Great Lakes St. Lawrence Seaway Study

Total Page:16

File Type:pdf, Size:1020Kb

Great Lakes St. Lawrence Seaway Study GREAT LAKES ST. LAWRENCE SEAWAY STUDY Final Report Fall 2007 GREAT LAKES ST. LAWRENCE SEAWAY STUDY By: Transport Canada U.S. Army Corps of Engineers U.S. Department of Transportation The St. Lawrence Seaway Management Corporation Saint Lawrence Seaway Development Corporation Environment Canada U.S. Fish and Wildlife Service Publication This publication is also available in French under the title: Étude des Grands Lacs et de la Voie maritime du Saint-Laurent. Rapport final, automne 2007. Permission is granted by the Department of Transport, Canada, and the U.S. Department of Transportation, to copy and/or reproduce the contents of this publication in whole or in part provided that full acknowledgement is given to the Department of Transport, Canada, and the U.S. Department of Transportation, and that the material be accurately reproduced. While the use of this material has been authorized, the Department of Transport, Canada, and the U.S. Department of Transportation, shall not be responsible for the manner in which the information is presented, nor for any interpretation thereof. The information in this publication is to be considered solely as a guide and should not be quoted as or considered to be a legal authority. It may become obsolete in whole or in part at any time without notice. Publication design and layout by ACR Communications Inc. ii Great Lakes St. Lawrence Seaway Study FOREWORD AND ACKNOWLEDGEMENTS We are pleased to present the binational report on the Great Lakes St. Lawrence Seaway Study, the result of collaborative research and analysis by seven federal departments and agencies from Canada and the United States. The report summarizes the findings of the study and sets out observations and key considerations for continuing the success of a productive, safe and reliable waterway in a cost-effective, efficient and sustainable manner. The Great Lakes St. Lawrence Seaway system is a vital resource. As one of the world’s greatest and most strategic waterways, it is also an essential part of North America’s transportation infrastructure. The system enables and facilitates significant domestic and international trade for the continent’s largest interior markets including the industrial, manufacturing, agricultural and natural resource sectors. It is likely that few outside the Great Lakes basin and St. Lawrence River region appreciate the crucial role of the waterway. This resource flows directly across two provinces and eight states, situated at the axis of the world’s largest binational trading relationship. Since coming into full operation in 1959, the St. Lawrence Seaway has handled more than 2.3 billion metric tons of cargo with an estimated value of $350 billion. The competitiveness, prosperity and economic progress achieved are the result of a strong partnership that provides enormous benefit to both countries. The upcoming 50th anniversary of the opening of the St. Lawrence Seaway is a reminder that the economic vitality and efficiency of marine transportation and trade cannot be taken for granted. Waterborne movement is cost competi tive, fuel efficient, safe, and possesses some environmental advantages. When integrated with rail and trucking into a multimodal transportation network, it can greatly increase capacity with minimal negative impacts on society. For the Great Lakes St. Lawrence Seaway system to be sustainable and optimize its contribution to the future movement of goods, it needs a strategy for addressing its aging infrastructure. Principally this includes its lock systems, but it should also adopt a more holistic view of the ports it serves and their evolving linkages to other modes of transportation. Recognition of this central fact by both nations prompted this comprehensive study on future needs of the system focusing on strategic issues that encompass economic, environmental and engineering dimensions. Study partners look to a future in which a modern waterway capitalizes on its inherent advantages to meet the projected doubling of freight traffic and trade activity in North America. An improved Great Lakes St. Lawrence Seaway system — one that is part of a more integrated transportation network and trade corridor — can serve as a complement and alternative that can accommodate rapidly growing containerized freight traffic as easily as it does bulk and general cargoes. This binational report is a unique document. It expresses not only a common determination, but also a climate of mutual understanding, sharing and confidence among the study partners. This is a testament to the scores