Coastal Dredging: a Multi-State Synthesis of Policy, Management, and Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Coastal Dredging: a Multi-State Synthesis of Policy, Management, and Implementation Coastal Dredging: A Multi- State Synthesis of Policy, Management, and Implementation Draft Report to the North Carolina Marine and Estuarine Foundation Chelsea Brown and Mike Piehler UNC Institute of Marine Science | 3431 Arendell St, Morehead City, NC TABLE OF CONTENTS Introduction 2 Methods 4 Results 5 Discussion 10 Appendix A - Policy Category Descriptions 13 Appendix B - Dredging Database 15 Appendix C – Questionnaire 25 INTRODUCTION The US Atlantic coast is an economically and environmentally valuable region that has been subject to challenges from sedimentation and the resulting loss of water depth. More than half of Americans live in coastal counties with shorelines experiencing rates of relative sea level rise of 0.2-1.0 cm y-1 (Turner 1991; Miller et al. 2001; Culliton 1998; Morris et al. 2002; Riggs 2002). The position and productivity of ecologically and economically valuable habitats in these regions are controlled by water level and sediment supply (McKee and Patrick 1988; Odum et al. 1995; Roman et al. 1990; Buzzelli 1998; Levin et al 2001). Mean sea level provides a metric to divide sub- from inter-tidal habitats as emergent wetlands survive within a narrow elevation range by maintaining their vertical position (Morris et al. 2002). Low lying areas that do not accumulate sediment and grow vertically are susceptible to gradual flooding through relative sea level rise or sudden erosion during high wind or storm surge. Wetlands, marshes, and associated submerged aquatic vegetation (SAV) facilitate wave dissipation and sediment deposition which can combat erosion and provides habitats for wildlife, in and out of the water (Duarte et al., 2019; Nardin, Lera & Nienhuis, 2020, Moeller et al., 1996, Jackson, et al., 2001). Human modifications along coastlines, particularly inlet, channel and port dredging have affected coastal zones by altering sediment supplies and transport patterns. Dredging, the excavation of bottom material, is required in many areas along the coast to ensure continued waterway navigability. Despite this need, dredging and disposal operations can have detrimental environmental impacts through damage to benthic habitats (Jones, 1986; Erftemeijer et al., 2006), increases in turbidity which can create sediment plumes that smother wildlife (Wilber & Clarke, 2010, Pineda et al., 2017, Ray et al., 2005), impacts to water quality (Priest, 1981) and direct fish mortality (Wenger et al., 2017). Although dredging is a necessary activity, the potential for negative environmental outcomes has been of concern to state and federal resource managers. This concern has resulted in policy enactments and the creation of agencies and commissions to minimize and mitigate the negative effects of dredging. In recent years, realities of changing climate and rising water levels have begun to manifest themselves along U.S. shores broadening initiatives to sustain coastal communities and environments. North Carolina in particular has experienced two major hurricanes, Florence and Michael, just in the last two years that caused substantial damage. Beneficial reuse of dredged materials is one such innovation to restore, reclaim, and regrade coastal lands (Welsh et al., 2016). Beneficial reuse involves identifying areas that are in need of sediment additions, such as eroding beaches and using the dredged material from approved projects to nourish the sediment- starved shores. Historically, the dredged might otherwise have been disposed of at an upland disposal facility or deposited in the open ocean, but when used as a resource in coastal systems, the dredged material can help resist coastal erosion and further resilience goals while still maintaining waterways. There are numerous applications for beneficial reuse although it is in the early stages of implementation. Notably, the use of dredged material as a replacement for natural sediment accretion has successfully augmented beaches, creating more resilient coastlines, and increasing habitat sustainability (Welsh et al., 2016). Sediment reuse has logistical and economic costs and understanding how states can most effectively incorporate pro-beneficial reuse policy is increasingly urgent, as opportunities to protect invaluable coastal environments become more complicated and urgent due to continued degradation. Dredging is defined by NOAA as “the removal of sediments and debris from the bottom of lakes, rivers, harbors, and other water bodies…” necessary “because sedimentation—the natural process of sand and silt washing downstream—gradually fills channels and harbors.” There are two types of dredging: 1) maintenance dredging is the removal of sediment accumulated in navigation channels and harbors to sustain water depth and channel width; and 2) construction dredging is the removal of soil to create new