The Sea Cucumber Holothuria (Halodeima) Atra (Jager, 1833), In

Total Page:16

File Type:pdf, Size:1020Kb

The Sea Cucumber Holothuria (Halodeima) Atra (Jager, 1833), In The Sea Cucumber Holothuria (Halodeima) atra (Jager, 1833), in South Tarawa Lagoon (Republic of Kiribati): Environmental Variability, Population Biology and Fishing Pressure. Teatim Tamaroa A thesis submitted as partial fulfilment for the degree of Master of Science in Marine Biology 2010 Abstract Holothuria atra or lollyfish is the most common sea cucumber in the Pacific and Indian Oceans. The current status of Holothria atra at 13 sites of South Tarawa lagoon (Republic of Kiribati) was established by using biological surveys and fishers‟ questionnaires. A preliminary investigation was conducted in order to assess how and why environmental variability and fishing pressure have affected the spatial and temporal distribution, mean abundant and mean size of this species at the sites. The 13 sites were selected randomly, and marked with a GPS on the map of South Tarawa. Sedimentary characteristics were determined for each site, and a qualitative assessment of sites health was made. Lollyfish length, biomass and abundance and transect density were calculated for each site. The weight of organic matter content and size of sediment sample were determined. Data were analysed using Kruskal- Walis (KW) and Repeated measures (RM) ANOVA tests. This thesis shows that the environmental variability could not offer reasons as to why the biological data of lollyfish varied from one site to another. However, other factors that were tested may explain the variation in biological data. Fishing pressure is one of those parameters that can regulate the lollyfish distribution and density and responses from local fishers indicate that fishing pressure is high and that the lollyfish resource is under considerable harvest pressure. Dissolved oxygen concentration in the water column and in the sediment may be also involved in the variation in lollyfish distribution and density but this was not tested. The findings of this research lead to a number of recommendations for the sustainable harvest of lollyfish in Tarawa lagoon. These include consideration of gear restrictions, lollyfish size and number limits, and the establishment of marine protected areas under co-management arrangements. i Acknowledgements I‟d like to thank: The New Zealand Government through New Zealand International Development Aid (NZAID) for financing this study. Without such assistance, it would have been impossible for me to complete this research. My only great and admirable supervisor, Jonathan Gardner, for supporting my studies by providing sharp decisive advice and constructive feedback. To you, Jonathan, you are the greatest leader and supervisor! My English tutor, Brie Jessen, who had been requested and appointed by my sponsor NZAID to help me throughout my studies. Without your commitment and time into my writing, this thesis would not come at the end. You are a great English teacher. To Sheree Christian, thank you for proof reading my first draft for chapter one, and suggesting ways for it‟s improvement. Without your wisdom and expertise, chapter one could not be a better chapter. Staff at the Student Learning Support Services; Ema Sanga, Ruth-Davidson- Toumu‟a, Liz O‟Connor, Debora Laurs, Mary Robert and Dennis Dawson, thank you all for your help in correcting my thesis, and encouraging me to write academically. Liz Richardson for allowing me to use the whānau room for 24 hours. I would like to thank all my friends in the Āwhina whanau for their help, especially Alex Richardson, Ali Richardson, Natalie Stewart, and Emma Leigh for their spontaneous responses to my questions. To you all, you have taught me to help others. Vinaka vakalevu. Kabunare‟s family for providing me with a shelter to rest. Thank you, Kabunare and your family for giving me more time to study. I would also like to thank Tebou, for sharing his room with me as a secondary place to sleep and relaxed. Thank you, Tebou, for your kindness. Lastly, I would like to thank my brother-in-law Mautaake Tamoa and cousin Raratu Tebuka in Tarawa, who had tirelessly worked with me like remoras during data collecting. Big thank to you two, for your great assistance for without it, this thesis would not come this far. ii CONTENTS Abstract...................................................................................... i Acknowledgements.................................................................... ii List of Tables.............................................................................. vi List of Figures............................................................................ ix Chapter One – Introduction 1.1 - Lollyfish biology.................................................................................... 