of individuals representing the seven participating departments and agencies who devoted their considerable time, effort and expertise to this initiative. Thanking all who have contributed to this undertaking would be a significant task in itself and inevitably result in omission of individuals who merit deep gratitude. However, we cannot forgo honouring the study’s management committee: Marc Fortin from Transport Canada and David Wright from the U.S. Army Corps of Engineers. Their commitment and determination built a culture of teamwork that has resulted in this impressive effort. Great Lakes St. Lawrence Seaway Study iii The Great Lakes St. Lawrence Seaway system is bigger than any report, or commission, charged to investigate it. It belongs to all stakeholders. It is our hope that the study will have a significant influence in creating a context for discussion and action to develop a safe, healthy and economically sound waterway for future generations. In our estimation, the study lives up to its appointed task of providing a comprehensive understanding of needs, opportunities and challenges in the next 50 years. We look forward to sharing and discussing the work and findings of the study. Respectfully, The Great Lakes St. Lawrence Seaway Study’s Steering Committee Kristine Burr Jeffrey N. Shane Assistant Deputy Minister, Policy Under Secretary for Policy Transport Canada U.S. Department of Transportation Steering Committee Co-Chair Steering Committee Co-Chair Theodore A. Brown Acting Chief, Planning and Policy U.S. Army Corps of Engineers Richard J. Corfe President and Chief Executive Officer The St. Lawrence Seaway Management Corporation Collister Johnson, Jr. Administrator Saint Lawrence Seaway Development Corporation Albin Tremblay Regional Director General Environment Canada Charles M. Wooley Deputy Regional Director U.S. Fish and Wildlife Service iv Great Lakes St. Lawrence Seaway Study TABLE OF CONTENTS Foreword and Acknowledgements . iii List of Figures . vii List of Tables . viii Executive Summary. 1 Chapter 1 – Introduction . 13 Chapter 2 – The Waterway . 17 System overview . 18 Origins . 19 The system today . 20 The Great Lakes. 22 The Welland Canal. 24 The Montreal-Lake Ontario section . 26 The St. Lawrence ship channel . 28 System operation and management . 30 Evolution . 31 Challenges . 33 Chapter 3 – The Economic Importance of the GLSLS. 35 Evaluating significance . 36 Cargoes . 37 Grain. 37 Inputs to the iron and steel industries . 38 Coal . 40 Stone. 41 Other cargoes . 42 Containerized cargo . 43 System segments . 44 Other determinants of traffic . 45 Forecast based on existing traffic mix . 46 The competitiveness of the GLSLS. 48 Conclusions . 52 Chapter 4 – Environmental Considerations . 53 Overview . 54 Valued ecosystem components. 55 Air quality . 55 Terrestrial ecosystems . 56 Aquatic ecosystems . 57 Evaluation of stressors . 61 Issues related to channel and port maintenance . 61 Water management . 63 Land-based support activities. 63 Ship operations. ..
Recommended publications
  • When the Mountain Became the Escarpment.FH11
    Looking back... with Alun Hughes WHEN THE MOUNTAIN BECAME THE ESCARPMENT The Niagara Escarpment hasnt always been But Coronelli was not the first to put Niagara known by that name. Early in the 19th century it on the map. That distinction belongs to Father Louis was often referred to as the Mountain, and of course Hennepin, the Recollect priest who was the first it is still called that in Hamilton and Grimsby today. European to describe Niagara Falls from personal We in eastern Niagara have largely forgotten the observation. In his Description de la Louisiane, name, though it survives in the City of Thorolds published in 1683, five years after his visit, he speaks motto Where the Ships Climb the Mountain. of le grand Sault de Niagara, and labels it thus on the accompanying map. This is the form that So when did the name Niagara Escarpment first prevails thereafter, and it is the spelling used for Fort come into use? And what about the areas other de Niagara, established by the French at the mouth Niagara names, like Niagara Falls, Niagara River of the river in 1726. The English followed suit, and Niagara Peninsula? When did these first appear? though on many early maps (e.g. Moll 1715, I dont pretend to have definitive answers there Mitchell 1782) they use the name Great Fall of are too many sources I have not seen but I can Niagara rather than Niagara Falls. suggest some preliminary conclusions. In his Description Hennepin also refers to la The name Niagara is definitely of native origin, belle Riviere de Niagara, so the name Niagara though there is no agreement about its meaning.
