Observing List Evening of 2015 Jun 15 at VS Star Party - Gansvlei

Total Page:16

File Type:pdf, Size:1020Kb

Observing List Evening of 2015 Jun 15 at VS Star Party - Gansvlei James Dunlop's Catalogue (Cozens-150) Observing List Evening of 2015 Jun 15 at VS Star Party - Gansvlei Sunset 17:31, Twilight ends 18:48, Twilight begins 05:41, Sunrise 06:59, Moon rise 06:31, Moon set 16:49 Completely dark from 18:48 to 05:41. New Moon. All times local (GMT+2). Listing All Classes visible above the perfect horizon and in complete darkness after 18:29 and before 06:02. Cls Primary ID Alternate ID Con Mag Size RA 2000 Dec 2000 Distance Begin Optimum End S.A. Ur. 2 PSA Difficulty Gal NGC 2090 MCG -6-13-9 Col 11.5 4.3'x 1.9' 05h47m02.3s -34°15'05" 18:42 18:52 19:06 19 173 18 difficult Neb NGC 2080 ESO 57-EN12 Dor 05h39m42.0s -69°39'00" 18:34 18:54 20:34 24 212 20 unknown Glob NGC 2298 Pup 9.3 5.0' 06h48m59.0s -36°00'18" 98000 ly 18:41 18:57 19:45 19 172 29 detectable Open NGC 2058 Men 11.9 1.8' 05h36m54.3s -70°09'44" 18:41 18:59 20:32 24 212 20 difficult Glob NGC 2164 Dor 10.3 1.7' 05h58m55.6s -68°31'04" 18:37 18:59 21:22 24 212 20 easy Neb NGC 2070 Tarantula Nebula Dor 8.3 5.0' 05h38m36.0s -69°06'00" 18:35 19:00 23:23 24 212 20 obvious Open NGC 2477 Collinder 165 Pup 5.7 15.0' 07h52m10.0s -38°31'48" 4000 ly 18:37 19:00 19:25 19 171 28 obvious Open NGC 2547 Collinder 177 Vel 5.0 25.0' 08h10m09.0s -49°12'54" 1500 ly 18:36 19:01 19:56 20 187 28 obvious PNe NGC 2818 He 2-23 Pyx 11.9 36" 09h16m01.7s -36°37'39" 6000 ly 18:38 19:01 20:45 20 170 39 easy Open NGC 2516 Collinder 172 Car 3.3 30.0' 07h58m04.0s -60°45'12" 1300 ly 18:35 19:02 19:55 24 200 30 obvious Open Collinder 205 Markarian 18 Vel 8.4 5.0' 09h00m32.0s -48°59'00" 6000 ly 18:37 19:02 20:46 20 186 39 easy Glob NGC 2808 Car 6.2 14.0' 09h12m03.0s -64°51'48" 26000 ly 18:36 19:03 21:14 25 210 40 easy Gal NGC 2997 MCG -5-23-12 Ant 10.1 9.8'x 6.8' 09h45m38.8s -31°11'28" 18:40 19:03 21:08 20 170 39 detectable Glob NGC 3201 Vel 6.9 20.0' 10h17m37.0s -46°24'42" 13000 ly 18:39 19:04 22:00 20 186 39 easy Open NGC 3114 Collinder 215 Car 4.5 35.0' 10h02m36.0s -60°07'12" 3000 ly 18:36 19:06 21:59 25 199 40 obvious Open NGC 3324 Collinder 225 Car 6.7 12.0' 10h37m20.0s -58°38'30" 7600 ly 18:35 19:06 22:33 25 199 38 obvious Open NGC 3293 Collinder 224 Car 6.2 6.0' 10h35m51.0s -58°13'48" 7600 ly 18:33 19:06 22:31 25 199 38 obvious Neb NGC 3199 ESO 127-EN14 Car 8.5' 10h16m31.8s -57°55'10" 18:38 19:06 22:12 25 199 39 unknown Neb NGC 3372 Eta Carinae Nebula Car 3.0 120.0' 10h45m06.0s -59°52'00" 18:39 19:07 22:41 25 199 38 easy Gal NGC 3621 MCG -5-27-8 Hya 10.1 10.5'x 4.5' 11h18m16.3s -32°48'43" 18:38 19:07 22:43 20 169 38 detectable Open NGC 