navigation channels or open water. The Clean Water Act of 1972, the Coastal Zone Management Act of 1972 (CZMA), the National Environmental Policy Act of 1970 (NEPA), the Marine Protection, Research, and Sanctuaries Act (MPRSA), and various other federal acts regulate dredging activities at the federal level and states must comply, but many policy decisions are left to states. There is ample research that focuses on federal authority and management, but few focus on state policies guiding dredging and beneficial reuse. State legislation and permitting are the main tools for states to systematically reduce the potential and severity of dredging impacts through agency-reviewed permitting, designating protected resource areas, and restricting certain water uses. Because the effects of dredging are often state- and species-specific, policy must be accommodating of these distinctions in order to adequately protect the state’s resources. Although each state faces unique challenges which are reflected in their policy approaches, the shared goal of balancing economic and environmental interest, as well as the changing climate lend value and opportunity to cross- evaluating the approaches of other states. This analysis examines state dredging laws in five eastern U.S. coastal states with a focus on assessing North Carolina’s dredging laws related to beneficial reuse and environmental protections. The comparisons assess 4 dredging sub-topics: 1) state-specific permits, 2) wetlands/environmental considerations, 3) dredged sediment disposal, and 4) best practices. Each sub-topic was further broken down into 20 subcategories and used to identify specific variances in state policies. All of the policy data were collected in 2020 using online state policy resources and recorded in a policy matrix. In order to learn more about how government bodies involved with permitting and dredging projects implement their state’s policies, we conducted interviews with managers and agency officials. Interviews focused on questions to understand how the permitting process is implemented, their perceived program strengths, and how the process could be improved to better protect the states’ multiple interests. By developing a categorical policy matrix and gathering targeted data from our questionnaire for coastal directors and managers, we were able to compare policies across a range of coastal states and obtain an in- depth understanding of what distinctions exist in dredging policies and implementation. Based on this comprehensive assessment of dredging policies between representative states, we sought opportunities to advance dredging policy and implementation in North Carolina. Our goals were to: 1. Compare and contrast comprehensive assessments of coastal dredging policies between selected representative states 2. Examine coastal dredging policy implementation in the focal states 3. Identify potential opportunities for North Carolina to advance its coastal dredging management METHODS We sampled five US Atlantic coastal states: 1) North Carolina, 2) South Carolina, 3) Maine, 4) New Jersey and 5) Virginia. We aimed to determine distinctions in state authority and the corresponding dredging policy and did not consider federal policies. These states are representative of dredging policy, north and south, in the eastern U.S. Four focus areas were determined and 20 subcategories were defined to categorically address state-specific dredging legislation that was not affiliated with federal regulation (Appendix A). Each of the subcategories was designed to encompass the entirety of the dredging process, from pre- permitting to post-project completion. The state code law and administration codes were analyzed and compiled first and subsequent documentation, such as state water quality certifications, that was available online that related to dredging policy were evaluated. We included all laws targeting dredging, beneficial reuse, and affiliated environmental protections in coastal areas that are partially, tidally or entirely covered with water. A policy was recorded as a “Y” in the policy matrix if it was found to fall into one of the 20 dredging subcategories. Policy excerpts were also documented for further evaluation (Appendix B). This assessment aims to be comprehensive in identifying statutory provisions for coastal dredging and environmental protection, but it does not identify all laws in each state. Local authorities were not examined and where multiple state policies existed, a single encompassing example was selected to avoid unnecessary repetition. Within this framework, we evaluated policies that serve to protect ecosystems and the state’s resources by standardizing and restricting coastal
Recommended publications
  • The Navigability Concept in the Civil and Common Law: Historical Development, Current Importance, and Some Doctrines That Don't Hold Water