    [Show full text]
  • In This Issue …
    In This Issue … INLAND SEAS®VOLUME 72 WINTER 2016 NUMBER 4 MAUMEE VALLEY COMES HOME . 290 by Christopher H. Gillcrist KEEPING IT IN TRIM: BALLAST AND GREAT LAKES SHIPPING . 292 by Matthew Daley, Grand Valley State University Jeffrey L. Ram, Wayne State University RUNNING OUT OF STEAM, NOTES AND OBSERVATIONS FROM THE SS HERBERT C. JACKSON . 319 by Patrick D. Lapinski NATIONAL RECREATION AREAS AND THE CREATION OF PICTURED ROCKS NATIONAL LAKESHORE . 344 by Kathy S. Mason BOOKS . 354 GREAT LAKES NEWS . 356 by Greg Rudnick MUSEUM COLUMN . 374 by Carrie Sowden 289 KEEPING IT IN TRIM: BALLAST AND GREAT LAKES SHIPPING by Matthew Daley, Grand Valley State University Jeffrey L. Ram, Wayne State University n the morning of July 24, 1915, hundreds of employees of the West- Oern Electric Company and their families boarded the passenger steamship Eastland for a day trip to Michigan City, Indiana. Built in 1903, this twin screw, steel hulled steamship was considered a fast boat on her regular run. Yet throughout her service life, her design revealed a series of problems with stability. Additionally, changes such as more lifeboats in the aftermath of the Titanic disaster, repositioning of engines, and alterations to her upper cabins, made these built-in issues far worse. These failings would come to a disastrous head at the dock on the Chicago River. With over 2,500 passengers aboard, the ship heeled back and forth as the chief engineer struggled to control the ship’s stability and failed. At 7:30 a.m., the Eastland heeled to port, coming to rest on the river bottom, trapping pas- sengers inside the hull and throwing many more into the river.
    [Show full text]
  • The Navigability Concept in the Civil and Common Law: Historical Development, Current Importance, and Some Doctrines That Don't Hold Water
    Florida State University Law Review Volume 3 Issue 4 Article 1 Fall 1975 The Navigability Concept in the Civil and Common Law: Historical Development, Current Importance, and Some Doctrines That Don't Hold Water Glenn J. MacGrady Follow this and additional works at: https://ir.law.fsu.edu/lr Part of the Admiralty Commons, and the Water Law Commons Recommended Citation Glenn J. MacGrady, The Navigability Concept in the Civil and Common Law: Historical Development, Current Importance, and Some Doctrines That Don't Hold Water, 3 Fla. St. U. L. Rev. 511 (1975) . https://ir.law.fsu.edu/lr/vol3/iss4/1 This Article is brought to you for free and open access by Scholarship Repository. It has been accepted for inclusion in Florida State University Law Review by an authorized editor of Scholarship Repository. For more information, please contact [email protected]. FLORIDA STATE UNIVERSITY LAW REVIEW VOLUME 3 FALL 1975 NUMBER 4 THE NAVIGABILITY CONCEPT IN THE CIVIL AND COMMON LAW: HISTORICAL DEVELOPMENT, CURRENT IMPORTANCE, AND SOME DOCTRINES THAT DON'T HOLD WATER GLENN J. MACGRADY TABLE OF CONTENTS I. INTRODUCTION ---------------------------- . ...... ..... ......... 513 II. ROMAN LAW AND THE CIVIL LAW . ........... 515 A. Pre-Roman Legal Conceptions 515 B. Roman Law . .... .. ... 517 1. Rivers ------------------- 519 a. "Public" v. "Private" Rivers --- 519 b. Ownership of a River and Its Submerged Bed..--- 522 c. N avigable R ivers ..........................................- 528 2. Ownership of the Foreshore 530 C. Civil Law Countries: Spain and France--------- ------------- 534 1. Spanish Law----------- 536 2. French Law ----------------------------------------------------------------542 III. ENGLISH COMMON LAw ANTECEDENTS OF AMERICAN DOCTRINE -- --------------- 545 A.
    [Show full text]
  • Occasional Papers of the Museum of Zoology
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN I. ON AN INCREASE IN THE NAIAD FAUNA OF SAGINAW BAY, MICHIGAN 11. THE NAIAD SPECIES OF THE GREAT LAI(ES BY CALVINGOODRICH AND HENRYVANDER SCHALIE 1. NINE species of Naiades were found by Dr. H. B. Baker to inhabit Saginaw Bay in the vicinity of Sand Point, Huron County, Michigan, when he made his study of the molluscan fauna of the region in 1908. The survey was a very thorough one and several weelis mere devoted to the work. Twenty-three years later, a much more perfunctory survey was made by the writers of this paper in the same locality, their visits to Sand Point being more in the nature of holidays than for collecting purposes. Yet their findings amounted to thirteen species in contrast to Baker's nine. Moreover, they are enabled to report that five of the nine species of the Baker list proved to be more abundant in 1931 than they were in 1908. Such an increase in ~nollnsca appears to be unusual in American species. The writers are unable to find in the litera- ture of the subject any inention of anything quite like it. In- stances have occurred where an introduced species, Bytlzinia tentaculata (Linnaeus), for example, has developed such a fecundity as to be a pest (F. C. Balier, 1902 ; Sterlqi, 1910). A circnmboreal land snail, Vallonia ~~z~l~lzella(Miiller) , is kno~\~nto have developed exceedingly large colonies that prob- ably were larger than those wliich existed before the trans- plantation of European agriculture on this continent (G.