1 1.2 - Exploitation............................................................................................ 2 1.3 - Socio – economic and ecological significance ..................................... 5 1.4 - Research rationale .................................................................................. 6 Chapter Two – Material and methods 2.1- Study site ............................................................................................... 8 2.2 -Description of study locations................................................................ 10 2.3- Biological survey.................................................................................... 10 2.4-Environmental survey.............................................................................. 11 Chapter Three – Results 3.1 – Biological and Environmental survey................................................. 16 3.1.1 – Density................................................................................. 16 3.1.1.1 – Non-parametric analysis............................ 16 3.1.1.2 – Parametric analysis..................................... 18 3.1.2 - Individual length.................................................................. 23 3.1.2.1 - Non-parametric analysis............................ 23 3.1.2.2 - Parametric analysis...................................... 25 3.1.2.3 - Length-frequency distribution................... 30 3.1.3 - Total lollyfish weight............................................................ 36 3.1.3.1 – Non-parametric analysis………………... 36 3.1.3.2 – Parametric analysis …………………….. 39 iii 3.1.4 - Transect biomass.................................................................... 43 3.1.4.1 – Non-parametric........................................... 43 3.1.4.2 – Parametric analysis..................................... 46 3.2 – Bottom sediment……............................................................................ 50 3.2.1 – Organic matter.......................................................................... 51 3.2.2 – Sediment grain size................................................................... 52 3.3 – Linking biological and environmental variables..................................... 58 3.4 – Fishermen questionnaires........................................................................ 61 Chapter Four – General discussion and conclusions 4.1 Introduction............................................................................................... 71 4.2 Biological and Environmental Survey..................................................... 73 4.2.1 Density distribution...................................................................... 73 4.2.1.1 Non-parametric and parametric analyses...................... 73 4.2.1.1.1 Actual mean density........................................ 73 4.2.1.1.1.1 Low – mean density.......................... 73 4.2.1.1.1.2 Medium-mean density..................... 74 4.2.1.1.1.3 High-medium density...................... 76 4.2.1.1.1.4 Variability in density....................... 81 4.2.1.2 Parametric Analyses: Repeated Measures ANOVA … 81 4.2.2 Length distribution....................................................................... 82 4.2.2.1 Non – parametric and parametric analyses................... 83 4.2.2.1.1 Actual mean-ranked length.............................. 83 4.2.2.1.1.1 Small-mean ranked length............... 83 4.2.2.1.1.2 Medium-mean ranked length........... 84 4.2.2.1.1.3 Large-mean ranked length................. 84 4.2.2.1.1.4 Variability in length......................... 84 4.2.2.2 Parametric analyses: Repeated Measures ANOVA…. 87 4.2.2.3 Size-frequency distribution.......................................... 87 4.2.3 Weight distribution...................................................................... 87 4.2.3.1 Non – parametric analyses.............................................. 88 iv 4.2.3.1.1 Actual mean-weight........................................ 88 4.2.3.1.1.1 The lighter or (low) – weight........ 88 4.2.3.1.1.2 The medium-weight…………...... 89 4.2.3.1.1.3 Heavy-weight ................................. 90 4.2.3.1.1.4 Variability in weight..................... 91 4.2.3.2 Parametric Analyses……………………………….. 93 4.2.4 Biomass distribution.................................................................. 95 4.2.4.1Non – parametric analyses............................................ 95 4.2.4.1.1 Actual mean biomass.................................... 95 4.2.4.1.1.1 Low-mean biomass....................... 95 4.2.4.1.1.2 Medium-mean biomass................. 96 4.2.4.1.1.3 High-mean biomass....................... 97 4.2.4.1.1.4 Variability in biomass................... 99 4.2.4.2 Parametric Analyses ………………………………. 99 4.3. Environmental survey………………………………………………….. 100 4.3.1 Organic matter contents……………......................................