3532 Collinder 238 Car 3.4 50.0' 11h05m39.0s -58°45'12" 1600 ly 18:35 19:08 23:01 25 198 38 obvious Open IC 2714 Collinder 245 Car 8.2 14.0' 11h17m27.0s -62°44'00" 4000 ly 18:38 19:09 23:17 25 209 40 detectable Open NGC 3766 Collinder 248 Cen 4.6 9.3' 11h36m14.0s -61°36'30" 7200 ly 18:32 19:10 23:35 25 198 40 obvious Open NGC 4103 Collinder 252 Cru 7.4 6.0' 12h06m40.0s -61°15'00" 5300 ly 18:33 19:13 00:00 25 198 50 obvious Cls Primary ID Alternate ID Con Mag Size RA 2000 Dec 2000 Distance Begin Optimum End S.A. Ur. 2 PSA Difficulty Glob NGC 4372 Mus 7.2 5.0' 12h25m45.0s -72°39'12" 20000 ly 18:35 19:19 00:00 25 209 50 obvious Open Collinder 261 Harvard 6 Mus 10.7 9.0' 12h37m57.0s -68°22'00" 7100 ly 18:45 19:23 23:26 25 209 50 challenging Gal NGC 4696 MCG -7-26-51 Cen 11.6 4.4'x 2.7' 12h48m49.1s -41°18'39" 18:38 19:30 00:14 21 184 49 detectable Gal NGC 4709 MCG -7-26-56 Cen 12.1 2.9'x 1.9' 12h50m03.9s -41°22'55" 210.0 Mly 18:37 19:31 00:18 21 184 49 detectable Open NGC 4755 Jewel Box Cru 5.2 10.0' 12h53m39.0s -60°21'42" 6400 ly 18:32 19:34 00:00 25 198 50 obvious Glob NGC 4833 Mus 8.4 12.7' 12h59m34.0s -70°52'30" 16000 ly 18:41 19:40 00:00 25 209 50 detectable Gal NGC 4945 ESO 219 24 Cen 9.3 20.4'x 4.3' 13h05m26.2s -49°28'15" 15.0 Mly 18:37 19:46 00:52 21 184 49 detectable Gal NGC 5128 Centaurus A Cen 7.8 27.5'x 18.2' 13h25m27.7s -43°01'07" 12.0 Mly 18:36 20:06 01:05 21 184 49 easy Glob NGC 5139 Omega Centauri Cen 3.9 55.0' 13h26m46.0s -47°28'36" 16000 ly 18:36 20:07 01:11 21 184 49 obvious PNe NGC 5189 IC 4274 Mus 10.3 2.3' 13h33m33.0s -65°58'27" 2000 ly 18:37 20:14 00:00 25 208 50 easy Gal NGC 5236 M 83 Hya 7.8 14.1'x 13.2' 13h37m00.8s -29°51'56" 15.0 Mly 18:35 20:17 00:58 21 167 46 easy Gal NGC 5253 MCG -5-32-60 Cen 10.8 5.0'x 2.1' 13h39m55.9s -31°38'25" 12.0 Mly 18:36 20:20 01:02 21 167 48 easy Open NGC 5281 Melotte 120 Cen 8.2 7.0' 13h46m35.0s -62°55'00" 3600 ly 18:35 20:27 00:00 25 208 50 easy Glob NGC 5286 Cen 7.4 11.0' 13h46m27.0s -51°22'24" 39000 ly 18:37 20:27 01:35 21 183 48 easy Gal NGC 5643 MCG -7-30-3 Lup 10.8 5.0'x 4.2' 14h32m40.7s -44°10'28" 18:38 21:12 02:11 21 183 48 easy Glob NGC 5824 Lup 9.1 7.4' 15h03m59.0s -33°04'06" 150000 ly 18:41 21:44 02:22 21 166 59 detectable Glob NGC 5927 Lup 8.0 6.0' 15h28m01.0s -50°40'24" 9800 ly 18:37 22:08 03:14 21 182 59 easy Glob NGC 5946 Nor 8.4 3.0' 15h35m29.0s -50°39'36" 100000 ly 18:35 22:15 03:22 21 182 59 obvious Glob NGC 5986 Lup 7.6 9.6' 15h46m03.0s -37°47'12" 46000 ly 18:38 22:26 03:18 21 165 59 easy Open Collinder 295 Trumpler 23 Nor 11.2 9.0' 16h00m48.0s -53°32'00" 19:51 22:41 01:29 26 196 59 very challenging Open NGC 6025 Collinder 296 TrA 6.0 14.0' 16h03m17.0s -60°25'54" 2500 ly 18:35 22:43 00:00 26 196 60 