    [Show full text]
  • Glen Haffy Conservation Area Welcome
    www.trca.on.ca Glen Haffy Conservation Area Welcome to Glen Haffy Conservation Area, a beautiful natural area located within the Humber River Watershed, Humber River Watershed Fishing at Glen Haffy at the junction of Ontario’s two most dominant The Humber River watershed covers an area of 903 square Each year, Glen Haffy raises 60,000 rainbow trout at its on-site geological features - The Niagara Escarpment and kilometres, from the headwaters on the Niagara Escarpment fish hatchery, and these fish are released into the fishing the Oak Ridges Moraine. and Oak Ridges Moraine down to Lake Ontario. The watershed ponds at Glen Haffy Conservation Area, the Glen Haffy Fly provides many benefits to the people who live within it including Fishing Club and Heart Lake Conservation Area. The proceeds Glen Haffy Conservation Area is a 189 hectare Toronto drinking water, solace, renewal and contact with nature. generated by angling fees help fund the fish rearing program. and Region Conservation Authority (TRCA) property with great hiking trails you can escape into. Oak Ridges Moraine Glen Haffy Fly Fishing Club The Oak Ridges Moraine stretches as a ridge of hilly terrain for Join the Glen Haffy Fly Fishing Club, escape into 160 kilometres from the Niagara Escarpment in the west to the tranquility and enjoy: headwaters of the Trent River in the east. Rain that is collected and stored in the moraine’s vast underground layers of sand and • Access to private gated Headwaters Ponds located on 600 gravel, which are known as aquifers, eventually resurfaces as acres of prestine conservation lands Become a healthy, clean water that feeds the majority of river systems in • Use of Row Boats, Docks and Log Cabin Conservation the Greater Toronto Area.
    [Show full text]
  • The Conservation Action Plan the Ganges River Dolphin
    THE CONSERVATION ACTION PLAN FOR THE GANGES RIVER DOLPHIN 2010-2020 National Ganga River Basin Authority Ministry of Environment & Forests Government of India Prepared by R. K. Sinha, S. Behera and B. C. Choudhary 2 MINISTER’S FOREWORD I am pleased to introduce the Conservation Action Plan for the Ganges river dolphin (Platanista gangetica gangetica) in the Ganga river basin. The Gangetic Dolphin is one of the last three surviving river dolphin species and we have declared it India's National Aquatic Animal. Its conservation is crucial to the welfare of the Ganga river ecosystem. Just as the Tiger represents the health of the forest and the Snow Leopard represents the health of the mountainous regions, the presence of the Dolphin in a river system signals its good health and biodiversity. This Plan has several important features that will ensure the existence of healthy populations of the Gangetic dolphin in the Ganga river system. First, this action plan proposes a set of detailed surveys to assess the population of the dolphin and the threats it faces. Second, immediate actions for dolphin conservation, such as the creation of protected areas and the restoration of degraded ecosystems, are detailed. Third, community involvement and the mitigation of human-dolphin conflict are proposed as methods that will ensure the long-term survival of the dolphin in the rivers of India. This Action Plan will aid in their conservation and reduce the threats that the Ganges river dolphin faces today. Finally, I would like to thank Dr. R. K. Sinha , Dr. S. K. Behera and Dr.
    [Show full text]
  • The Welland Ship Canal and the Men Who Died to Build It
    The Welland Ship Canal and the men who died to build it Friday, August 28, 2015 Lock 1 of the Welland Canal is shown with its gates closed in June 1924, in this photo taken by J. A. McDonald, courtesy of the Welland Ship Canal album, Brock University Archives. The Welland Canal Fallen Workers Memorial is expected to be completed in 2017 and will be located along the canal close to Lock 3. This series of columns complements the work of the task force in bringing the monument to reality, and brings to life the men who were a part of the construction. This memorial will honour the memory of the 137 men who lost their lives in the construction of this major national infrastructure project. The Welland Ship Canal — also known as the fourth and most current Welland Canal — was a major Canadian infrastructure project. With a view to modernizing and making more efficient the previous canal, the construction work, which began in 1913 and would continue until 1935, would have a lasting impact on the local community. This project cut right through the geography of the region and its economic impact would be felt nationally. At its peak, the work engaged 4,000 workers with many thousands more having been employed at different times over the course of the two decades of construction. As we have read in these pages, this great national project was also one of tragedy. A staggering 137 men lost their lives as a result of accidents that occurred during the construction. This number is shockingly high.