    Florida State University Law Review Volume 3 Issue 4 Article 1 Fall 1975 The Navigability Concept in the Civil and Common Law: Historical Development, Current Importance, and Some Doctrines That Don't Hold Water Glenn J. MacGrady Follow this and additional works at: https://ir.law.fsu.edu/lr Part of the Admiralty Commons, and the Water Law Commons Recommended Citation Glenn J. MacGrady, The Navigability Concept in the Civil and Common Law: Historical Development, Current Importance, and Some Doctrines That Don't Hold Water, 3 Fla. St. U. L. Rev. 511 (1975) . https://ir.law.fsu.edu/lr/vol3/iss4/1 This Article is brought to you for free and open access by Scholarship Repository. It has been accepted for inclusion in Florida State University Law Review by an authorized editor of Scholarship Repository. For more information, please contact [email protected]. FLORIDA STATE UNIVERSITY LAW REVIEW VOLUME 3 FALL 1975 NUMBER 4 THE NAVIGABILITY CONCEPT IN THE CIVIL AND COMMON LAW: HISTORICAL DEVELOPMENT, CURRENT IMPORTANCE, AND SOME DOCTRINES THAT DON'T HOLD WATER GLENN J. MACGRADY TABLE OF CONTENTS I. INTRODUCTION ---------------------------- . ...... ..... ......... 513 II. ROMAN LAW AND THE CIVIL LAW . ........... 515 A. Pre-Roman Legal Conceptions 515 B. Roman Law . .... .. ... 517 1. Rivers ------------------- 519 a. "Public" v. "Private" Rivers --- 519 b. Ownership of a River and Its Submerged Bed..--- 522 c. N avigable R ivers ..........................................- 528 2. Ownership of the Foreshore 530 C. Civil Law Countries: Spain and France--------- ------------- 534 1. Spanish Law----------- 536 2. French Law ----------------------------------------------------------------542 III. ENGLISH COMMON LAw ANTECEDENTS OF AMERICAN DOCTRINE -- --------------- 545 A.
    [Show full text]
  • The Conservation Action Plan the Ganges River Dolphin
    THE CONSERVATION ACTION PLAN FOR THE GANGES RIVER DOLPHIN 2010-2020 National Ganga River Basin Authority Ministry of Environment & Forests Government of India Prepared by R. K. Sinha, S. Behera and B. C. Choudhary 2 MINISTER’S FOREWORD I am pleased to introduce the Conservation Action Plan for the Ganges river dolphin (Platanista gangetica gangetica) in the Ganga river basin. The Gangetic Dolphin is one of the last three surviving river dolphin species and we have declared it India's National Aquatic Animal. Its conservation is crucial to the welfare of the Ganga river ecosystem. Just as the Tiger represents the health of the forest and the Snow Leopard represents the health of the mountainous regions, the presence of the Dolphin in a river system signals its good health and biodiversity. This Plan has several important features that will ensure the existence of healthy populations of the Gangetic dolphin in the Ganga river system. First, this action plan proposes a set of detailed surveys to assess the population of the dolphin and the threats it faces. Second, immediate actions for dolphin conservation, such as the creation of protected areas and the restoration of degraded ecosystems, are detailed. Third, community involvement and the mitigation of human-dolphin conflict are proposed as methods that will ensure the long-term survival of the dolphin in the rivers of India. This Action Plan will aid in their conservation and reduce the threats that the Ganges river dolphin faces today. Finally, I would like to thank Dr. R. K. Sinha , Dr. S. K. Behera and Dr.
    [Show full text]
  • Optimizing Dredge-And-Dump Activities for River Navigability Using a Hydro-Morphodynamic Model
    Water 2015, 7, 3943-3962; doi:10.3390/w7073943 OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Article Optimizing Dredge-and-Dump Activities for River Navigability Using a Hydro-Morphodynamic Model Andries J. Paarlberg 1, Massimo Guerrero 2,*, Fredrik Huthoff 1 and Mariano Re 3 1 HKV Consultants, Lelystad 8232, The Netherlands; E-Mails: [email protected] (A.J.P.); [email protected] (F.H.) 2 Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40136, Italy 3 National Institute for Water (INA), Ezeiza, Buenos Aires 1804, Argentina; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-051-2090519. Academic Editor: Markus Disse Received: 9 May 2015 / Accepted: 8 July 2015 / Published: 17 July 2015 Abstract: Worldwide, significant dredging activities of riverbed sediment are employed to ensure that freight transportation on rivers can continue year-round. Imbalances of sediment budget may produce relevant impacts regarding river morphology and related environmental services. This study shows that hydro-morphodynamic modeling tools can be used to optimize dredge-and-dump activities and, at the same time, mitigate problems deriving from these activities in rivers. As a case study, we focused on dredging activities on the Lower Parana River, Argentina. Navigation on this river is of crucial importance to the economies of the bordering countries, hence, each year significant dredging activities are employed. To estimate dredging loads under different strategies, a 25 km river reach of the Parana River was modeled using the Delft3D-modelling suite by Deltares.
