Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

Total Page:16

File Type:pdf, Size:1020Kb

Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles Joshua Armstrong Eby B.S. Physics, Indiana University South Bend (2011) A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics of the College of Arts and Sciences Committee Chair: L.C.R. Wijewardhana, Ph.D Date: 4/24/2017 ii iii Abstract Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statis- tics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a cal- culation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse ei- ther by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse. iv v Acknowledgements I would first like to thank my advisor, L.C.R. Wijewardhana, who as a mentor and role-model, pushed me to be successful; I could not have asked for a more supportive, encouraging, or dedicated advisor. I would also like to thank Peter Suranyi, from whom I have learned a great deal and without whom this work would not have been possible. I also thank my family, for providing encouragement throughout this process; where friendship is fragile, family is robust, and I thank them for their unwavering support. In my development as a physicist, I am indebted to Philip Argyres, Paddy Fox, Roni Harnik, Frank Pinski, and Jure Zupan, who provided important guidance, as well as many opportunities that would not have existed otherwise. In my development as a person, I sincerely thank Stephanie Burkus, Carrie Doyle, Matteo Lotito, Brian Maddock, Patrick Malsom, Jonathan Thompson, Douglas Tuckler, Kelsey Turner, and Sarah Unser, who were by my side as I traversed the best and worst of graduate school. This road would have been much more difficult without them. I further thank Kay Kinoshita, Chris Kouvaris, Madelyn Leembruggen, Joseph Leeney, Michael Ma, Niklas Gronlund Nielsen, and Cenalo Vaz, who made crucial contributions to this work as well. Finally, I would like to thank Jerry Hinnefeld, Ilan Levine, Monika Lynker, and Rolf Schimmrigk, for guidance in my very early years of studying science, and for nurturing the potential they saw in me. To the latter, I have not forgotten that I owe a paper on the topic of General Relativity. Though it is now more than six years late, I hope this will suffice. vi vii Preface This dissertation describes my research related to axions and axion stars as a com- ponent of dark matter. Chapter1 gives a basic introduction to the Standard Model of particle physics and the LCDM model of cosmology, and briefly outlines the relevant successes and failures of both. Axions are introduced in Chapter2, which is followed by a historical and pedagogical introduction to boson stars in Chapter3. We turn then to the particular case of axion stars. The macroscopic properties, including mass and radius, of weakly-bound axion stars are calculated in Chapter4. In Chapter5, we take into account axion self-interactions which lead to number-changing transitions in an axion star, leading to a nontrivial lifetime for axion stars to decay to relativistic free particles. The collapse of gravitationally unstable states is detailed in Chapter 6, and in Chapter7, the question is considered whether collapse can be triggered by astrophysical collisions. Concluding remarks are found in Chapter8. In what follows, we will use Greek characters (a, b, g, etc.) to denote Lorentz indices, early-alphabet Latin characters (a, b, c, etc.) for gauge indices, and later-alphabet Latin characters (i, j, k, etc.) for other indices. We employ the Einstein summation convention, and use natural units, whereh ¯ = c = 1. viii Contents List of Figures xiii List of Tables xvii List of Abbreviations xix 1. Introduction3 1.1. The Standard Model of Particle Physics...................3 1.2. The LCDM Model of Cosmology.......................6 1.3. Summary.....................................9 2. Axions in the Early Universe 11 2.1. The Strong CP Problem............................. 11 2.2. Axion Mass and Self-Interactions....................... 14 2.3. Axions as Dark Matter............................. 16 2.3.1. The Primordial Axion Density.................... 16 2.3.2. Constraints on Cosmic Axions.................... 20 2.4. Other Types of Axions............................. 22 2.5. Summary..................................... 23 3. Methods in Investigations of Boson Stars 25 3.1. Bose Statistics and Field Theory........................ 25 3.2. Historical Overview.............................. 29 3.3. Boson Stars as Classical Fields......................... 30 3.4. Semiclassical Boson Stars............................ 33 3.5. Nonrelativistic Limit for Boson Stars..................... 34 3.5.1. Thomas-Fermi Approximation.................... 36 3.5.2. Numerical Methods.......................... 37 3.5.3. Variational Method........................... 