Potential for Terrorist Nuclear Attack Using Oil Tankers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In This Issue …
In This Issue … INLAND SEAS®VOLUME 72 WINTER 2016 NUMBER 4 MAUMEE VALLEY COMES HOME . 290 by Christopher H. Gillcrist KEEPING IT IN TRIM: BALLAST AND GREAT LAKES SHIPPING . 292 by Matthew Daley, Grand Valley State University Jeffrey L. Ram, Wayne State University RUNNING OUT OF STEAM, NOTES AND OBSERVATIONS FROM THE SS HERBERT C. JACKSON . 319 by Patrick D. Lapinski NATIONAL RECREATION AREAS AND THE CREATION OF PICTURED ROCKS NATIONAL LAKESHORE . 344 by Kathy S. Mason BOOKS . 354 GREAT LAKES NEWS . 356 by Greg Rudnick MUSEUM COLUMN . 374 by Carrie Sowden 289 KEEPING IT IN TRIM: BALLAST AND GREAT LAKES SHIPPING by Matthew Daley, Grand Valley State University Jeffrey L. Ram, Wayne State University n the morning of July 24, 1915, hundreds of employees of the West- Oern Electric Company and their families boarded the passenger steamship Eastland for a day trip to Michigan City, Indiana. Built in 1903, this twin screw, steel hulled steamship was considered a fast boat on her regular run. Yet throughout her service life, her design revealed a series of problems with stability. Additionally, changes such as more lifeboats in the aftermath of the Titanic disaster, repositioning of engines, and alterations to her upper cabins, made these built-in issues far worse. These failings would come to a disastrous head at the dock on the Chicago River. With over 2,500 passengers aboard, the ship heeled back and forth as the chief engineer struggled to control the ship’s stability and failed. At 7:30 a.m., the Eastland heeled to port, coming to rest on the river bottom, trapping pas- sengers inside the hull and throwing many more into the river. -
Ship Stability
2018-08-07 Lecture Note of Naval Architectural Calculation Ship Stability Ch. 7 Inclining Test Spring 2018 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University 1 Naval Architectural Calculation, Spring 2018, Myung-Il Roh Contents þ Ch. 1 Introduction to Ship Stability þ Ch. 2 Review of Fluid Mechanics þ Ch. 3 Transverse Stability Due to Cargo Movement þ Ch. 4 Initial Transverse Stability þ Ch. 5 Initial Longitudinal Stability þ Ch. 6 Free Surface Effect þ Ch. 7 Inclining Test þ Ch. 8 Curves of Stability and Stability Criteria þ Ch. 9 Numerical Integration Method in Naval Architecture þ Ch. 10 Hydrostatic Values and Curves þ Ch. 11 Static Equilibrium State after Flooding Due to Damage þ Ch. 12 Deterministic Damage Stability þ Ch. 13 Probabilistic Damage Stability 2 Naval Architectural Calculation, Spring 2018, Myung-Il Roh 1 2018-08-07 How can you get the value of the KG? K: Keel G: Center of gravity Ch. 7 Inclining Test 3 Naval Architectural Calculation, Spring 2018, Myung-Il Roh The Problem of Finding an Accurate Vertical Center of Gravity (KG) The problem of finding an accurate KG for a ship is a serious one for the ship’s designer. FG G ü Any difference in the weight of structural parts, equipment, or welds in different ship will produce a different KG. K There is an accurate method of finding KG for any particular ship and that is the inclining test. 4 Naval Architectural Calculation, Spring 2018, Myung-Il Roh 2 2018-08-07 Required Values to Find the KG (2/3) Heeling moment produced by total weight Righting moment produced by buoyant force Static equilibrium of moment t =F × GZ Inclining test formula r B 6 Naval Architectural Calculation, Spring 2018, Myung-Il Roh Required Values to Find the KG (1/3) GZ» GM ×sinf (at small angle f ) GM= KB +BM - KGKG The purpose of the inclining test is to determine the position of the center of mass of the ship in an accurately known condition. -
Safe Harbor Worksheet
Safe Harbor Worksheet Description: Why should we care about Harbors? Roughly 90% of the world's goods are transported by sea. The port of NY/NJ is the third busiest port in the U.S. and the 18th in the World. Without our ports, life as we know it would not exist, however they are often overlooked. As trade volume increases, so does the size of ships. When European explorers first visited the New York Harbor, they found an estuary with a natural depth of 17 feet. As colonies became established and trade flourished, shipping channels were needed to allow for bigger ships. By 1880, the main ship channel was dredged to a depth of 24 feet and by 1891 to a depth of 30 feet. In 1914 the Ambrose Channel became the main entrance to the port of New York and had a depth of 40 feet and 2,000 feet wide (ship design changes/technological advancements allowed for wider ships). During World War II the main channel was dredged to 45 feet deep to accommodate larger ships up to Panamax size (the largest size ship which could travel through the Panama Canal). Panamax (1916) New Panamax (2016) Tonnage: 52,500 DWT Tonnage: 120,000 DWT Length: 950 ft Length: 1,201 ft Beam: 106 ft Beam: 161 ft Height: 190 ft Height: 190 ft Draft: 39.5 ft Draft: 50 ft Capacity: 5,000 TEU Capacity: 13,000 TEU Eventually even the Panama Canal was not big enough. In 2016, an expanded Panama Canal opened to allow for significantly larger ships (see above). -
13 Ship-Breaking.Com