    [Show full text]
  • NRT Abandoned Vessel Authorities and Best Practices Guidance 2020
    ABANDONED VESSEL AUTHORITIES AND BEST PRACTICES GUIDANCE 2020 UPDATE VERSION 10 This page intentionally left blank ii ABANDONED VESSEL AUTHORITIES AND BEST PRACTICES GUIDANCE Table of Contents Executive Summary .................................................................................................................................... v Acknowledgements .................................................................................................................................... vi How to Use This Guidance ....................................................................................................................... vii Section 1.0 Definition of Terms .................................................................................................................. 1 Section 2.0 Background and Purpose ........................................................................................................ 5 2.1 Purpose ............................................................................................................................................. 5 2.2 Background ...................................................................................................................................... 5 2.3 Considerations and Assumptions ..................................................................................................... 6 Section 3.0 Initial Assessment .................................................................................................................... 7 3.1 Introduction .....................................................................................................................................
    [Show full text]
  • Pleasure Boating and Admiralty: Erie at Sea' Preble Stolz*
    California Law Review VoL. 51 OCTOBER 1963 No. 4 Pleasure Boating and Admiralty: Erie at Sea' Preble Stolz* P LEASURE BOATING is basically a new phenomenon, the product of a technology that can produce small boats at modest cost and of an economy that puts such craft within the means of almost everyone.' The risks generated by this development create new legal problems. New legal problems are typically solved first, and often finally, by extension of com- mon law doctrines in the state courts. Legislative regulation and any solu- tion at the federal level are exceptional and usually come into play only as a later stage of public response.2 There is no obvious reason why our legal system should react differ- ently to the new problems presented by pleasure boating. Small boats fall easily into the class of personal property. The normal rules of sales and security interests would seem capable of extension to small boats without difficulty. The same should be true of the rules relating to the operation of pleasure boats and particularly to the liability for breach of the duty to take reasonable care for the safety of others. One would expect, therefore, that the legal problems of pleasure boating would be met with the typical response: adaptation of the common law at the state level. Unhappily this is not likely to happen. Pleasure boating has the mis- fortune of presenting basic issues in an already complex problem of fed- t I am grateful to Professor Geoffrey C. Hazard, Jr. for reading the manuscript in nearly final form, and to Professor Ronan E.
    [Show full text]
  • On the Future Navigability of Arctic Sea Routes High-Resolution Projections
    Marine Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Marine Policy journal homepage: www.elsevier.com/locate/marpol On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice Yevgeny Aksenov a,n, Ekaterina E. Popova a, Andrew Yool a, A.J. George Nurser a, Timothy D. Williams b, Laurent Bertino b, Jon Bergh b a National Oceanography Centre, Southampton SO14 3ZH, UK b Nansen Environmental and Remote Sensing Center, Bergen N-5006, Norway article info abstract Article history: The rapid Arctic summer sea ice reduction in the last decade has lead to debates in the maritime in- Received 29 October 2015 dustries on the possibility of an increase in cargo transportation in the region. Average sailing times on Received in revised form the North Sea Route along the Siberian Coast have fallen from 20 days in the 1990s to 11 days in 2012– 31 December 2015 2013, attributed to easing sea ice conditions along the Siberian coast. However, the economic risk of Accepted 31 December 2015 exploiting the Arctic shipping routes is substantial. Here a detailed high-resolution projection of ocean and sea ice to the end of the 21st century forced with the RCP8.5 IPCC emission scenario is used to Keywords: examine navigability of the Arctic sea routes. In summer, opening of large areas of the Arctic Ocean Arctic Ocean previously covered by pack ice to the wind and surface waves leads to Arctic pack ice cover evolving into Arctic shipping routes the Marginal Ice Zone. The emerging state of the Arctic Ocean features more fragmented thinner sea ice, CO emission scenarios 2 stronger winds, ocean currents and waves.
