Sea Cucumbers 2013-2020 Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Sea Cucumbers 2013-2020 Bibliography Sea Cucumbers 2013-2020 Bibliography Jamie Roberts, Librarian, NOAA Central Library Erin Cheever, Librarian, NOAA Central Library NCRL subject guide 2020-11 https://doi.org/10.25923/nebs-2p41 June 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 3 Sources Reviewed ..................................................................................................................................... 3 Section I: Biology ...................................................................................................................................... 3 Section II: Ecology ................................................................................................................................... 29 Section III: Fisheries & Aquaculture ........................................................................................................ 33 Section IV: Population Abundance & Trends .......................................................................................... 74 Section V: Conservation .......................................................................................................................... 82 2 Background & Scope This bibliography focuses on sea cucumber literature published since 2013. Sea cucumbers live on the sea floor around the world and many species are fished or farmed for human consumption. This bibliography is intended as a reference resource when compiling and summarizing any relevant new (i.e. 2013-present) information for sea cucumbers. It is organized into five sections: Biology, Conservation, Ecology, Fisheries & Aquaculture, and Population Abundance and Trends. Section I – Biology Section one is intended to provide an overview of the biology and life history of a variety of sea cucumber species. Section II – Ecology Section two is intended to provide an overview of how sea cucumbers interact with the environment, including the impact of pollutants on sea cucumbers. Section III – Fisheries & Aquaculture Section three is intended to provide an overview of the latest fisheries and aquaculture research on sea cucumbers. Section IV – Population Abundance and Trends Section four is intended to provide an overview of the latest population estimates and trends for sea cucumbers. Section V – Conservation Section five is intended to provide an overview of conservation research for sea cucumbers, including information on sustainable fishing practices. Sources Reviewed The following databases were used to identify sources: Clarivate Analytics Web of Science: Science Citation Index Expanded and Social Science Index; Science.gov; ProQuest Science and Technology including Aquatic Science Fisheries Abstracts; Elsevier ScienceDirect; JSTOR; ProQuest ABI/INFORM; the NOAA Institutional Repository; the Biodiversity Heritage Library; BioOne Complete; LexisAdvance, and Wiley Online. 3 Section I: Biology Bello, S. A., Torres-Gutierrez, V., Rodriguez-Flores, E. J., Toledo-Roman, E. J., Rodriguez, N., Diaz-Diaz, L. M., . Garcia-Arraras, J. E. (2020). Insights into intestinal regeneration signaling mechanisms. Developmental Biology, 458(1), 12-31 https://doi.org/10.1016/j.ydbio.2019.10.005. The cellular mechanisms underlying the amazing ability of sea cucumbers to regenerate their autotomized intestines have been widely described by us and others. However, the signaling pathways that control these mechanisms are unknown. Previous studies have shown that Wnt homologs are upregulated during early intestinal regenerative stages, suggesting that the Wnt/beta-catenin pathway is active during this process. Here, we used small molecules, putative disruptors of the Wnt pathway, to determine the potential role of the canonical Wnt pathway on intestine regeneration in the sea cucumber Holothuria glaberrima. We evaluated their effects in vivo by using histological analyses for cell dedifferentiation, cell proliferation and apoptosis. We found that iCRT14, an alleged Wnt pathway inhibitor, decreased the size of the regenerating intestine, while LiCl, a presumed