obvious Open NGC 6067 Collinder 298 Nor 6.5 14.0' 16h13m11.0s -54°13'06" 4600 ly 18:37 22:53 04:05 26 196 59 obvious Neb vdB 101 Ced 129a Sco 11.0'x 4.0' 16h19m07.7s -20°13'05" 18:43 22:59 03:23 22 147 57 unknown Open NGC 6124 Collinder 301 Sco 6.3 39.0' 16h25m20.0s -40°39'12" 1700 ly 18:44 23:05 04:01 22 182 59 easy Glob NGC 6101 Aps 9.2 5.0' 16h25m49.0s -72°12'06" 68000 ly 18:41 23:07 00:00 26 207 60 easy Open NGC 6134 Collinder 303 Nor 8.8 6.0' 16h27m46.0s -49°09'06" 3000 ly 18:41 23:08 04:12 22 182 59 easy Glob NGC 6139 Sco 9.1 8.2' 16h27m40.0s -38°50'54" 42000 ly 18:48 23:08 03:50 22 165 59 detectable Open NGC 6152 Collinder 304 Nor 8.1 25.0' 16h32m45.0s -52°38'36" 3400 ly 18:50 23:13 04:01 26 196 58 detectable Open Collinder 307 OCL 965 Ara 10.2 5.0' 16h35m20.0s -51°00'00" 18:45 23:16 04:22 22 182 58 detectable Open NGC 6193 Collinder 310 Ara 5.4 14.0' 16h41m20.0s -48°45'48" 3800 ly 18:36 23:22 04:27 22 182 58 obvious Open NGC 6231 Collinder 315 Sco 3.4 14.0' 16h54m10.0s -41°49'30" 4100 ly 18:38 23:34 04:31 22 181 58 obvious Open NGC 6242 Collinder 317 Sco 8.2 9.0' 16h55m33.0s -39°27'42" 3700 ly 18:44 23:35 04:29 22 164 58 easy Glob NGC 6266 M 62 Oph 6.4 15.0' 17h01m13.0s -30°06'48" 26000 ly 19:00 23:40 04:21 22 164 58 easy Open NGC 6268 Collinder 323 Sco 9.5 6.0' 17h02m10.0s -39°43'42" 3400 ly 18:50 23:42 04:35 22 164 58 easy Cls Primary ID Alternate ID Con Mag Size RA 2000 Dec 2000 Distance Begin Optimum End S.A.
Recommended publications
  • Skytools Chart
    38 Octans - Chamaleon SkyTools 3 / Skyhound.com β NGC 6025 NGC 2516 IC 2448 β β ε γ Chamaeleon Volans δ ε ε PK 315-13.1 Triangulum Australe β γ 12h δ2 α ε 3195 ζ PK 325-12.1 1 α ζ 6101 5h η θ δ α Apus 09h 2 IC 4499 γ δ1 β γ ζ 6362 η 2 2210 η 2164 18h 06h Large Magellanic Cloud Tarantula Nebulaδ Mensa 2031 NGC 2014 NGC 1962 NGC 1955 ζ NGC 1874 NGC 1829 θ 1866 κ NGC 1770 1805 Collinder 411 NGC 1814 1978 1818 1783 03h 6744 21h β ε ε γ Octans Pavo ν -80° 00h ν 1559 β α δ θ Hydrus Reticulum β γ ι δ 1313 β Small Magellanic Cloud 0° 52° x 34° -7 ε ζ κ 00h00m00.0s -90°00'00" (Skymark) Globular Cl. Dark Neb. Galaxy 8 7 6 5 4 3 2 1 Globule Planetary Open Cl. Nebula 38 Octans - Chamaleon GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 292 Small Magellanic Cloud Tuc 00h 52m 38s +72° 48' 01” +2,80 318',0x204',0 SBm 0,2 Mly --- --- --- NGC 1313 Ret 03h 18m 15s -66° 29' 51” +9,70 9',5x7',2 Sbcd 13,5 Mly --- --- --- NGC 1559 Ret 04h 17m 36s -62° 47' 01" +11,00 4',2x2',1 SBc 34,0 Mly --- --- --- PGC 17223 Large Magellanic Cloud Dor 05h 23m 35s -69° 45' 22" +0,80 648',0x552',0 SBm 0,2 Mly --- --- --- NGC 6744 Pav 19h 09m 46s -63° 51' 28" +9,10 17',0x10',7 SABb 21,0 Mly --- --- --- AMMASSI APERTI Sigla Nome Cost.