Information bulletin on September 26th, 2008 ship demolition #13 June 7th to September 21st 2008 Ship-breaking.com February 2003. Lightboat, Le Havre. February 2008 © Robin des Bois From June 7th to September 21st 2008, 118 vessels have left to be demolished. The cumulative total of the demolitions will permit the recycling of more than 940,000 tons of metals. The 2008 flow of discarded vessels has not slowed down. Since the beginning of the year 276 vessels have been sent to be scrapped which represents more than 2 millions tons of metals whereas throughout 2007 289 vessels were scrapped for a total of 1.7 milion tons of metals. The average price offered by Bangladeshi and Indian ship breakers has risen to 750-800 $ per ton. The ship owners are taking advantage of these record prices by sending their old vessels to be demolished. Even the Chinese ship breaking yards have increased their price via the purchase of the container ship Provider at 570$ per ton, with prices averaging more than 500 $. However, these high prices have now decreased with the collapse of metal prices during summer and the shipyards are therefore renegotiating at lower price levels with brokers and cash buyers sometimes changing the final destination at the last minute. This was the case of the Laieta, which was supposed to leave for India for 910 $ per ton and was sold to Bangladesh at 750 $ per ton. The price differences have been particularly notable in India; the shipyards prices have returned to 600 $ per ton. From June to September, India with 60 vessels (51%) to demolish, is ahead of Bangladesh with 40 (34%), The United States 8 (7%), China 4 (4%), Turkey 2 (2%), Belgium and Mexico, 1 vessel each (1%). -
Appendix: Case Studies of Environmental Dredging Projects Table 1
1. Introduction This section describes the sources of available data on which much of the performance standards is based. Completed dredging projects that provide information on upstream and downstream water column conditions, as well as on mass of contaminant removed, provide a basis for determining historical rates of loss and dredging-related recontamination. It was thought that dredging projects that have been completed or are currently in progress can provide practical information on resuspension issues. Information on water quality data, equipment used, monitoring techniques, etc. from these projects will give insight as how to develop the performance standards. For the resuspension standard, water column monitoring results available from other sites were used to complete an analysis of the case study data. The process used to gather relevant information from dredging sites and the information obtained are included herein. It is also important to review all information that exists for the Hudson River. Available data was used to assess the existing variability in the Hudson River water quality, and can be used to estimate the water column quality during and resulting from the dredging operation. Descriptions of the data sets available to perform this analysis are provided herein. 2. Case Studies Objective and Overview During completion of the Hudson River Feasibility Study (FS) and the associated Responsiveness Summary (RS), the GE dredging database, the USEPA website, and other online sources were investigated to identify dredging projects that were relevant and similar to that proposed for the Hudson River in size and complexity. The USEPA and State agencies were contacted to gather information for each dredging project. -
LNG AS SHIP FUEL No 01 2014
LNG AS SHIP FUEL No 01 2014 THE FUTURE – TODAY LNG READY SERVICE ENGINES FOR GAS-FUELLED SHIPS RECOMMENDED PRACTICE ON BUNKERING GLOBAL LNG SOLUTIONS DNV GL Anzeige Safe Hands MARITIME PUT THE FUTURE OF YOUR FLEET IN SAFE HANDS As your classification partner, our extensive maritime vessels, benefitting your business and the maritime industry expertise, technical knowledge and regulatory foresight as a whole. With DNV GL your fleet is in safe hands. will help to ensure that your fleet meets the demands Can you afford anything else? of the future. Our aim is safety, compliance and optimal operational performance throughout the lifetime of your Learn more at dnvgl.com/maritime 2 LNG AS SHIP FUEL No. 01 2014 EDITORIAL In 2000 the first LNG-fuelled ferry based on DNV GL standards was launched. This ferry has been operating safely and successfully ever since. Over the years that have followed, shipping has seen bunker prices rise sharply and environmental regula- tions tighten, while in the LNG sector there has been a surge in production and deployment of infrastructure. Combined, these trends have set the stage for LNG to emerge as a viable fuel choice on a much larger scale. In 2014 the industry hit a significant milestone with over 120 LNG-fuelled ships in operation or on order worldwide. They range from passenger ferries, Coast Guard ships, containerships and Con-Ro vessels to Dr Gerd-Michael Wuersig tankers and platform supply vessels. The vast majority Business Director LNG-fuelled ships Senior Principal Specialist of these ships is in operation or will be built to DNV Business Development GL class, reflecting the trust our customers have in [email protected] our long involvement in this technology and our continually evolving technical expertise. -
Measurement of Fishing