41 3.6. Summary..................................... 44 4. Axion Stars in the Infrared Limit 47 4.1. Ruffini-Bonazzola Method for Axion Stars.................. 47 ix x Contents 4.2. Double Expansion of Equations of Motion.................. 49 4.3. Numerical Methods and Physical Quantities................ 52 4.4. Results...................................... 56 4.5. The Chiral Potential............................... 60 4.6. Summary..................................... 60 5. The Lifetime of Axion Stars 63 5.1. Symmetries and Conservation Laws..................... 63 5.2. Decay Rates................................... 66 5.2.1. Spherical Waves (Alternative Derivation).............. 71 5.3. Constraints.................................... 73 5.4. Summary..................................... 77 6. Collapse of Axion Stars 79 6.1. Setup....................................... 79 6.2. Spectrum of Axion Star States......................... 83 6.3. Collapse Process................................. 90 6.4. Emission of Relativistic Axions........................ 92 6.5. The Chiral Potential............................... 94 6.6. Summary..................................... 97 7. Collisions of Dark Matter Axion Stars 99 7.1. Axion Stars as Dark Matter.......................... 99 7.2. General Framework............................... 101 7.3. Collisions Between Pairs of Axion Stars................... 105 7.3.1. Collision Rate.............................. 105 7.3.2. Induced Collapse............................ 107 7.4. Collisions Between Axion Stars and Ordinary Stars............ 111 7.4.1. Collision Rate.............................. 111 7.4.2. Induced Collapse............................ 113 7.5. Collisions Between Axion Stars and Neutron Stars............. 118 7.5.1. Collision Rate.............................. 118 7.6. Summary..................................... 120 8. Conclusions 123 A. Expectation Values of the Axion Potential 127 A.1. N-particle Potential............................... 127 A.2. Number-Changing Operators......................... 128 B. Binding Energy Corrections to the Axion Star Mass 131 Contents xi C. Computation of the Integral I3 135 D. Boundedness of the Instanton Potential 137 Bibliography 143 xii List of Figures 1.1. The particle content of the Standard Model of particle physics. For each particle, both their spin class (spin = 0, 1/2, or 1) and mass [13] are included. Lepton and gauge boson mass uncertainties are at the < 10−4 level and are omitted...............................4 3.1. An illustration of the balance of forces for boson stars with repulsive (left) and attractive (right) self-interactions. The gravitational force is always attractive, represented by inward-pointing arrows, and the quantum kinetic pressure is always repulsive, represented by outward-pointing arrows....................................... 28 3.2. The mass-radius relation for a boson star with attractive interactions. The three circles correspond to the density profiles in Figure 3.3. The dimen- sionless variables in the plot are defined in terms of the dimensionful q m M m R ˜ = j j ˜ = 99 ones as M a˜ 2 and R99 p . Figure reproduced from [120]. 39 MP ja˜j 3.3. Three examples of density profiles in the case
Recommended publications
  • Arxiv:1612.03165V3 [Astro-Ph.HE] 12 Sep 2017 – 2 –
    The second catalog of flaring gamma-ray sources from the Fermi All-sky Variability Analysis S. Abdollahi1, M. Ackermann2, M. Ajello3;4, A. Albert5, L. Baldini6, J. Ballet7, G. Barbiellini8;9, D. Bastieri10;11, J. Becerra Gonzalez12;13, R. Bellazzini14, E. Bissaldi15, R. D. Blandford16, E. D. Bloom16, R. Bonino17;18, E. Bottacini16, J. Bregeon19, P. Bruel20, R. Buehler2;21, S. Buson12;22, R. A. Cameron16, M. Caragiulo23;15, P. A. Caraveo24, E. Cavazzuti25, C. Cecchi26;27, A. Chekhtman28, C. C. Cheung29, G. Chiaro11, S. Ciprini25;26, J. Conrad30;31;32, D. Costantin11, F. Costanza15, S. Cutini25;26, F. D'Ammando33;34, F. de Palma15;35, A. Desai3, R. Desiante17;36, S. W. Digel16, N. Di Lalla6, M. Di Mauro16, L. Di Venere23;15, B. Donaggio10, P. S. Drell16, C. Favuzzi23;15, S. J. Fegan20, E. C. Ferrara12, W. B. Focke16, A. Franckowiak2, Y. Fukazawa1, S. Funk37, P. Fusco23;15, F. Gargano15, D. Gasparrini25;26, N. Giglietto23;15, M. Giomi2;59, F. Giordano23;15, M. Giroletti33, T. Glanzman16, D. Green13;12, I. A. Grenier7, J. E. Grove29, L. Guillemot38;39, S. Guiriec12;22, E. Hays12, D. Horan20, T. Jogler40, G. J´ohannesson41, A. S. Johnson16, D. Kocevski12;42, M. Kuss14, G. La Mura11, S. Larsson43;31, L. Latronico17, J. Li44, F. Longo8;9, F. Loparco23;15, M. N. Lovellette29, P. Lubrano26, J. D. Magill13, S. Maldera17, A. Manfreda6, M. Mayer2, M. N. Mazziotta15, P. F. Michelson16, W. Mitthumsiri45, T. Mizuno46, M. E. Monzani16, A. Morselli47, I. V. Moskalenko16, M. Negro17;18, E. Nuss19, T. Ohsugi46, N. Omodei16, M. Orienti33, E.