Wnt pathway activator, increased its size. The possible cellular mechanisms by which signaling pathway disruptors affect the gut rudiment size were further studied in vitro, using cultures of tissue explants and additional pharmacological agents. Among the tested signaling activators, those that act through GSK-3 inhibition, LiCl, 1-Azakenpaullone, and CHIR99021 were found to increase muscle cell dedifferentiation, while the inhibitor iCRT14 blocked cell dedifferentiation. Differently, cell proliferation was reduced by all GSK-3 inhibitors, as well as by iCRT14 and C59, which interferes with Wnt ligand secretion. The in vivo temporal and spatial pattern of beta-catenin activity was determined using an antibody against phosphorylated beta-catenin and shown to correlate with cell proliferative activity. In vitro treatment using C59 decreased the number of cells immunostained for nuclear phosphorylated beta-catenin. Our results showed that the cell dedifferentiation observed during intestinal regeneration can be decoupled from the cell proliferation event and that these cellular processes can be modulated by particular signaling pathway inhibitors and activators. These results open the door for future studies where the cellular signaling pathways involved at each regeneration stage can be determined. Borrero-Perez, G. H., & Vanegas-Gonzalez, M. J. (2019). Holothuria (Mertensiothuria) viridiaurantia sp. nov. (Holothuriida, Holothuriidae), a new sea cucumber from the Eastern Pacific Ocean revealed by morphology and DNA barcoding. Zookeys, (893), 1-19 https://doi.org/10.3897/zookeys.893.36013. Holothuria (Mertensiothuria) viridiourantia sp. nov. is described based on specimens from rocky reefs of northern Choco in the Colombian Pacific Ocean; however, it also occurs along the Eastern Pacific Ocean from Mexico and Panama. Although specimens from Mexico and Panama were previously identified as Holothuria (Mertensiothuria) bilk Lesson, 1830 the new species is easily distinguished morphologically and via mtDNA. In terms of morphology, the species can be identified by its olive-green background and white-orange papillae and tentacles, larger tentacles with deep indentations and also by larger buttons on the dorsal and ventral body wall, papillae and tube feet; large, thick and rough tentacle rods, and the absence of ossicles in the longitudinal muscles. The new species is included in the subgenus Mertensiothuria considering molecular evidence. 4 Brown, N. A. W., Wilson, D. R., & Gagnon, P. (2019). Plasticity in the antipredator behavior of the orange-footed sea cucumber under shifting hydrodynamic forces. Current Zoology, 65(6), 685- 695 https://doi.org/10.1093/cz/zoy100. Marine invertebrates that move too slowly to evade unfavorable environmental change may instead exhibit phenotypic plasticity, allowing them to adjust to varying conditions. The orange-footed sea cucumber Cucumaria frondosa is a slow-moving suspension feeder that is preyed on by the purple sunstar Solaster endeca. The sea cucumber's antipredator behavior involves changing shape and detaching from the substratum, which might increase its probability of being displaced by water motion into an unsuitable environment. We hypothesized that sea cucumbers' antipredator responses would be diminished under stronger hydrodynamic forces, and that behavioral strategies would be flexible so that individuals could adjust to frequent changes in water flows. In a natural orange-footed sea cucumber habitat, individuals lived along a pronounced hydrodynamic gradient, allowing us to measure antipredator behavior under different water flow strengths. We placed purple sunstars in physical contact with sea cucumbers living at various points along the gradient to elicit antipredator responses. We then repeated this procedure in a laboratory mesocosm that generated weak and strong hydrodynamic forces similar to those observed at the field site. Subjects in the mesocosm experiment were tested in both wave conditions to determine if their antipredator behavior would change in response to sudden environmental change, as would be experienced under deteriorating