Recommended publications
  • Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina Chilensis and Holothuria Hilla: Structures and Anticoagulant Activity
    marine drugs Article Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina chilensis and Holothuria hilla: Structures and Anticoagulant Activity Nadezhda E. Ustyuzhanina 1,*, Maria I. Bilan 1, Andrey S. Dmitrenok 1 , Alexandra S. Silchenko 2, Boris B. Grebnev 2, Valentin A. Stonik 2, Nikolay E. Nifantiev 1 and Anatolii I. Usov 1,* 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; [email protected] (M.I.B.); [email protected] (A.S.D.); [email protected] (N.E.N.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.S.S.); [email protected] (B.B.G.); [email protected] (V.A.S.) * Correspondence: [email protected] (N.E.U.); [email protected] (A.I.U.); Tel.: +7-495-135-8784 (N.E.U.) Received: 29 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: Fucosylated chondroitin sulfates (FCSs) PC and HH were isolated from the sea cucumbers Paracaudina chilensis and Holothuria hilla, respectively. The purification of the polysaccharides was carried out by anion-exchange chromatography on a DEAE-Sephacel column. The structural characterization of the polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of nondestructive NMR spectroscopic methods. Both polysaccharides were shown to contain a chondroitin core [ 3)-β-d-GalNAc (N-acethyl galactosamine)-(1 4)-β-d-GlcA ! ! (glucuronic acid)-(1 ]n, bearing sulfated fucosyl branches at O-3 of every GlcA residue in the ! chain.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities
    marine drugs Review Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities Timofey V. Malyarenko 1,2,*, Alla A. Kicha 1, Valentin A. Stonik 1,2 and Natalia V. Ivanchina 1,* 1 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.A.K.); [email protected] (V.A.S.) 2 Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia * Correspondence: [email protected] (T.V.M.); [email protected] (N.V.I.); Tel.: +7-423-2312-360 (T.V.M.); Fax: +7-423-2314-050 (T.V.M.) Abstract: Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terres- trial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete informa- tion on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.
    [Show full text]
  • Cell Type Phylogenetics Informs the Evolutionary Origin of Echinoderm Larval Skeletogenic Cell Identity
    ARTICLE https://doi.org/10.1038/s42003-019-0417-3 OPEN Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity Eric M. Erkenbrack 1,2 & Jeffrey R. Thompson3,4 1234567890():,; The multiplicity of cell types comprising multicellular organisms begs the question as to how cell type identities evolve over time. Cell type phylogenetics informs this question by com- paring gene expression of homologous cell types in distantly related taxa. We employ this approach to inform the identity of larval skeletogenic cells of echinoderms, a clade for which there are phylogenetically diverse datasets of spatial gene expression patterns. We deter- mined ancestral spatial expression patterns of alx1, ets1, tbr, erg, and vegfr, key components of the skeletogenic gene regulatory network driving identity of the larval skeletogenic cell. Here we show ancestral state reconstructions of spatial gene expression of extant eleutherozoan echinoderms support homology and common ancestry of echinoderm larval skeletogenic cells. We propose larval skeletogenic cells arose in the stem lineage of eleutherozoans during a cell type duplication event that heterochronically activated adult skeletogenic cells in a topographically distinct tissue in early development. 1 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511 USA. 2 Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA. 3 Department of Geosciences, Baylor University, Waco, TX 76706, USA. 4 Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA. Correspondence and requests for materials should be addressed to E.M.E. (email: [email protected]) or to J.R.T. (email: [email protected]) COMMUNICATIONS BIOLOGY | (2019) 2:160 | https://doi.org/10.1038/s42003-019-0417-3 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0417-3 ell types are evolutionary units that have diversified in once in the stem lineage of eleutherozoan echinoderms.