    [Show full text]
  • 2018 APS Prize and Award Recipients
    APS Announces 2018 Prize and Award Recipients The APS would like to congratulate the recipients of these APS prizes and awards. They will be presented during APS award ceremonies throughout the year. Both March and April meeting award ceremonies are open to all APS members and their guests. At the March Meeting, the APS Prizes and Awards Ceremony will be held Monday, March 5, 5:45 - 6:45 p.m. at the Los Angeles Convention Center (LACC) in Los Angeles, CA. At the April Meeting, the APS Prizes and Awards Ceremony will be held Sunday, April 15, 5:30 - 6:30 p.m. at the Greater Columbus Convention Center in Columbus, OH. In addition to the award ceremonies, most prize and award recipients will give invited talks during the meeting. Some recipients of prizes, awards are recognized at APS unit meetings. For the schedule of APS meetings, please visit http://www.aps.org/meetings/calendar.cfm. Nominations are open for most 2019 prizes and awards. We encourage members to nominate their highly-qualified peers, and to consider broadening the diversity and depth of the nomination pool from which honorees are selected. For nomination submission instructions, please visit the APS web site (http://www.aps.org/programs/honors/index.cfm). Prizes 2018 APS MEDAL FOR EXCELLENCE IN PHYSICS 2018 PRIZE FOR A FACULTY MEMBER FOR RESEARCH IN AN UNDERGRADUATE INSTITUTION Eugene N. Parker University of Chicago Warren F. Rogers In recognition of many fundamental contributions to space physics, Indiana Wesleyan University plasma physics, solar physics and astrophysics for over 60 years.
    [Show full text]
  • Arxiv:2011.00929V1 [Astro-Ph.GA] 2 Nov 2020 of a Real Age Spread
    Astronomy & Astrophysics manuscript no. paper ©ESO 2020 November 3, 2020 Multiple populations of Hβ emission line stars in the Large Magellanic Cloud cluster NGC 1971 Andrés E. Piatti1; 2? 1 Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET-UNCUYO, Padre J. Contreras 1300, M5502JMA, Mendoza, Argentina; 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina Received / Accepted ABSTRACT We revisited the young Large Magellanic Cloud star cluster NGC 1971 with the aim of providing additional clues to our understanding of its observed extended Main Sequence turnoff (eMSTO), a feature common seen in young stars clusters,which was recently argued to be caused by a real age spread similar to the cluster age (∼160 Myr). We combined accurate Washington and Strömgren photometry of high membership probability stars to explore the nature of such an eMSTO. From different ad hoc defined pseudo colors we found that bluer and redder stars distributed throughout the eMSTO do not show any inhomogeneities of light and heavy-element abundances. These ’blue’ and ’red’ stars split into two clearly different groups only when the Washington M magnitudes are employed, which delimites the number of spectral features responsible for the appearance of the eMSTO. We speculate that Be stars populate the eMSTO of NGC 1971 because: i) Hβ contributes to the M passband; ii) Hβ emissions are common features of Be stars and; iii) Washington M and T1 magnitudes show a tight correlation; the latter measuring the observed contribution of Hα emission line in Be stars, which in turn correlates with Hβ emissions.