sea conditions. Antipredator responses did not covary with hydrodynamic forces in the field. However, antipredator responses in the mesocosm experiment increased when individuals were transplanted from strong to weak forces and decreased when transplanted from weak to strong forces. Overall, our results indicate environmentally induced plasticity in the antipredator behavior of the orange-footed sea cucumber. Eckelbarger, K. J., & Riser, N. W. (2013). Derived sperm morphology in the interstitial sea cucumber Rhabdomolgus ruber, with observations on oogenesis and spawning behavior. Invertebrate Biology, 132(3), 270-281 https://doi.org/10.1111/ivb.12030. Some life history features of the interstitial sea cucumber Rhabdomolgus ruber are described from intertidal specimens collected from the northern coast of Maine. Histological studies suggest that the population consists of hermaphrodites with gametogenesis being initiated in April and reproduction beginning in May and continuing through the summer months. Sexually mature adults possess a single, blind-ended gonadal tubule that functions
Recommended publications
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Parameterisation and Application of Dynamic Energy Budget Model to Sea Cucumber Apostichopus Japonicus
    Vol. 9: 1–8, 2017 AQUACULTURE ENVIRONMENT INTERACTIONS Published January 10 doi: 10.3354/aei00210 Aquacult Environ Interact OPENPEN ACCESSCCESS Parameterisation and application of dynamic energy budget model to sea cucumber Apostichopus japonicus Jeffrey S. Ren1, Jeanie Stenton-Dozey1, Jihong Zhang2,3,* 1National Institute of Water and Atmospheric Research, 10 Kyle Street, PO Box 8602, Christchurch 8440, New Zealand 2Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China 3Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266200, PR China ABSTRACT: The sea cucumber Apostichopus japonicus is an important aquaculture species in China. As global interest in sustainable aquaculture grows, the species has increasingly been used for co-culture in integrated multitrophic aquaculture (IMTA). To provide a basis for opti - mising stocking density in IMTA systems, we parameterised and validated a standard dynamic energy budget (DEB) model for the sea cucumber. The covariation method was used to estimate parameters of the model with the DEBtool package. The method is based on minimisation of the weighted sum of squared deviation for datasets and model predictions in one single-step pro- cedure. Implementation of the package requires meaningful initial values of parameters, which were estimated using non-linear regression. Parameterisation of the model suggested that the accuracy of the lower (TL) and upper (TH) boundaries of tolerance temperatures are particularly important, as these would trigger the unique behaviour of the sea cucumber for hibernation and aestivation. After parameterisation, the model was validated with datasets from a shellfish aqua- culture environment in which sea cucumbers were co-cultured with the scallop Chlamys farreri and Pacific oyster Crassostrea gigas at various combinations of density.
    [Show full text]
  • Genomic Insights of Body Plan Transitions from Bilateral to Pentameral Symmetry in Echinoderms
    ARTICLE https://doi.org/10.1038/s42003-020-1091-1 OPEN Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms Yongxin Li1, Akihito Omori 2, Rachel L. Flores3, Sheri Satterfield3, Christine Nguyen3, Tatsuya Ota 4, Toko Tsurugaya5, Tetsuro Ikuta6,7, Kazuho Ikeo4, Mani Kikuchi8, Jason C. K. Leong9, Adrian Reich 10, Meng Hao1, Wenting Wan1, Yang Dong 11, Yaondong Ren1, Si Zhang12, Tao Zeng 12, Masahiro Uesaka13, 1234567890():,; Yui Uchida9,14, Xueyan Li 1, Tomoko F. Shibata9, Takahiro Bino15, Kota Ogawa16, Shuji Shigenobu 15, Mariko Kondo 9, Fayou Wang12, Luonan Chen 12,17, Gary Wessel10, Hidetoshi Saiga7,9,18, ✉ ✉ R. Andrew Cameron 19, Brian Livingston3, Cynthia Bradham20, Wen Wang 1,21,22 & Naoki Irie 9,14,22 Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japo- nica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bila- terality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya.