    [Show full text]
  • Holothuroidea: Echinodermata) Inhabiting Two Seagrass Meadows in the Southwestern Mediterranean Sea (Mostaganem, Algeria)
    Belgian Journal of Zoology www.belgianjournalzoology.be This work is licensed under a Creative Commons Attribution License (CC BY 4.0). ISSN 2295-0451 Research article https://doi.org/10.26496/bjz.2019.32 Comparison of isotopic niches of four sea cucumbers species (Holothuroidea: Echinodermata) inhabiting two seagrass meadows in the southwestern Mediterranean Sea (Mostaganem, Algeria) Nor Eddine Belbachir *,1 Gilles Lepoint 2 & Karim Mezali 1 1 Protection, Valorization of Coastal Marine Resources and Molecular Systematic Laboratory, Department of Marine Sciences and Aquaculture, Faculty of Natural Sciences and Life, University of Abdelhamid Ibn Badis-Mostaganem, P.O. Box 227, 27000, Mostaganem, Algeria. 2 MARE Centre, Laboratory of Oceanology, UR FOCUS, University of Liège, Belgium. * Corresponding author: [email protected] Abstract. Among the fauna inhabiting the Posidonia oceanica seagrass meadow, holothurians are par- ticularly abundant and provide essential ecological roles, including organic matter recycling within se- agrass sediments. This study aimed to investigate the trophic niche of four holothurians of the order Holothuriida [Holothuria poli (Delle Chiaje, 1824), Holothuria tubulosa (Gmelin, 1791), Holothuria sanctori (Delle Chiaje, 1823) and Holothuria forskali (Delle Chiaje, 1823)] inhabiting P. oceanica me- adows, through the measurement of nitrogen and carbon stable isotope ratios. Two shallow and con- trasting sites of the littoral region of Mostaganem (North West Algeria) were chosen. The first site, located in Stidia, is weakly impacted by human activities. The second site, located in Salamandre, is highly impacted by human activities (industries, harbor facilities). High values of δ15N in holothurians and their food sources were observed at both sites. The δ13C values showed a lower contribution from detritic Posidonia than in other areas.
    [Show full text]
  • Contribution to the Knowledge of Holothurian Biodiversity at Reunion
    SPC Beche-de-mer Information Bulletin #39 – March 2019 27 Contribution to the knowledge of holothurian biodiversity at Reunion Island: Two previously unrecorded dendrochirotid sea cucumbers species (Echinodermata: Holothuroidea) Philippe Bourjon1* and Jean-Pascal Quod2 Introduction A comprehensive knowledge of biodiversity at the local scale is needed to design management and conser- vation strategies, and to adapt regional management plans to population connectivity as well as to formulate biogeographic hypotheses. This information is all the more important when the biology and distribution of species are poorly known, as is the case with many sea cucumbers. Consequently, reliable field observa- tions accompanied by photographic evidences and information on location and habitat can allow experts to better understand spatial patterns, and infer distributions using ecological niche modelling (Michonneau and Paulay 2015). Moreover, these data, even if not enabling precise identification of previously unrecorded species, allow the inclusion of these species in the research programme of future inventory missions. This article is written with that in mind. The most recent inventory of holothurians at Reunion Island includes 39 species (Conand et al. 2018) belong- ing to four orders (Holothuriida, Synallactida, Apodida, Dendrochirotida) and five families (Holothuriidae, Stichopodidae, Chiridotidae, Synaptidae, Sclerodactylidae). The order Dendrochirotida is represented by two species belonging to the family Sclerodactylidae (Afrocucumis africana,
    [Show full text]
  • Echinodermata of Lakshadweep, Arabian Sea with the Description of a New Genus and a Species
    Rec. zool. Surv. India: Vol 119(4)/ 348-372, 2019 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v119/i4/2019/144963 ISSN (Print) : 0375-1511 Echinodermata of Lakshadweep, Arabian Sea with the description of a new genus and a species D. R. K. Sastry1*, N. Marimuthu2* and Rajkumar Rajan3 1Erstwhile Scientist, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016 and S-2 Saitejaswini Enclave, 22-1-7 Veerabhadrapuram, Rajahmundry – 533105, India; [email protected] 2Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016, India; [email protected] 3Marine Biology Regional Centre, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), 130, Santhome High Road, Chennai – 600028, India Zoobank: http://zoobank.org/urn:lsid:zoobank.org:act:85CF1D23-335E-4B3FB27B-2911BCEBE07E http://zoobank.org/urn:lsid:zoobank.org:act:B87403E6-D6B8-4ED7-B90A-164911587AB7 Abstract During the recent dives around reef slopes of some islands in the Lakshadweep, a total of 52 species of echinoderms, including four unidentified holothurians, were encountered. These included 12 species each of Crinoidea, Asteroidea, Ophiuroidea and eightspecies each of Echinoidea and Holothuroidea. Of these 11 species of Crinoidea [Capillaster multiradiatus (Linnaeus), Comaster multifidus (Müller), Phanogenia distincta (Carpenter), Phanogenia gracilis (Hartlaub), Phanogenia multibrachiata (Carpenter), Himerometra robustipinna (Carpenter), Lamprometra palmata (Müller), Stephanometra indica (Smith), Stephanometra tenuipinna (Hartlaub), Cenometra bella (Hartlaub) and Tropiometra carinata (Lamarck)], four species of Asteroidea [Fromia pacifica H.L. Clark, F. nodosa A.M. Clark, Choriaster granulatus Lütken and Echinaster luzonicus (Gray)] and four species of Ophiuroidea [Gymnolophus obscura (Ljungman), Ophiothrix (Ophiothrix) marginata Koehler, Ophiomastix elegans Peters and Indophioderma ganapatii gen et.