    [Show full text]
  • TASI Lectures on Emergence of Supersymmetry, Gauge Theory And
    TASI Lectures on Emergence of Supersymmetry, Gauge Theory and String in Condensed Matter Systems Sung-Sik Lee1,2 1Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton ON L8S4M1, Canada 2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON N2L2Y5, Canada Abstract The lecture note consists of four parts. In the first part, we review a 2+1 dimen- sional lattice model which realizes emergent supersymmetry at a quantum critical point. The second part is devoted to a phenomenon called fractionalization where gauge boson and fractionalized particles emerge as low energy excitations as a result of strong interactions between gauge neutral particles. In the third part, we discuss about stability and low energy effective theory of a critical spin liquid state where stringy excitations emerge in a large N limit. In the last part, we discuss about an attempt to come up with a prescription to derive holographic theory for general quantum field theory. arXiv:1009.5127v2 [hep-th] 16 Dec 2010 Contents 1 Introduction 1 2 Emergent supersymmetry 2 2.1 Emergence of (bosonic) space-time symmetry . .... 3 2.2 Emergentsupersymmetry . .. .. 4 2.2.1 Model ................................... 5 2.2.2 RGflow .................................. 7 3 Emergent gauge theory 10 3.1 Model ....................................... 10 3.2 Slave-particletheory ............................... 10 3.3 Worldlinepicture................................. 12 4 Critical spin liquid with Fermi surface 14 4.1 Fromspinmodeltogaugetheory . 14 4.1.1 Slave-particle approach to spin-liquid states . 14 4.1.2 Stability of deconfinement phase in the presence of Fermi surface... 16 4.2 Lowenergyeffectivetheory . .. .. 17 4.2.1 Failure of a perturbative 1/N expansion ...............
    [Show full text]
  • Round Table Talk: Conversation with Nathan Seiberg
    Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress.
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Cosmic Axion Bose-Einstein Condensation
    Nilanjan Banik1 and Pierre Sikivie1 1University of Florida Abstract QCD axions are a well-motivated candidate for cold dark matter. Cold axions are produced in the early universe by vacuum realignment, axion string decay and axion domain wall decay. We show that cold axions thermalize via their gravitational self-interactions, and form a Bose-Einstein condensate. As a result, axion dark matter behaves differently from the other proposed forms of dark matter. The differences are observable. arXiv:1501.05913v2 [astro-ph.CO] 23 Jun 2017 1 I. QCD AXIONS The theory of strong interactions, called ”quantum chromodynamics” or QCD for short, has in its Lagrangian density a ”θ-term” [1–4] g2 = θ s G˜aµν Ga (1.1) Lθ 32π2 µν where θ is an angle between 0 and 2π, gs is the coupling constant for strong interactions, and a Gµν is the gluon field tensor. The θ-term is a 4-divergence and therefore has no effects in perturbation theory. However, it can be shown to have non-perturbative effects, and these are important at low energies/long distances. Since is P and CP odd, QCD violates Lθ those discrete symmetries when θ = 0. The strong interactions are observed to be P and CP 6 symmetric, and therefore θ must be small. The experimental upper bound on the electric dipole moment of the neutron implies θ . 0.7 10−11 [5, 6]. In the Standard Model of × particle physics there is no reason for θ to be small; it is expected to be of order one. That θ is less than 10−11 is a puzzle, referred to as the strong CP problem.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Quantum Chaos in the Quantum Fluid
    Quantum chaos in the quantum fluid Raju Venugopalan Brookhaven Na<onal Laboratory Joe Fest, McGill, Montreal, June 12-14, 2012 Smoking Joe and Holy Indian Lone ranger: I think we are surrounded, Kemo sabe Tonto: What do you mean “we” $@!# Smoking Joe and Holy Indian Lone ranger: I think we are surrounded, Kemo sabe Tonto: Indeed, Lone Ranger – no worries – they are all here to praise you on your 60th ! Talk Mo<va<on: the unreasonable effec<veness of hydrodynamics in heavy ion collisions to paraphrase E. P. Wigner An ab ini<o weak coupling approach: Classical coherence of wee partons in nuclear wavefunc<ons Quantum fluctua<ons: Factoriza<on, Evolu<on, Decoherence Isotropizaon, Bose-Einstein Condensaon, Thermalizaon ? 