageau, 1912 ............................................................................. 35 2.12 Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) ............................................................ 38 2.13 Donax trunculus Linnaeus, 1758 ........................................................................................... 41 2.14 Dysidea fragilis (Montagu, 1814) .......................................................................................... 44 2.15 Eriphia verrucosa (Forskål, 1775) ........................................................................................ 46 2.16 Fistularia commersonii Rüppell, 1838................................................................................. 49 2.17 Halophila stipulacea (Forsskål) Ascherson, 1867 .......................................................... 52 2.18 Hermodice carunculata (Pallas, 1766) ................................................................................ 55 2.19 Holothuria poli Delle Chiaje, 1824 ........................................................................................ 58 2.20 Lagocephalus sceleratus (Gmelin, 1789) ............................................................................ 61 2.21 Lithophaga lithophaga (Linnaeus, 1758) .......................................................................... 63 2.22 Loripes orbiculatus Poli, 1795 ................................................................................................ 66 2.23 Melinna palmata Grube, 1870 ................................................................................................ 68 2.24 Mnemiopsis leidyi A. Agassiz, 1865 ....................................................................................... 70 2.25 Monachus monachus (Hermann, 1779) .............................................................................. 72 2.26 Mullus barbatus barbatus Linnaeus, 1758......................................................................... 75 2.27 Mullus surmuletus Linnaeus, 1758 ....................................................................................... 78 2.28 Mytilaster lineatus (Gmelin, 1791) ....................................................................................... 81 2.29 Mytilus galloprovincialis Lamarck, 1819 ............................................................................ 83 2.30 Ophidiaster ophidianus (Lamarck, 1816) ........................................................................... 86 2.31 Palinurus elephas (Fabricius, 1787) ..................................................................................... 89 2.32 Paracentrotus lividus (Lamarck, 1816)............................................................................... 92 2.33 Phyllophora crispa (Hudson) P.S.Dixon, 1964 ................................................................. 95 2.34 Pinna nobilis Linnaeus, 1758 .................................................................................................. 98 2.35 Pomatomus saltatrix (Linnaeus, 1766) ............................................................................. 101 2.36 Posidonia oceanica (Linnaeus) Delile, 1813 ................................................................... 104 2.37 Pterois miles (Bennett, 1828) ............................................................................................... 107 2.38 Rapana venosa (Valenciennes, 1846) ................................................................................ 110 2.39 Scophthalmus maximus (Linnaeus, 1758) ....................................................................... 112 2.40 Sepia officinalis Linnaeus, 1758 ........................................................................................... 115 2.41 Sphaerechinus granularis (Lamarck, 1816) .................................................................... 118 2.42 Spongia (Spongia) officinalis Linnaeus, 1759 ................................................................. 121 2.43 Sprattus sprattus (Linnaeus, 1758) .................................................................................... 124 Project co-funded by the European Union and National Funds of the participating countries 3 2.44 Torquigener flavimaculosus Hardy & Randall, 1983 .................................................... 126 2.45 Trachurus mediterraneus (Steindachner, 1868) ........................................................... 129 2.46 Tursiops truncatus (Montagu, 1821) ................................................................................. 132 2.47 Ulva rigida C.Agardh, 1823 .................................................................................................... 135 2.48 Upogebia pusilla (Petagna, 1792) ....................................................................................... 137 2.49 Zostera marina Linnaeus, 1753 ........................................................................................... 