    [Show full text]
  • Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians
    molecules Article Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians Elham Kamyab 1,* , Sven Rohde 1 , Matthias Y. Kellermann 1 and Peter J. Schupp 1,2,* 1 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; [email protected] (S.R.); [email protected] (M.Y.K.) 2 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany * Correspondence: [email protected] (E.K.); [email protected] (P.J.S.); Tel.: +49-4421-944-100 (P.J.S.) Academic Editor: David Popovich Received: 14 August 2020; Accepted: 13 October 2020; Published: 19 October 2020 Abstract: Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria.
    [Show full text]
  • Área De Conservación Guanacaste Echinoderms, North Pacific of Costa Rica
    Chacón-Monge, J.L., Azofeifa-Solano, J.C., Alvarado, J.J., & Cortés, J. (2021). Área de Conservación Guanacaste Echinoderms, North Pacific of Costa Rica. Revista de Biología Tropical, 69(S1), 487-500. DOI 10.15517/rbt.v69iSuppl.1.46391 DOI 10.15517/rbt.v69iSuppl.1.46391 Área de Conservación Guanacaste Echinoderms, North Pacific of Costa Rica José Leonardo Chacón-Monge1,2,3* Juan Carlos Azofeifa-Solano1 Juan José Alvarado1,2,3 Jorge Cortés1,2 1. Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José, Costa Rica; [email protected] (*Correspondence), [email protected], [email protected], [email protected] 2. Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica 3. Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San Pedro, San José, Costa Rica Recibido 29-VII-2020. Corregido 20-X-2020. Aceptado 27-X-2020. ABSTRACT Introduction: The study of the marine diversity of the North Pacific of Costa Rica began with isolated foreign expeditions in the 1930s and was systematically developed in the mid-1990s by the Center for Research in Marine Sciences and Limnology, Universidad de Costa Rica, as consequence there are now a total of 1 479 reported species in this region. Objective: Present an update to the echinoderm richness of the Guanacaste Conservation Area. Methods: We sampled 25 localities exhaustively and estimated similarity between sites based on the family richness and environmental heterogeneity. Results: We found 61 taxa, which represent 26 % of the echinoderm reported species for the country’s Pacific coast.
    [Show full text]
  • Integument Transcriptome Profile of the European Sea Cucumber
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.12.430961; this version posted February 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Delroisse et al. 2020 1 Integument transcriptome profile of the European sea cucumber Holothuria 2 forskali (Holothuroidea, Echinodermata) 3 4 Jérôme Delroisse*, Marie Bonneel, Mélanie Demeuldre, Igor Eeckhaut, Patrick 5 Flammang* 6 7 University of Mons - UMONS, Research Institute for Biosciences, Biology of Marine 8 Organisms and Biomimetics Unit, 23 Place du Parc, 7000 Mons – Belgium 9 10 [email protected] 11 [email protected] 12 [email protected] 13 [email protected] 14 [email protected] 15 16 * Correspondence: [email protected], [email protected] 17 18 Abstract 19 20 In non-model organisms, Next Generation Sequencing (NGS) technology improve 21 our ability to analyze gene expression and identify new genes or transcripts of 22 interest. In this research, paired-end Illumina HiSeq sequencing has been used to 23 describe a composite transcriptome based on two libraries generated from dorsal and 24 ventral integuments of the European sea cucumber Holothuria forskali 25 (Holothuroidea, Echinodermata). A total of 43,044,977 million HQ reads were 26 initially generated. After de novo assembly, a total of 111,194 unigenes were 27 predicted. On all predicted unigenes, 32,569 show significant matches with 28 genes/proteins present in the reference databases. Around 50% of annotated unigenes 29 were significantly similar to sequences from the purple sea urchin Strongylocentrotus 30 purpuratus genome.
