Turn Left at Orion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
The Skyscraper 2009 04.Indd
A Better Galaxy Guide: Early Spring M67: One of the most ancient open clusters known and Craig Cortis is a great novelty in this regard. Located 1.7° due W of mag NGC 2419: 3.25° SE of mag 6.2 66 Aurigae. Hard to find 4.3 Alpha Cancri. and see; at E end of short row of two mag 7.5 stars. Highly NGC 2775: Located 3.7° ENE of mag 3.1 Zeta Hydrae. significant and worth the effort —may be approximately (Look for “Head of Hydra” first.) 300,000 light years distant and qualify as an extragalactic NGC 2903: Easily found at 1.5° due S of mag 4.3 Lambda cluster. Named the Intergalactic Wanderer. Leonis. NGC 2683: Marks NW “crook” of coathanger-type triangle M95: One of three bright galaxies forming a compact with easy double star mag 4.2 Iota Cancri (which is SSW by triangle, along with M96 and M105. All three can be seen 4.8°) and mag 3.1 Alpha Lyncis (at 6° to the ENE). together in a low power, wide field view. M105 is at the NE tip of triangle, midway between stars 52 and 53 Leonis, mag Object Type R.A. Dec. Mag. Size 5.5 and 5.3 respectively —M95 is at W tip. Lynx NGC 3521: Located 0.5° due E of mag 6.0 62 Leonis. M65: One of a pair of bright galaxies that can be seen in NGC 2419 GC 07h 38.1m +38° 53’ 10.3 4.2’ a wide field view along with M66, which lies just E. -
The State of Anthro–Earth
The Rosette Gazette Volume 22,, IssueIssue 7 Newsletter of the Rose City Astronomers July, 2010 RCA JULY 19 GENERAL MEETING The State Of Anthro–Earth THE STATE OF ANTHRO-EARTH: A Visitor From Far, Far Away Reviews the Status of Our Planet In This Issue: A Talk (in Earth-English) By Richard Brenne 1….General Meeting Enrico Fermi famously wondered why we hadn't heard from any other planetary 2….Club Officers civilizations, and Richard Brenne, who we'd always suspected was probably from another planet, thinks he might know the answer. Carl Sagan thought it was likely …...Magazines because those on other planets blew themselves up with nuclear weapons, but Richard …...RCA Library thinks its more likely that burning fossil fuels changed the climates and collapsed the 3….Local Happenings civilizations of those we might otherwise have heard from. Only someone from another planet could discuss this most serious topic with Richard's trademark humor 4…. Telescope (in a previous life he was an award-winning screenwriter - on which planet we're not Transformation sure) and bemused detachment. 5….Special Interest Groups Richard Brenne teaches a NASA-sponsored Global Climate Change class, serves on 6….Star Party Scene the American Meteorological Society's Committee to Communicate Climate Change, has written and produced documentaries about climate change since 1992, and has 7.…Observers Corner produced and moderated 50 hours of panel discussions about climate change with 18...RCA Board Minutes many of the world's top climate change scientists. Richard writes for the blog "Climate Progress" and his forthcoming book is titled "Anthro-Earth", his new name 20...Calendars for his adopted planet. -
Southern Sky.Pdf
R E A I N S D N I O C I A T T C E E D R I A D L O S S N A G P T M H O E C . H N O O R Z m a r w I i e t h h t I t Z s h t e c i R O g p o e l d O N d t e a n H h C t f l e E I n e o R c i H e t C T a l f L l r o e E D t m s N ( n G NORTH F o A r c O e e M t R H k n T O i E m I a f X N C y A t a . E h Z M s o S i l P E o s P L g e H i SOUTHERN HEMISPHERE E y r A T . A “ N M N E O Capella E Y R W T K T H E S ” B . ) . D O W T E r U i T The Evening Sky Map o W R A n N C DECEMBER 2002 , W . O T T e L l h FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY H a e E γ E M31 h R H w S AURIGA Algol A u K r n Y S o t T SKY MAP SHOWS HOW r e M C e r E t A , s J P i n s B o A O Sky Calendar – December 2002 t THE NIGHT SKY LOOKS M38 h R m L e O PERSEUS a A U b I e r N s T NE ANDROMEDA i S l EARLY DEC PM D g 10 M37 E a h M36 L c 1 Moon near Venus and Mars at 11h UT (morning sky). -
10. Scientific Programme 10.1
10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic -
A Handbook of Double Stars, with a Catalogue of Twelve Hundred
The original of this bool< is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924064295326 3 1924 064 295 326 Production Note Cornell University Library pro- duced this volume to replace the irreparably deteriorated original. It was scanned using Xerox soft- ware and equipment at 600 dots per inch resolution and com- pressed prior to storage using CCITT Group 4 compression. The digital data were used to create Cornell's replacement volume on paper that meets the ANSI Stand- ard Z39. 