140 2.50 Zostera noltei Hornemann, 1832 ......................................................................................... 144 3. DEVELOPMENT OF WIKI PAGES ..............................................................................147 3.1 Structure of Wiki Pages ............................................................................................................. 147 3.2 Data entry process for each species ..................................................................................... 147 3.2.1 Name Section ........................................................................................................................ 147 3.2.2 Taxonavigation Section ..................................................................................................... 148 3.2.3 References Section .............................................................................................................. 149 3.2.4 Vernacular names section ................................................................................................ 150 3.3 Uploading Photos section ......................................................................................................... 151 4. WIKI PAGES CREATED FOR EACH SPECIES .............................................................157 Project co-funded by the European Union and National Funds of the participating countries 4 1. INTRODUCTION 1.1 Deliverable’s objective The aim of this deliverable is the creation of wiki-pages for specific species which were selected by
Recommended publications
  • Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina Chilensis and Holothuria Hilla: Structures and Anticoagulant Activity
    marine drugs Article Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina chilensis and Holothuria hilla: Structures and Anticoagulant Activity Nadezhda E. Ustyuzhanina 1,*, Maria I. Bilan 1, Andrey S. Dmitrenok 1 , Alexandra S. Silchenko 2, Boris B. Grebnev 2, Valentin A. Stonik 2, Nikolay E. Nifantiev 1 and Anatolii I. Usov 1,* 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; [email protected] (M.I.B.); [email protected] (A.S.D.); [email protected] (N.E.N.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.S.S.); [email protected] (B.B.G.); [email protected] (V.A.S.) * Correspondence: [email protected] (N.E.U.); [email protected] (A.I.U.); Tel.: +7-495-135-8784 (N.E.U.) Received: 29 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: Fucosylated chondroitin sulfates (FCSs) PC and HH were isolated from the sea cucumbers Paracaudina chilensis and Holothuria hilla, respectively. The purification of the polysaccharides was carried out by anion-exchange chromatography on a DEAE-Sephacel column. The structural characterization of the polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of nondestructive NMR spectroscopic methods. Both polysaccharides were shown to contain a chondroitin core [ 3)-β-d-GalNAc (N-acethyl galactosamine)-(1 4)-β-d-GlcA ! ! (glucuronic acid)-(1 ]n, bearing sulfated fucosyl branches at O-3 of every GlcA residue in the ! chain.
    [Show full text]
  • Vertebrates, Overview
    VERTEBRATES, OVERVIEW Carl Gans* and Christopher J. Bell† *Department of Integrative Biology, University of Texas at Austin and †Department of Geological Sciences, University of Texas at Austin I. Introduction neurectoderm An embryonic tissue that gives rise to II. General Vertebrate Characteristics the central tube of the nervous system. III. Early Chordate and Vertebrate History notochord A stiff, flexible, longitudinal rod running IV. Vertebrate Classification along the middorsal portion of the chordate body. V. Definitions and Diagnoses of Major Chordate It is situated dorsal to the coelom and ventral to the Groups central tube of the nervous system. pharynx The anterior portion of the alimentary canal, characterized by lateral buds that provide skeletal GLOSSARY support for the gill region. tuberculum interglenoideum An anterior projection of chordate A member of the group Chordata. The the first (cervical) vertebra in salamanders. The tu- Chordata includes the most recent common ancestor berculum interglenoideum bears articular facets that of tunicates and cephalochordates and all of that insert into the foramen magnum of the skull and ancestor’s descendants. Tunicates, lancelets, hag- provide additional articulation points between the fishes, and vertebrates are all chordates. skull and the vertebral column. ectoderm An embryonic tissue that provides the future outside layer of the animal. ectothermy A method of body temperature control in which the animal utilizes external sources for gaining VERTEBRATES INCLUDE ALL the fishes, amphibians, and giving up heat, thus achieving temperature con- reptiles, birds, and mammals. These animals are united trol without affecting metabolic rate. in a more inclusive group, the Chordata, that includes endothermy A method of body temperature control in the closest living relatives of vertebrates, the hagfishes, which the animal modifies its metabolic rate to lancelets, and tunicates.