35 Rapp. P.-v. Réun. Cons. int. Explor. Mer, 168: 35-38. Janvier 1975. TONNAGE CERTIFICATE DATA AS FISHING POWER PARAMETERS F. d e B e e r Netherlands Institute for Fishery Investigations, IJmuiden, Netherlands INTRODUCTION London, June 1969 — An entirely new system of The international exchange of information about measuring the gross and net fishing vessels and the increasing scientific approach tonnage was set up called the to fisheries in general requires the use of a number of “International Convention on parameters of which there is a great variety especially Tonnage Measurement of in the field of main dimensions, coefficients, propulsion Ships, 1969” .1 data (horse power, propeller, etc.) and other partic ulars of fishing vessels. This variety is very often caused Every ship which has been measured and marked by different historical developments in different in accordance with the Convention concluded in Oslo, countries. 1947, is issued with a tonnage certificate called the The tonnage certificate is often used as an easy and “International Tonnage Certificate”. The tonnage of official source for parameters. However, though this a vessel consists of its gross tonnage and net tonnage. certificate is an official one and is based on Inter In this paper only the gross tonnage is discussed national Conventions its value for scientific purposes because net tonnage is not often used as a parameter. is questionable. The gross tonnage of a vessel, expressed in cubic meters and register tons (of 2-83 m3), is defined as the sum of all the enclosed spaces. INTERNATIONAL REGULATIONS ON TONNAGE These are: MEASUREMENT space below tonnage deck trunks International procedures for measuring the tonnage tweendeck space round houses of ships were laid down as follows : enclosed forecastle excess of hatchways bridge spaces spaces above the upper- Geneva, June 1939 - International regulations for break(s) deck included as part of tonnage measurement of ships poop the propelling machinery were issued through the League space. -
User Manual – Tanker Rapid Response Damage
USER MANUAL – TANKER RAPID RESPONSE DAMAGE ASSESSMENT September 2019 © 2019 American Bureau of Shipping. ALL RIGHTS RESERVED. USER MANUAL – TANKER RRDA Contents 1.1 General Information .................................................................................................. 5 1.2 Instructions for Validating Enrollment Status ........................................................... 6 1.3 Types of Analyses for Response ............................................................................... 7 1.4 Drills .......................................................................................................................... 7 1.5 Training ..................................................................................................................... 8 2.1 Activating/Notifying RRDA Team ........................................................................... 9 2.2 Time to Respond. ...................................................................................................... 9 2.3 Office Hours .............................................................................................................. 9 2.4 After Office Hours .................................................................................................. 10 2.5 Action After Voice Notification .............................................................................. 10 3.1 Information Requirements ....................................................................................... 11 3.2 Load Condition Before the Incident. ...................................................................... -
Inclining Test and Lightweight Survey V2.1
GL Leaflet for Inclining test and Lightweight survey V2.1 Leaflet for Inclining test and Lightweight Survey Version 2.1 dated 2011-08-24 1 GL Leaflet for Inclining test and Lightweight survey V2.1 Version information Version Date Editor Items treated Approved 1.0 2005-05 Fim, TBo, Pei initial version HB 2.0 2011-04 Pei, GLe, SKl, MBst draft readings, status of vessel, FSM, tank fillings AFl 2.1 2011-08 Pei, Jasch BW shifting tanks, amount of additional masses, AFl shifting weights, editorial changes 2 GL Leaflet for Inclining test and Lightweight survey V2.1 Table of contents: 1 Inclining Test........................................................................................................................ 4 1.1 Purpose and objective..................................................................................................................... 4 1.2 Acceptance of the test..................................................................................................................... 4 1.3 Procedure of the inclining test ......................................................................................................... 5 1.3.1 Notification of the inclining test/lightweight survey.................................................................. 5 1.3.2 Condition of the vessel ........................................................................................................... 5 1.3.3 Mooring Arrangement.............................................................................................................5 -
AFRAMAX Tanker Design