    [Show full text]
  • On the Effects of Subvirial Initial Conditions and the Birth
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 24 October 2018 (MN LATEX style file v2.2) On the Effects of Subvirial Initial Conditions and the Birth Temperature of R136 Daniel P. Caputo1⋆, Nathan de Vries1 and Simon Portegies Zwart1 1Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands 24 October 2018 ABSTRACT We investigate the effect of different initial virial temperatures, Q, on the dynamics of star clusters. We find that the virial temperature has a strong effect on many aspects of the resulting system, including among others: the fraction of bodies escaping from the system, the depth of the collapse of the system, and the strength of the mass segregation. These differences deem the practice of using “cold” initial conditions no longer a simple choice of convenience. The choice of initial virial temperature must be carefully considered as its impact on the remainder of the simulation can be profound. We discuss the pitfalls and aim to describe the general behavior of the collapse and the resultant system as a function of the virial temperature so that a well reasoned choice of initial virial temperature can be made. We make a correction to the previous theoretical estimate for the minimum radius, Rmin, of the cluster at the deepest (−1/3) moment of collapse to include a Q dependency, Rmin ≈ Q+N , where N is the number of particles. We use our numericalresults to infer more aboutthe initial conditions of the young cluster R136. Based on our analysis, we find that R136 was likely formed with a rather cool, but not cold, initial virial temperature (Q ≈ 0.13).
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Arxiv:1706.07545V1 [Astro-Ph.SR] 23 Jun 2017 Russell and C-M Diagrams — Magellanic Clouds
    Draft version October 8, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 DISCOVERY OF EXTENDED MAIN SEQUENCE TURN-OFFS IN FOUR YOUNG MASSIVE CLUSTERS IN THE MAGELLANIC CLOUDS Chengyuan Li Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia Richard de Grijs Kavli Institute for Astronomy & Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871, China and International Space Science Institute{Beijing, 1 Nanertiao, Zhongguancun, Hai Dian District, Beijing 100190, China Licai Deng Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China Antonino P. Milone Research School of Astronomy & Astrophysics, Australian National University, Mt Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia ABSTRACT An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color{magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turn-off regions in some YMCs. Here we present the ultraviolet{visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turn-offs (MSTOs).
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • The Tarantula – Revealed by X-Rays (T-Rex) a Definitive Chandra
    TheTarantula{ Revealed byX-rays (T-ReX) A Definitive Chandra Investigation of 30 Doradus Our first impressions of spiral and irregular galaxies are defined by massive star-forming regions (MSFRs), signposts marking spiral arms, bars, and starbursts. They remind us that galaxies really are evolving, churned by the continuous injection of energy and processed material. MSFRs offer us a microcosm of starburst astrophysics, where winds from O and Wolf-Rayet (WR) stars combine with supernovae to carve up the neutral medium from which they formed, both triggering and suppressing new generations of stars. With X-ray observations we see the stars themselves|the engines that shape the larger view of a galaxy|along with the hot, shocked ISM created by massive star feedback, which in turn fills the superbubbles that define starburst clusters (Fig. 1). We propose the 2 Ms Chandra/ACIS-I X-ray Visionary Project T-ReX, an intensive study of 30 Doradus (The Tarantula Nebula) in the LMC, the most powerful MSFR in the Local Group. To date Chandra has invested just 114 ks in this iconic target|proportionally far less than other premier observatories (e.g. HST, VLT, Spitzer, VISTA)|revealing only the most massive stars and large-scale diffuse structures. This very deep observation is essential to engage the great power of Chandra's unparalleled spatial resolution, a unique resource that will remain unmatched for another decade. T-ReX will reveal the X-ray properties of hundreds of 30 Dor's low-metallicity massive stars [1], thousands of lower-mass pre-main sequence (pre-MS) stars that record its star formation history [2], and parsec-scale shocks from winds and supernovae that are shredding its ISM [3,4].
    [Show full text]
  • Detailed Photometric Analysis of Young Star Groups in the Galaxy NGC 300? M
    A&A 594, A34 (2016) Astronomy DOI: 10.1051/0004-6361/201527876 & c ESO 2016 Astrophysics Detailed photometric analysis of young star groups in the galaxy NGC 300? M. J. Rodríguez1, G. Baume1; 2, and C. Feinstein1; 2 1 Instituto de Astrofísica de La Plata (CONICET-UNLP), Paseo del bosque S/N, La Plata (B1900FWA), Argentina e-mail: [email protected] 2 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del bosque S/N, La Plata (B1900FWA), Argentina Received 2 December 2015 / Accepted 10 August 2016 ABSTRACT Aims. The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods. The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy.
    [Show full text]
  • 108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
    Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]