    [Show full text]
  • Profile of Nutrition and Hazards of Om-Elkholool (Donax Trunculus) and Gandofly (Ruditapes Decussatus) Clams from Alexandria, Egypt
    International Journal For Research In Agricultural And Food Science ISSN: 2208-2719 Profile of Nutrition and Hazards of Om-Elkholool (Donax Trunculus) and Gandofly (Ruditapes Decussatus) Clams From Alexandria, Egypt Sherief Mohammed Sayed Abd-Allah Assistant Professor, Department of Food Hygiene "Meat Hygiene", Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt Email:[email protected] ABSTRACT Clams are delicate nutritious food; however they can harbor potential health hazards. The current work aimed to investigate and compare some of the nutritive criteria and hazards of Om-Elkholool (Donax trunculus) and Gandofly (Ruditapes decussatus) clams sold at Alexandria, Egypt. A total of 46 samples (22 of Om-Elkholool and 24 of Gandofly) were randomly collected from fish retailers during summer of 2017. Samples were analyzed for proximate composition (dry matter, moisture, protein, fat, and ash %). The carbohydrates and energy content was calculated. The count of coliforms, fecal coliforms, E. coli and Cl. perfringenes (MPN/g) was determined. Concentration (mg/kg) of lead and cadmium in 10 randomly selected samples of each type were estimated. The dry matter, moisture, protein, fat, ash and carbohydrates percentages mean values for Om-Elkholool “Om” samples were 30.37±0.22, 69.60±0.21, 8.49±0.14, 1.29±0.03, 18.63±0.09, and 1.99±11, respectively, while for Gandofly “Gd” samples were 16.81±0.21, 83.28±0.2, 8.69±0.13, 1.22±0.03, 3.43±0.09, and 3.37±10, respectively. The gross energy content (Kcal/100g) mean value was 53.55±0.88 for Om and 59.24±0.85 for Gd.
    [Show full text]
  • Donacidae - Bivalvia)
    Bolm. Zool., Univ. S. P aub 3:121-142, 1978 FUNCTIONAL ANATOMY OF DON AX HANLEY ANUS PHILIPPI 1847 (DONACIDAE - BIVALVIA) Walter Narchi Department o f Zoology University o f São Paulo, Brazil ABSTRACT Donax hanleyanus Philippi 1847 occurs throughout the southern half o f the Brazilian littoral. The main organ systems were studied in the living animal, particular attention being paid to the cilia­ ry feeding and cleasing mechanisms in the mantle cavity. The anatomy, functioning of the stomach and the ciliary sorting mechanisms are described. The stomach unlike that of almost all species of Donax and like the majority of the Tellinacea belongs to type V, as defined by Purchon, and could be regarded as advanced for the Donacidae. A general comparison has been made between the known species of Donax and some features of Iphigenia brasiliensis Lamarck 1818, also a donacid. INTRODUCTION Very little is known of donacid bivalves from the Brazilian littoral. Except for the publications of Narchi (1972; 1974) on Iphigenia brasiliensis and some ecological and adaptative features on Donax hanleyanus, all references to them are brief descrip­ tions of the shell and cheklists drawn up from systematic surveys. Beach clams of the genus Donax inhabit intertidal sandy shores in most parts of the world. Donax hanleyanus Philippi 1847 is one of four species occuring through­ out the Brazilian littoral. Its known range includes Espirito Santo State and the sou­ thern Atlantic shoreline down to Uruguay (Rios, 1975). According to Penchaszadeh & Olivier (1975) the species occur in the littoral of Argentina. 122 Walter Narchi The species is fairly common in São Paulo, Parana and Santa Catarina States whe­ re it is used as food by the coastal population (Goffeijé, 1950), and is known as “na- nini” It is known by the name “beguara” (Ihering, 1897) in the Iguape region, but not in S.