    [Show full text]
  • From the JR275 Expedition to the Eastern Weddell Sea, Antarctica
    ZooKeys 1054: 155–172 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1054.59584 DATA PAPER https://zookeys.pensoft.net Launched to accelerate biodiversity research Sea cucumbers (Echinodermata, Holothuroidea) from the JR275 expedition to the eastern Weddell Sea, Antarctica Melanie Mackenzie1, P. Mark O’Loughlin1, Huw Griffiths2, Anton Van de Putte3 1 Sciences Department – Marine Invertebrates, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2 British Antarctic Survey (BAS), High Cross Madingley Road, CB3 0ET, Cambridge, UK 3 Royal Belgian Institute of Natural Sciences (RBINS), Rue Vautier 29, Brussels, Belgium Corresponding author: Melanie Mackenzie ([email protected]) Academic editor: Yves Samyn | Received 12 October 2020 | Accepted 11 May 2021 | Published 4 August 2021 http://zoobank.org/43707F5D-D678-4B8E-83F1-3089091B19F8 Citation: Mackenzie M, O’Loughlin PM, Griffiths H, Van de Putte A (2021) Sea cucumbers (Echinodermata, Holothuroidea) from the JR275 expedition to the eastern Weddell Sea, Antarctica. ZooKeys 1054: 155–172. https:// doi.org/10.3897/zookeys.1054.59584 Abstract Thirty-seven holothuroid species, including six potentially new, are reported from the eastern Weddell Sea in Antarctica. Information regarding sea cucumbers in this dataset is based on Agassiz Trawl (AGT) samples collected during the British Antarctic Survey cruise JR275 on the RRS James Clark Ross in the austral summer of 2012. Species presence by site and an appendix of holothuroid identifications with registrations are included as supplementary material. Species occurrence in the Weddell Sea is updated to include new holothuroids from this expedition. Keywords Antarctic, benthic, biodiversity, dataset, holothuroid, Southern Ocean Introduction The British Antarctic Survey (BAS) JR275 research cruise on the RRS James Clark Ross visited the Weddell Sea from February to March in 2012 as part of a core EvolHist (Evolutionary History of the Polar Regions) project.
    [Show full text]
  • Wiki Page Related to Species Information Including from D4.X.1 WP5: Citizen Science Initiative - Involving People in Ecosystems Restoration
    RECONNECT Regional cooperation for the transnational ecosystem sustainable development Interreg V-B “Balkan-Mediterranean 2014-2020” Deliverable 5.X.4 Wiki page related to species information including from D4.X.1 WP5: Citizen science Initiative - Involving people in ecosystems restoration Responsible Partner: Department of Biological Sciences, University of Cyprus Deliverable team: DBS-UCY (AP Marine Ltd & G.E GEOMETRIKI LTD) HCMR, IBER-BAS June, 2020 Project co-funded by the European Union and National Funds of the participating countries 1 DOCUMENT DATA Title Wiki page related to species information including from D4.X.1 Authors Yiota Lazarou1, Antonis Petrou2, George Othonos3, Soteria- Irene Hadjieftychiou2, Evi Geka3, Thanasis Mantes3, Dimitar Berov4, Stefania Klayn4, Christina Pavloudi5, Giorgos Chatzigeogriou5, Pavlos Diplaros1, Spyros Sfenthourakis1, Christos Arvanitidis5 Affiliation Department of Biological Sciences of the University of Cyprus1, AP Marine Environmental Consultancy Ltd 2, G.E GEOMETRIKI LTD3, Institute of Biodiversity and Ecosystem Research4, Hellenic Centre for Marine Research5 Point of Contact Yiota Lazarou Note: AP Marine Environmental Consultancy Ltd and G.E GEOMETRIKI LTD are the External Experts of DBS-UCY for project RECONNECT Project co-funded by the European Union and National Funds of the participating countries 2 CONTENTS 1. INTRODUCTION ........................................................................................................... 5 1.1 Deliverable’s objective ...................................................................................................................
    [Show full text]