    [Show full text]
  • Welland Canal
    £ FIRST REPORT. WELLAND CANAL. MAY, 1830. FIRST GENERAL REPORT FROM ltobttt lltllu~al, iE ~quft t, THE CO~DIISSIO"'ER APPOINTED "UNDER AND flY VIRTUE OF" AN ACT PA$SED IN THE ELEVENTH YEAR OF HIS MAJESTY';:; RE.IGN, ENTITLED, "An Act to grant a furthrr lNlll to the Hi [land ermn! C :nrpai/!/ and to regulate tlteir furtlter opf1'ations." FEBRUAiH' Sib, 1831. - ORDERED BY THE HOUSE OF ASSEMBLY TO nE PRINTBD. YOnK: .JAlIiES BAXTER, PRINTEIII l1:i3I. FIRST REPORT, &c. '0 His Excellency SirJolm Colborne, ](lIight, An opinion is very generally entertained, by Comlnandcr of tile most Honorable Military persons residing near the Canal, tllat the mar­ order of tIle Bath, Lieutenant Governor of gin will give way in other places along the line tile Prol1ince of Upper Canada, JJlajor Ge­ of deep cutting; and it is indeed ptobable that neral commanding IIis lilajesty's Fones tllcre­ such will be the rase; for the banks that remain in, ~c. ~c. ~·c. unbroken, are apparently in the same unstable condition as were those places which have al­ t at ~n early period after the passing of the act ready fallen ill; the quality of the soil is the Ithorising and appointing me to examine the same and they are equally steep-Rut I do not reHand Canal, and to report to your Excellen- apprehend any very serious consequences from "T "all such f,lcts and information" as I might this state of the banks, for there are now eight, deem useful, in aiel of forming a correct opinion" ten, and in some places, twelvo feet of water .
    [Show full text]
  • Optimizing Dredge-And-Dump Activities for River Navigability Using a Hydro-Morphodynamic Model
    Water 2015, 7, 3943-3962; doi:10.3390/w7073943 OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Article Optimizing Dredge-and-Dump Activities for River Navigability Using a Hydro-Morphodynamic Model Andries J. Paarlberg 1, Massimo Guerrero 2,*, Fredrik Huthoff 1 and Mariano Re 3 1 HKV Consultants, Lelystad 8232, The Netherlands; E-Mails: [email protected] (A.J.P.); [email protected] (F.H.) 2 Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40136, Italy 3 National Institute for Water (INA), Ezeiza, Buenos Aires 1804, Argentina; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-051-2090519. Academic Editor: Markus Disse Received: 9 May 2015 / Accepted: 8 July 2015 / Published: 17 July 2015 Abstract: Worldwide, significant dredging activities of riverbed sediment are employed to ensure that freight transportation on rivers can continue year-round. Imbalances of sediment budget may produce relevant impacts regarding river morphology and related environmental services. This study shows that hydro-morphodynamic modeling tools can be used to optimize dredge-and-dump activities and, at the same time, mitigate problems deriving from these activities in rivers. As a case study, we focused on dredging activities on the Lower Parana River, Argentina. Navigation on this river is of crucial importance to the economies of the bordering countries, hence, each year significant dredging activities are employed. To estimate dredging loads under different strategies, a 25 km river reach of the Parana River was modeled using the Delft3D-modelling suite by Deltares.
    [Show full text]
  • Potential for Terrorist Nuclear Attack Using Oil Tankers
    Order Code RS21997 December 7, 2004 CRS Report for Congress Received through the CRS Web Port and Maritime Security: Potential for Terrorist Nuclear Attack Using Oil Tankers Jonathan Medalia Specialist in National Defense Foreign Affairs, Defense, and Trade Division Summary While much attention has been focused on threats to maritime security posed by cargo container ships, terrorists could also attempt to use oil tankers to stage an attack. If they were able to place an atomic bomb in a tanker and detonate it in a U.S. port, they would cause massive destruction and might halt crude oil shipments worldwide for some time. Detecting a bomb in a tanker would be difficult. Congress may consider various options to address this threat. This report will be updated as needed. Introduction The terrorist attacks of September 11, 2001, heightened interest in port and maritime security.1 Much of this interest has focused on cargo container ships because of concern that terrorists could use containers to transport weapons into the United States, yet only a small fraction of the millions of cargo containers entering the country each year is inspected. Some observers fear that a container-borne atomic bomb detonated in a U.S. port could wreak economic as well as physical havoc. Robert Bonner, the head of Customs and Border Protection (CBP) within the Department of Homeland Security (DHS), has argued that such an attack would lead to a halt to container traffic worldwide for some time, bringing the world economy to its knees. Stephen Flynn, a retired Coast Guard commander and an expert on maritime security at the Council on Foreign Relations, holds a similar view.2 While container ships accounted for 30.5% of vessel calls to U.S.