    [Show full text]
  • A Genomic View of Trophic and Metabolic Diversity in Clade-Specific Lamellodysidea Sponge Microbiomes
    UC San Diego UC San Diego Previously Published Works Title A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Permalink https://escholarship.org/uc/item/6z2365ft Journal Microbiome, 8(1) ISSN 2049-2618 Authors Podell, Sheila Blanton, Jessica M Oliver, Aaron et al. Publication Date 2020-06-23 DOI 10.1186/s40168-020-00877-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Podell et al. Microbiome (2020) 8:97 https://doi.org/10.1186/s40168-020-00877-y RESEARCH Open Access A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell1 , Jessica M. Blanton1, Aaron Oliver1, Michelle A. Schorn2, Vinayak Agarwal3, Jason S. Biggs4, Bradley S. Moore5,6,7 and Eric E. Allen1,5,7,8* Abstract Background: Marine sponges and their microbiomes contribute significantly to carbon and nutrient cycling in global reefs, processing and remineralizing dissolved and particulate organic matter. Lamellodysidea herbacea sponges obtain additional energy from abundant photosynthetic Hormoscilla cyanobacterial symbionts, which also produce polybrominated diphenyl ethers (PBDEs) chemically similar to anthropogenic pollutants of environmental concern. Potential contributions of non-Hormoscilla bacteria to Lamellodysidea microbiome metabolism and the synthesis and degradation of additional secondary metabolites are currently unknown. Results: This study has determined relative abundance, taxonomic novelty, metabolic
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • Zernov's Phyllophora Field) at the Beginning of the 21St Century
    Ecologica Montenegrina 39: 92-108 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.39.11 Structure of the macrozoobenthos assemblages in the central part of the northwestern Black Sea shelf (Zernov's Phyllophora field) at the beginning of the 21st century NIKOLAI K. REVKOV1* & NATALIA A. BOLTACHOVA1 1 A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS; 2, Nakhimov ave., Sevastopol 299011, Russia *Corresponding author. E-mail: [email protected] Received 24 December 2020 │ Accepted by V. Pešić: 11 February 2021 │ Published online 16 February 2021. Abstract In the first half of the 20th century, there was an extensive biocoenosis of the unattached red algae Phyllophora crispa on the mussel muds of the central section of the Black Sea’s northwestern shelf, which is known as Zernov’s Phyllophora Field (ZPF). At that time, the area of ZPF was approximately 11000 km2. More than a century after the description of ZPF, long-term changes in its phyto- and zoobenthos have been noted. A period of ecological crisis of the Black Sea ecosystem during the second half of the 20th century was destructive for the phytobenthos of ZPF, with the complete degradation of unattached Phyllophora biocoenosis. In contrast, after a sharp decline in the quantitative development of macrozoobenthos of the soft bottoms in the 1970s, its recovery to pre-crisis levels in the 2010s was noted. Despite the difference in the aforementioned phyto- and zoobenthos dynamics, habitat in the 4025 km² area of the botanical sanctuary of national importance “Zernov’s Phyllophora Field” was recognised as Critically Endangered (CR) within the European Red List of Habitats.
    [Show full text]
  • Annelida, Amphinomidae) in the Mediterranean Sea with an Updated Revision of the Alien Mediterranean Amphinomids
    A peer-reviewed open-access journal ZooKeys 337: 19–33 (2013)On the occurrence of the firewormEurythoe complanata complex... 19 doi: 10.3897/zookeys.337.5811 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids Andrés Arias1, Rômulo Barroso2,3, Nuria Anadón1, Paulo C. Paiva4 1 Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Oviedo 33071, Spain 2 Pontifícia Universidade Católica do Rio de Janeiro , Rio de Janeiro, Brazil 3 Museu de Zoologia da Unicamp, Campinas, SP, Brazil 4 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brasil Corresponding author: Andrés Arias ([email protected]) Academic editor: C. Glasby | Received 17 June 2013 | Accepted 19 September 2013 | Published 30 September 2013 Citation: Arias A, Barroso R, Anadón N, Paiva PC (2013) On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. ZooKeys 337: 19–33. doi: 10.3897/zookeys.337.5811 Abstract The presence of two species within the Eurythoe complanata complex in the Mediterranean Sea is reported, as well as their geographical distributions. One species, Eurythoe laevisetis, occurs in the eastern and cen- tral Mediterranean, likely constituting the first historical introduction to the Mediterranean Sea and the other, Eurythoe complanata, in both eastern and Levantine basins. Brief notes on their taxonomy are also provided and their potential pathways for introduction to the Mediterranean are discussed.