    [Show full text]
  • Abstract Book
    January 21-25, 2013 Alaska Marine Science Symposium hotel captain cook & Dena’ina center • anchorage, alaska Bill Rome Glenn Aronmits Hansen Kira Ross McElwee ShowcaSing ocean reSearch in the arctic ocean, Bering Sea, and gulf of alaSka alaskamarinescience.org Glenn Aronmits Index This Index follows the chronological order of the 2013 AMSS Keynote and Plenary speakers Poster presentations follow and are in first author alphabetical order according to subtopic, within their LME category Editor: Janet Duffy-Anderson Organization: Crystal Benson-Carlough Abstract Review Committee: Carrie Eischens (Chair), George Hart, Scott Pegau, Danielle Dickson, Janet Duffy-Anderson, Thomas Van Pelt, Francis Wiese, Warren Horowitz, Marilyn Sigman, Darcy Dugan, Cynthia Suchman, Molly McCammon, Rosa Meehan, Robin Dublin, Heather McCarty Cover Design: Eric Cline Produced by: NOAA Alaska Fisheries Science Center / North Pacific Research Board Printed by: NOAA Alaska Fisheries Science Center, Seattle, Washington www.alaskamarinescience.org i ii Welcome and Keynotes Monday January 21 Keynotes Cynthia Opening Remarks & Welcome 1:30 – 2:30 Suchman 2:30 – 3:00 Jeremy Mathis Preparing for the Challenges of Ocean Acidification In Alaska 30 Testing the Invasion Process: Survival, Dispersal, Genetic Jessica Miller Characterization, and Attenuation of Marine Biota on the 2011 31 3:00 – 3:30 Japanese Tsunami Marine Debris Field 3:30 – 4:00 Edward Farley Chinook Salmon and the Marine Environment 32 4:00 – 4:30 Judith Connor Technologies for Ocean Studies 33 EVENING POSTER
    [Show full text]
  • Psolus Phantapus
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Psolus phantapus (Psolus) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Holothuroidea (Sea Cucumbers) Order: Dendrochirotida (Sea Cucumbers) Family: Psolidae (Sea Cucumbers) General comments: none No Species Conservation Range Maps Available for Psolus SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: Psolus is currently undergoing steep population declines, which has already led to, or if unchecked is likely to lead to, local extinction and/or range contraction. Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: Psolus phantapus is highly vulnerable to climate change. Understudied rare taxa: Recently documented or poorly surveyed rare species for which risk of extirpation is potentially high (e.g. few known occurrences) but insufficient data exist to conclusively assess distribution and status. *criteria only qualifies for Priority 3 level SGCN* Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement
    [Show full text]
  • (Echinodermata: Holothuroidea) from the Latest Cretaceous Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century.
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • Swimming Deep-Sea Holothurians (Echinodermata: Holothuroidea) on the Northern Mid-Atlantic Ridge*
    Zoosymposia 7: 213–224 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) Swimming deep-sea holothurians (Echinodermata: Holothuroidea) on the northern Mid-Atlantic Ridge* ANTONINA ROGACHEVA1,3, ANDREY GEBRUK1 & CLAUDIA H.S. ALT2 1 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia 2 National Oceanography Centre, University of Southampton, Southampton, United Kingdom 3 Corresponding author, E-mail: [email protected] *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract The ability to swim was recorded in 17 of 32 species of deep-sea holothurians during the RRS James Cook ECOMAR cruise in 2010 to the Mid-Atlantic Ridge. Holothurians were observed, photographed, and video recorded using the ROV Isis at four sites around the Charlie-Gibbs Fracture Zone at approximate depths of 2,200–2,800 m. For eleven species swimming is reported for the first time. A number of swimming species were observed on rocks, cliffs and steep slopes with taluses. These habitats are unusual for deep-sea holothurians, which are traditionally common on flat areas with soft sediment rich in detritus. Three species were found exclusively on cliffs. Swimming may provide an advantage in cliff habitats that are inaccessible to most epibenthic deposit-feeders. Key words: sea cucumbers, benthopelagic species, diversity, Northern Atlantic Ocean Introduction Mid-ocean ridges remain one of the least studied environments in the ocean. They are characterised by remoteness, high relief, very complicated topography and complex current regimes.