The Society of Naval Architects and Marine Engineers (SNAME) Greek Section – Technical Meeting 15. March 2012, Athens HOLISTIC SHIP DESIGN OPTIMISATION: Theory and Applications by Apostolos Papanikolaou National Technical University of Athens - NTUA Ship Design Laboratory – SDL http://www.naval.ntua.gr/sdl A. Papanikolaou HOLISTIC SHIP DESIGN OPTIMISATION 1 List of contents 1. Introduction to Holistic Ship Design Optimisation • Important Design Optimization Notions • Holistic Optimisation Methodology 2. Optimization of RoPax ships – Case study • Projects ROROPROB (2000-2003) and EPAN-MET4 (2004-2007) 3. Optimisation of High-Speed vessels • Project FLOWMART (2000-2003) 4. Holistic Optimisation of Tanker Ships – Projects SAFEDOR and BEST (2005-2011) • Multi-objective Optimization of Tanker Ships • Case study-reference ship • Alternative configurations • Discussion of results 5. Conclusions- The Way Ahead A. Papanikolaou HOLISTIC SHIP DESIGN OPTIMISATION 2 Important Design Optimization Notions (1) • Holism (from Greek όλος, meaning entire, total)-holistic The properties of a system cannot be determined or explained by looking at its component parts alone; instead of, the system as a whole determines decisively how the part components behave or perform. “The whole is more than the sum of the parts” (Aristotle Metaphysics) • Reductionism-reduction: is sometimes interpreted as the opposite of holism. “A complex system can be approached by reduction to its fundamental parts” • Holism and reductionism need, for proper account of complex systems, to be regarded as complementary approaches to system analysis. • Systemic and analytical approaches are also complementary and strongly related to holism and reductionism • Risk (financial): “A quantifiable likelihood of loss or of less-than-expected returns” • Risk (general): “A quantifiable likelihood of loss of an acceptable state or of a worse-than-expected state condition” • Safety: may be defined as “An acceptable state of risk” A. -
Liquefied Natural Gas (Lng)
Working Document of the NPC North American Resource Development Study Made Available September 15, 2011 Paper #1-10 LIQUEFIED NATURAL GAS (LNG) Prepared for the Resource & Supply Task Group On September 15, 2011, The National Petroleum Council (NPC) in approving its report, Prudent Development: Realizing the Potential of North America’s Abundant Natural Gas and Oil Resources, also approved the making available of certain materials used in the study process, including detailed, specific subject matter papers prepared or used by the study’s Task Groups and/or Subgroups. These Topic and White Papers were working documents that were part of the analyses that led to development of the summary results presented in the report’s Executive Summary and Chapters. These Topic and White Papers represent the views and conclusions of the authors. The National Petroleum Council has not endorsed or approved the statements and conclusions contained in these documents, but approved the publication of these materials as part of the study process. The NPC believes that these papers will be of interest to the readers of the report and will help them better understand the results. These materials are being made available in the interest of transparency. The attached paper is one of 57 such working documents used in the study analyses. Also included is a roster of the Task Group for which this paper was developed or submitted. Appendix C of the final NPC report provides a complete list of the 57 Topic and White Papers and an abstract for each. The full papers can be viewed and downloaded from the report section of the NPC website (www.npc.org). -
Disposal of Dredged Material and Other Waste on the Continental Shelf and Slope John L
Disposal of Dredged Material and Other Waste on the Continental Shelf and Slope John L. Chin and Allan Ota Summary and Introduction The history of waste disposal in the Gulf of the Farallones (fig. 1) is directly linked with the history of human settlement in the San Francisco Bay region. The California Gold Rush of 1849 triggered a massive influx of people and rapid, chaotic development in the bay region. Vast quantities of contaminated sediment and water from mining in the Sierra Nevada were carried by rivers into San Francisco Bay, and some was carried by currents through the Golden Gate and into the gulf. The burgeoning region’s inhabitants also contributed to the waste that flowed or was dumped into the bay. Eventually, waste began to be dumped directly into the gulf. Hundreds of millions of tons of waste has been dumped into the Gulf of the Farallones. Since the 1940’s, this has included sediment (sand and mud) dredged from shipping channels, waste from oil refineries and fruit canneries, acids from steel production, surplus munitions and ships from World War II, other unwanted vessels, and barrels of low-level radioactive waste (fig. 1). Because of navigational errors and inadequate record keeping, the location of most waste dumped in the gulf is poorly known. Between 1946 and 1970 approximately 47,800 containers of low-level radioactive waste were dumped into the gulf south and west of the Farallon Islands. From 1958 to 1969, the U.S. military disposed of chemical and conventional munitions at several sites in the gulf, mostly by scuttling World War II era cargo vessels.