    [Show full text]
  • Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
    Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo­ tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.
    [Show full text]
  • Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
    Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species.
    [Show full text]
  • Enhancing Diversity Knowledge Through Marine Citizen Science and Social Platforms: the Case of Hermodice Carunculata (Annelida, Polychaeta)
    diversity Article Enhancing Diversity Knowledge through Marine Citizen Science and Social Platforms: The Case of Hermodice carunculata (Annelida, Polychaeta) Maja Krželj 1, Carlo Cerrano 2 and Cristina Gioia Di Camillo 2,* 1 University Department of Marine Studies, University of Split, 21000 Split, Croatia; [email protected] 2 Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; c.cerrano@staff.univpm.it * Correspondence: c.dicamillo@staff.univpm.it Received: 16 June 2020; Accepted: 9 August 2020; Published: 12 August 2020 Abstract: The aim of this research is to set a successful strategy for engaging citizen marine scientists and to obtain reliable data on marine species. The case study of this work is the bearded fireworm Hermodice carunculata, a charismatic species spreading from the southern Mediterranean probably in relation to global warming. To achieve research objectives, some emerging technologies (mainly social platforms) were combined with web ecological knowledge (i.e., data, pictures and videos about the target species published on the WWW for non-scientific purposes) and questionnaires, in order to invite people to collect ecological data on the amphinomid worm from the Adriatic Sea and to interact with involved people. In order to address future fruitful citizen science campaigns, strengths and weakness of each used method were illustrated; for example, the importance of informing and thanking involved people by customizing interactions with citizens was highlighted. Moreover, a decisive boost in people engagement may be obtained through sharing the information about citizen science project in online newspapers. Finally, the work provides novel scientific information on the polychete’s distribution, the northernmost occurrence record of H.
    [Show full text]
  • Anadara Kagoshimensis (Mollusca: Bivalvia: Arcidae)
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net http://dx.doi.org/10.12681/mms.2076 Anadara kagoshimensis (Mollusca: Bivalvia: Arcidae) in the Adriatic Sea: morphological analysis, molecular taxonomy, spatial distribution, and prediction PIERLUIGI STRAFELLA1, ALICE FERRARI2, GIANNA FABI1, VERA SALVALAGGIO1, ELISA PUNZO1, CLARA CUICCHI1, ANGELA SANTELLI1, ALESSIA CARIANI2, FAUSTO TINTI2, ANNA NORA TASSETTI1 and GIUSEPPE SCARCELLA1 1 Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), L.go Fiera della Pesca, 2, 60125 Ancona, Italy 2 Department of Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Via Selmi, 3, 40126, Bologna, Italy Corresponding author: [email protected] Handling Editor: Fabio Crocetta Received: 11 October 2016; Accepted: 3 August 2017; Published on line: 7 December 2017 Abstract Morphological analysis, molecular characterization, and a study of the distribution and density of Anadara kagoshimensis (Tokunaga, 1906) specimens collected in the Adriatic Sea were carried out using materials and data collected in the course of 329 bottom trawl hauls conducted in five yearly surveys, from 2010 to 2014. Morphological and molecular analysis allowed clarifying the confused taxonomy of the largest alien ark clam species invading Italian waters and the Mediterranean Sea. Analysis of the distribution and density data demonstrated that, along the Italian coast, A. kagoshimensis is mostly found at depths of 8 to 50 m, with a catch frequency of more than 98% in the hauls involving silty-clay sediment at a depth of 8-30 m. The hotspot map clearly shows a reduction in the distribution area of the species from 2010 to 2012.
    [Show full text]