    [Show full text]
  • A Review of the Navigability Modeling for Inland Waterways
    E - proceedings of the 36 th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands A REVIEW OF THE NAVI GABILITY MODELING FO R INLAND WATERWAYS ANDERSON L. FRIGO ( 1) , TOBIAS B. BLENINGER (2 ) (1) Federal University of Parana , Curitiba , Brazil , [email protected] (2) Federal University of Parana, Curitiba, Brazil, [email protected] ABSTRACT Among all Brazilian waterways the Paraguay River highlights as one of the most important. It is approximately 1 30 0 kilometers long and links the interior of South Amer ica to the deep - water ports in Argentina and Uruguay, enabling the efficient flow of raw material as grain and ore. Nevertheless, the potential of the Paraguay River waterway is not fully explored . One of the main factors contributing to this scenario is t he lack of operational methodologies and field surveys. The navigation is performed using only bathymetric data and the expertise of the sailors, which is not consistent with modern, competitive and safe waterways. Therefore, Brazilian government started a project to revitalize the Paraguay waterway, comprising the river and its most important tributaries. This study presents the initial investigation to assess the navigability of the Paraguay River. Initially previous works related to hydrodynamic modeling and operational methodologies used worldwide were analyzed. It was identified that there is a lack of researches on this topic, sparse on specific problems and the methodologies used are often concepts of marine navigation and approach channels. Initial s urveys for Paraguay River are described and discussed. Large - scale field measurements are necessary to determine the navigation potential of the river, hence longitudinal bathymetry, velocity profile, sediment sampling, hydrologic parameters of the watersh ed and vessel characteristics were measured.
    [Show full text]
  • Management of the Great Lakes-St. Lawrence Maritime Transportation System
    Canada-United States Law Journal Volume 42 Issue 1 Article 13 2018 Management of the Great Lakes-St. Lawrence Maritime Transportation System Mike Piskur Follow this and additional works at: https://scholarlycommons.law.case.edu/cuslj Part of the Transnational Law Commons Recommended Citation Mike Piskur, Management of the Great Lakes-St. Lawrence Maritime Transportation System, 42 Can.-U.S. L.J. 228 (2018) Available at: https://scholarlycommons.law.case.edu/cuslj/vol42/iss1/13 This Article is brought to you for free and open access by the Student Journals at Case Western Reserve University School of Law Scholarly Commons. It has been accepted for inclusion in Canada-United States Law Journal by an authorized administrator of Case Western Reserve University School of Law Scholarly Commons. 228 CANADA-UNITED STATES LAW JOURNAL [Vol. 42, 2018] MANAGEMENT OF THE GREAT LAKES-ST. LAWRENCE MARITIME TRANSPORTATION SYSTEM Mike Piskur† ABSTRACT: The Great Lakes-St. Lawrence Maritime Transportation System (“MTS”) bears critical importance to the economic competitiveness of Canada and the United States (“US”). Maritime transportation comprises both a major economic driver and job creator for both countries. As a cost-effective and highly efficient means of transporting raw materials and finished products to market, the MTS is essential to agricultural, mining, and manufacturing supply chains that frequently stretch across the US-Canada border and beyond. Yet management of the MTS is fragmented, with responsibility for various system components scattered across numerous federal agencies in both the US and Canada. This fragmentation results in a dearth of transparency, confusing and disjointed governmental authority, higher user costs, barriers to establishing new markets, and overall reduced system competitiveness.
    [Show full text]
  • Ganges Strategic Basin Assessment
    Public Disclosure Authorized Report No. 67668-SAS Report No. 67668-SAS Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized GANGES STRATEGIC BASIN ASSESSMENT: A Discussion of Regional Opportunities and Risks b Report No. 67668-SAS Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks World Bank South Asia Regional Report The World Bank Washington, DC iii GANGES STRATEGIC BASIN ASSESSMENT: A Discussion of Regional Opportunities and Risks Disclaimer: © 2014 The International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org All rights reserved 1 2 3 4 14 13 12 11 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law.