4 Ab inio approach to heavy ion collisions RV, ICHEP review talk, 1012.4699 Color Glass Inial Glasma sQGP - Hadron Condensates Singularity perfect fluid! Gas t τ0 ? Compute properes of relevant degrees of freedom of wave fns. in a systema<c framework (as opposed to a “model”)? How is maer formed ? What are its non-equilibrium properes & lifeme? Can one “prove” thermalizaon or is the system “parally” thermal ? When is hydrodynamics applicable? How much jet quenching occurs in the Glasma? Are there novel topological effects (sphaleron transions?) Ab inio approach to heavy ion collisions RV, ICHEP review talk, 1012.4699 Color Glass Inial Glasma sQGP - Hadron Condensates Singularity perfect fluid! Gas t τ0 ? Compute properes of relevant degrees of freedom of wave fns. in a systema<c framework (as opposed to a “model”)? How
    [Show full text]
  • Arxiv:Astro-Ph/0205130V1 9 May 2002 Bevtr,Wihi Prtdb H Soito Fuieste F Foundation
    The Star Formation History and Mass Function of the Double Cluster h and Chi Persei Catherine L. Slesnick1, Lynne A. Hillenbrand1 Dept. of Astronomy, MS105-24, California Institute of Technology,Pasadena, CA 91125 [email protected], [email protected] and Philip Massey1 Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 [email protected] ABSTRACT The h and χ Per “double cluster” is examined using wide-field (0.98◦ 0.98◦) × CCD UBV imaging supplemented by optical spectra of several hundred of the brightest stars. Restricting our analysis to near the cluster nuclei, we find iden- tical reddenings (E(B V )=0.56 0.01), distance moduli (11.85 0.05), and − ± ± ages (12.8 1.0 Myr) for the two clusters. In addition, we find an IMF slope for ± each of the cluster nuclei that is quite normal for high-mass stars,Γ= 1.3 0.2, − ± indistinguishable from a Salpeter value. We derive masses of 3700 ⊙ (h) and M 2800 ⊙ (χ) integrating the PDMF from 1 to 120 ⊙. There is evidence of arXiv:astro-ph/0205130v1 9 May 2002 M M mild mass segregation within the cluster cores. Our data are consistent with the stars having formed at a single epoch; claims to the contrary are very likely due to the inclusion of the substantial population of early-type stars located at sim- ilar distances in the Perseus spiral arm, in addition to contamination by G and K giants at various distances. We discuss the uniqueness of the double cluster, citing other examples of such structures in the literature, but concluding that the nearly identical nature of the two cluster cores is unusual.
    [Show full text]
  • Imprints of the Early Universe on Axion Dark Matter Substructure
    FERMILAB-PUB-19-560-A-T Imprints of the Early Universe on Axion Dark Matter Substructure Nikita Blinov,1, 2 Matthew J. Dolan,3 and Patrick Draper4 1Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 2Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 3ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, 3010, Australia 4Department of Physics, University of Illinois, Urbana, IL 61801, USA (Dated: November 28, 2019) Despite considerable experimental progress large parts of the axion-like particle (ALP) parame- ter space remain difficult to probe in terrestrial experiments. In some cases, however, small-scale structure of the ALP dark matter (DM) distribution is strongly enhanced, offering opportunities for astrophysical tests. Such an enhancement can be produced by a period of pre-nucleosynthesis early matter domination (EMD). This cosmology arises in many ultraviolet completions and generates 16 −13 the correct relic abundance for weak coupling fa 10 GeV, ALP masses in the range 10 eV ∼ < ma < 1 eV, and without fine-tuning of the initial misalignment angle. This range includes the QCD axion around 10−9 10−8 eV. EMD enhances the growth of ALP small-scale structure, leading to the formation of dense− ALP miniclusters. We study the interplay between the initial ALP oscilla- tion, reheating temperature, and effective pressure to provide analytic estimates of the minicluster abundance and properties. ALP miniclusters in the EMD cosmology are denser and more abundant than in ΛCDM. While enhanced substructure generically reduces the prospects of direct detection experiments, we show that pulsar timing and lensing observations can discover these minihalos over a large range of ALP masses and reheating temperatures.
    [Show full text]