    [Show full text]
  • Larvae of Marine Bivalves and Echinoderms
    V.L. KflSVflNOV>G.fl. KRVUCHKOVfl VAKUUKOVfl-LAIVICDVCDevn Scientific Cditor Dovid L pQiuson LARVAE OF MARINE BIVALVES AND ECHINODERMS V.L. KASYANOV, G.A. KRYUCHKOVA, V.A. KULIKOVA AND L. A. MEDVEDEVA Scientific Editor David L. Pawson SMITHSONIAN INSTITUTION LIBRARIES Washington, D.C. 1998 Smin B87-101 Lichinki morskikh dvustvorchatykh moUyuskov i iglokozhikh Akademiya Nauk SSSR Dal'nevostochnyi Nauchnyi Tsentr Institut Biologii Morya Nauka Publishers, Moscow, 1983 (Revised 1990) Translated from the Russian © 1998, Oxonian Press Pvt. Ltd., New Delhi Library of Congress Cataloging-in-Publication Data Lichinki morskikh dvustvorchatykh moUiuskov i iglokozhikh. English Larvae of marine bivalves and echinodermsA^.L. Kasyanov . [et al.]; scientific editor David L. Pawson. p. cm. Includes bibliographical references. 1. Bivalvia — Larvae — Classification. 2. Echinodermata — Larvae — Classification. 3. Mollusks — Larvae — Classification. 4. Bivalvia — Lar- vae. 5. Echinodermata — Larvae. 6. Mollusks — Larvae. I. Kas'ianov, V.L. II. Pawson, David L. (David Leo), 1938-III. Title. QL430.6.L5313 1997 96-49571 594'.4139'0916454 — dc21 CIP Translated and published under an agreement, for the Smithsonian Institution Libraries, Washington, D.C., by Amerind Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110001 Printed at Baba Barkha Nath Printers, 26/7, Najafgarh Road Industrial Area, NewDellii-110 015. UDC 591.3 This book describes larvae of bivalves and echinoderms, living in the Sea of Japan, which are or may be economically important, and where adult forms are dominant in benthic communities. Descriptions of 18 species of bivalves and 10 species of echinoderms are given, and keys are provided for the iden- tification of planktotrophic larvae of bivalves and echinoderms to the family level.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin Contains Eight Articles Commercial Species in Tonga and Communications from Several Countries
    Secretariat of the Pacific Community ISSN 1025-4943 Issue 33 – May 2013 BECHE-DE-MER information bulletin Inside this issue Editorial Change in weight of sea cucumbers during processing: Ten common This issue of SPC Beche-de-mer Information Bulletin contains eight articles commercial species in tonga and communications from several countries. It also includes abstracts about sea P. Ngaluafe and J. Lee p. 3 cucumbers that were presented at the 14th International Echinoderm Conference First insight into Colombian Caribbean that was held in Brussels in August. sea cucumbers and sea cucumber fishery The first article (p. 3) comes from Tonga. Poasi Ngaluafe and Jessica Lee analyse A. Rodriguez Forero et al. p. 9 the change in weight of ten common commercial sea cucumbers. They discuss the possible reasons for the discrepancy they observe between their results and Strategies for improving survivorship of hatchery-reared juvenile Holothuria previous ones, and the implications for fisheries management in Tonga. scabra in community-managed sea cucumber farms We are also very pleased to present some insights about sea cucumbers and sea A. Rougier et al. p. 14 cucumber fisheries in the Colombian Caribbean. The article is from the team of Holothurian abundance, richness and Adriana Rodríguez Forero (p. 9). They report on species that could be new for the population densities, comparing sites Caribbean and conclude with stressing the importance of initiating a management with different degrees of exploitation in plan for the Colombian fishery resource. the shallow lagoons of Mauritius K. Lampe p. 23 Some news also from Madagascar, where Antoine Rougier et al.
    [Show full text]
  • An Illustrated Key to the Sea Cucumbers of the South Atlantic Bight
    Prepared by the Southeastern Regional Taxonomic Center AAnn iilllluussttrraatteedd kkeeyy ttoo tthhee sseeaa ccuuccuummbbeerrss ooff tthhee SSoouutthh AAttllaannttiicc BBiigghhtt David L. Pawson and Doris J. Pawson Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 20013-7012 1 Table of Contents Introduction ..........................................................................................................................3 General Morphology (internal) ................................................................................3 General morphology (external) ................................................................................4 Preparation of ossicles .............................................................................................4 Checklist of South Atlantic Bight holothuroideans ............................................................5 Key to Orders of Holothuroidea known from the South Atlantic Bight ..............................6 Key to members of the Order Dendrochirotida known from the South Atlantic Bight .......9 Key to species of the Aspidochirotida known from the South Atlantic Bight...................28 Key to species of the Molpadiida known from the South Atlantic Bight ..........................34 Key to species of the Apodiida known from the South Atlantic Bight .............................35 This document was prepared by Rachael A. King and is only part of a more extensive study that is expected to be published in 2008. The research was conducted in part using funding
    [Show full text]