48-1984. The production of this volume was supported in part by the Commission on Pres- ervation and Access and the Xerox Corporation. Digital file copy- right by Cornell University Library 1991. HANDBOOK DOUBLE STARS. <-v6f'. — A HANDBOOK OF DOUBLE STARS, WITH A CATALOGUE OF TWELVE HUNDRED DOUBLE STARS AND EXTENSIVE LISTS OF MEASURES. With additional Notes bringing the Measures up to 1879, FOR THE USE OF AMATEURS. EDWD. CROSSLEY, F.R.A.S.; JOSEPH GLEDHILL, F.R.A.S., AND^^iMES Mt^'^I^SON, M.A., F.R.A.S. "The subject has already proved so extensive, and still ptomises so rich a harvest to those who are inclined to be diligent in the pursuit, that I cannot help inviting every lover of astronomy to join with me in observations that must inevitably lead to new discoveries." Sir Wm. Herschel. *' Stellae fixac, quae in ccelo conspiciuntur, sunt aut soles simplices, qualis sol noster, aut systemata ex binis vel interdum pluribus solibus peculiari nexu physico inter se junccis composita. -
List of Easy Double Stars for Winter and Spring = Easy = Not Too Difficult = Difficult but Possible
List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8. -
Central Coast Astronomy Virtual Star Party December 19Th 7Pm Pacific
Central Coast Astronomy Virtual Star Party December 19th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon is 5 days past new, really good for star gazing. Be sure to look at the moon tonight with your naked eyes and/or binoculars! Jupiter and Saturn are getting closer and closer, and on the 21st, they will be close enough to BOTH fit in the view of the eyepiece! If you start watching now, you’ll notice them draw closer and closer together. It’s pretty neat that this date also lines up with the Winter Solstice. This is the first Jupiter-Saturn conjunction since 2000, and the closest since 1623 (only 14 years after Galileo made this first telescope). -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Uvby Photometry of the Magnetic CP Stars 20 Eridani, HR 1297, 12 Canis Majoris, and HD 134214?
ASTRONOMY & ASTROPHYSICS OCTOBER I 2000,PAGE13 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 146, 13–17 (2000) uvby photometry of the magnetic CP stars 20 Eridani, HR 1297, 12 Canis Majoris, and HD 134214? Saul J. Adelman Department of Physics, The Citadel, 171 Moultrie Street, Charleston, SC 29409, U.S.A. Received May 2; accepted June 15, 2000 Abstract. Differential Str¨omgren uvby observations from magnetic field measures, but lacked photometry around its the Four College Automated Photoelectric Telescope cycle of variability while HD 134214 is a rapidly oscillating (FCAPT) are presented for the mCP stars 20 Eri, Ap star. HR 1297, 12 CMa, and HD 134214. Adelman & The emergent energy distributions, photospheric abun- Boyce found suggestions that the light curves of dances, and magnetic field strengths of mCP stars depend 20 Eri change between observing seasons. Observations upon photospheric position. A distant observer observes for two additional seasons confirm this behavior and lead photometric, spectrum, and/or magnetic variability due to an improved period of 1.928890 days. For HR 1297 a to rotation when the geometry is favorable and the sur- new period of 15.7490 days was derived. The uvby light face ranges in abundance and in magnetic field strength curves now appear to be the same for different observing are sufficient since the magnetic and rotational axes often seasons. 12 CMa is found to be a photometric variable make a large angle with each other. Diffusion and grav- with the 2.18010 day period determined from magnetic itational settling and other hydrodynamical processes in measurements by Bohlender et al. -
Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 Through 2009
Vol. 6 No. 3 July 1, 2010 Journal of Double Star Observations Page 180 Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 through 2009 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: Using a 10” Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of “lucky images”, measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented. mented double stars, as will be described in the next Introduction section. Generally, I used a red filter to cope with By using the technique of “lucky imaging”, seeing chromatic aberration of the Barlow lens, as well as to effects can strongly be reduced, and not only the reso- reduce the atmospheric spectrum. For systems with lution of a given telescope can be pushed to its limits, pronounced color contrast, I also made recordings but also the accuracy of position measurements can be with near-IR, green and blue filters in order to pro- better than this by about one order of magnitude. This duce composite images. This setup was the same as I has already been demonstrated in earlier papers in used with telescopes under the southern sky, and as I this journal [1-3]. Standard deviations of separation have described previously [1-3]. Exposure times varied measurements of less than +/- 0.05 msec were rou- between 0.5 msec and 100 msec, depending on the tinely obtained with telescopes of 40 or 50 cm aper- star brightness, and on the seeing.