    [Show full text]
  • High-Resolution Projections of the Arctic Ocean and Sea Ice Decline
    Future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and Sea Ice decline Yevgeny Aksenov1, Ekaterina Popova1, Andrew Yool1, A.J. George Nurser1, Timothy Williams2, Laurent Bertino2 and Jon Bergh2 (1) National Oceanography Centre, Southampton, SO14 3ZH, UK (2) Nansen Environmental and Remote Sensing Center, Bergen, N-5006, Norway Email: [email protected] (corresponding author, Tel: +44-2380-599582) [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] ___________________________________________________________________________ 1 Abstract 2 The rapid Arctic summer sea ice reduction in the last decade has lead to debates in the 3 maritime industries whether one could expect an increase in cargo transportation in the region. 4 After a dramatic drop in Arctic maritime transport in the 1990s and 2000s, the number of 5 vessels sailing along the Northern Sea Route (NSR) increased from 4 in 2010 to 71 in 2013, 6 before declining to 53 in 2014. Shipping data shows a reduction in average sailing time from 7 of ca. 20 days in 1990s to 11 days in 2012-2013, attributed to easing sea ice conditions along 8 the Siberian coast. However, the economic risk of exploiting the Arctic routes is substantial. It 9 lies in the uncertainty of the length of the navigation season, and in changes in sea ice and 10 ocean, and requires robust environmental predictions. Here a detailed high-resolution future 11 projection of ocean and sea ice forced with the RCP8.5 IPCC emission scenario is used to 12 examine navigability of the Arctic sea routes.
    [Show full text]
  • State Waterway Navigability Determination
    BODY OF WATER & LOCATION NAV CG NON-NAV CG REMARKS yellow highlight = apply to USCG for permit up to RM stipulated Alsea Bay, OR X Estuary of Pacific Ocean. Alsea River, OR X Flows into Alsea Bay, Waldport, OR. Navigable to mile 13. Ash Creek, OR X Tributary of Willamette River at Independence, OR. Barrett Slough, OR X Tributary of Lewis and Clark River. Bayou St. John, OR X Court decision, 1935 AMC 594, 10 Mile Lake, Coos County, OR. Bear Creek (Coos County), OR X Tributary of Coquille River (tidal at mile 0.5) Beaver Creek, OR X Tributary of Nestucca River. Beaver Slough, OR X See Clatskanie River. Big Creek (Lane County), OR X At U.S. 101 bridge (tidal). Big Creek (Lincoln County), OR X Flows into Pacific Ocean. Big Creek Slough, OR X Upstream end at Knappa, OR (tidal). At site of Birch Creek (Sparks) Bridge on Canyon Road near Birch Creek, OR X Pendleton, OR. Side channel of Yaquina River. 3 mi. downstream from Toledo, Blind Slough, OR X OR (tidal). Tributary of Knappa Slough. 10 mi. upstream from Astoria, OR Blind Slough/ Gnat Creek, OR X (tidal at mile 2.0). Boone Slough, OR X Tributary of Yaquina River between Newport and Toledo, OR. Side channel of Willamette River. 3 miles upstream from Booneville Channel, OR X Corvallis, OR. Boulder Creek, OR X 7 miles N of Lake Quinalt. Side channel of Columbia River. 5 miles N of Clatskanie, OR Bradbury Slough, OR X (tidal). Brownlee Reservoir, ID /OR X See Snake River. Also known as South Channel.
    [Show full text]
  • APPENDIX D Legal Definition of “Traditional Navigable Waters”
    APPENDIX D Legal Definition of “Traditional Navigable Waters” Waters that Qualify as Waters of the United States Under Section (a)(1) of the Agencies’ Regulations The Environmental Protection Agency (EPA) and United States Army Corps of Engineers (Corps) “Clean Water Act Jurisdiction Following the U.S. Supreme Court’s Decision in Rapanos v. United States and Carabell v. United States” guidance (Rapanos guidance) affirms that EPA and the Corps will continue to assert jurisdiction over “[a]ll waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide.” 33 C.F.R. § 328.3(a)(1); 40 C.F.R. § 230.3(s)(1). The guidance also states that, for purposes of the guidance, these “(a)(1) waters” are the “traditional navigable waters.” These (a)(1) waters include all of the “navigable waters of the United States,” defined in 33 C.F.R. Part 329 and by numerous decisions of the federal courts, plus all other waters that are navigable-in-fact (e.g., the Great Salt Lake, UT and Lake Minnetonka, MN). EPA and the Corps are providing this guidance on determining whether a water is a “traditional navigable water” for purposes of the Rapanos guidance, the Clean Water Act (CWA), and the agencies’ CWA implementing regulations. This guidance is not intended to be used for any other purpose. To determine whether a water body constitutes an (a)(1) water under the regulations, relevant considerations include Corps regulations, prior determinations by the Corps and by the federal courts, and case law.
    [Show full text]