    [Show full text]
  • Your Cruise Great Lakes of North America
    Great Lakes of North America From 9/25/2022 From Milwaukee Ship: LE BELLOT to 10/2/2022 to Toronto Set sail with PONANT aboard Le Bellot for an 8-day cruise discovering the Great Lakes of North America, in the heart of a flamboyant nature full of the colours of the Indian summer. You will leave from Milwaukee, in the US state of Wisconsin, the beginning of your voyage following the footsteps of the first settlers, trappers and Native Americans, before a lovely sailing experience on Lake Michigan, a veritable inland sea. The next lake, Lake Huron, boasts a myriad of islands in its northern part, with white rocks capped with conifers plunging into the sapphire waters of the lake. Sumptuous landscapes unveil multiple original panoramas, in particular near Flowerpot Island*, which you will be able to approach by Zodiac®. You will also discover the charming city of Parry Sound, in the heart of the wonderful UNESCO Biosphere Reserve of Georgian Bay. Le Bellot will then sail the canal connecting Lake Erie to Lake Ontario. From this call in Port Colborne, you will be able to see the impressive sight of Niagara Falls. These three powerful waterfalls, renowned the world over, are an exquisite natural spectacle. To round off your cruise, you will sail along the shimmering waters of Lake Ontario before making your way to the cosmopolitan city of Toronto, where you will disembark. * Zodiac® cruise weather dependant. The information in this document is valid as of 10/1/2021 Great Lakes of North America YOUR STOPOVERS : MILWAUKEE Embarkation 9/25/2022 from 4:00 PM to 5:00 PM Departure 9/25/2022 at 6:00 PM Nested on the shores of Lake Michigan,Milwaukee , the largest city in the State of Wisconsin, harmoniously combines tradition and modernity.
    [Show full text]
  • Ship Stability
    2018-08-07 Lecture Note of Naval Architectural Calculation Ship Stability Ch. 7 Inclining Test Spring 2018 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University 1 Naval Architectural Calculation, Spring 2018, Myung-Il Roh Contents þ Ch. 1 Introduction to Ship Stability þ Ch. 2 Review of Fluid Mechanics þ Ch. 3 Transverse Stability Due to Cargo Movement þ Ch. 4 Initial Transverse Stability þ Ch. 5 Initial Longitudinal Stability þ Ch. 6 Free Surface Effect þ Ch. 7 Inclining Test þ Ch. 8 Curves of Stability and Stability Criteria þ Ch. 9 Numerical Integration Method in Naval Architecture þ Ch. 10 Hydrostatic Values and Curves þ Ch. 11 Static Equilibrium State after Flooding Due to Damage þ Ch. 12 Deterministic Damage Stability þ Ch. 13 Probabilistic Damage Stability 2 Naval Architectural Calculation, Spring 2018, Myung-Il Roh 1 2018-08-07 How can you get the value of the KG? K: Keel G: Center of gravity Ch. 7 Inclining Test 3 Naval Architectural Calculation, Spring 2018, Myung-Il Roh The Problem of Finding an Accurate Vertical Center of Gravity (KG) The problem of finding an accurate KG for a ship is a serious one for the ship’s designer. FG G ü Any difference in the weight of structural parts, equipment, or welds in different ship will produce a different KG. K There is an accurate method of finding KG for any particular ship and that is the inclining test. 4 Naval Architectural Calculation, Spring 2018, Myung-Il Roh 2 2018-08-07 Required Values to Find the KG (2/3) Heeling moment produced by total weight Righting moment produced by buoyant force Static equilibrium of moment t =F × GZ Inclining test formula r B 6 Naval Architectural Calculation, Spring 2018, Myung-Il Roh Required Values to Find the KG (1/3) GZ» GM ×sinf (at small angle f ) GM= KB +BM - KGKG The purpose of the inclining test is to determine the position of the center of mass of the ship in an accurately known condition.
    [Show full text]