Round Table Talk: Conversation with Nathan Seiberg
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inflation, Large Branes, and the Shape of Space
Inflation, Large Branes, and the Shape of Space Brett McInnes National University of Singapore email: [email protected] ABSTRACT Linde has recently argued that compact flat or negatively curved spatial sections should, in many circumstances, be considered typical in Inflationary cosmologies. We suggest that the “large brane instability” of Seiberg and Witten eliminates the negative candidates in the context of string theory. That leaves the flat, compact, three-dimensional manifolds — Conway’s platycosms. We show that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, Seiberg-Witten instability can be avoided only with difficulty. Using a specific cosmological model of the Maldacena-Maoz type, we explain how to do this, and we also show how the list of platycosmic candidates can be reduced to three. This leads to an extension of the basic idea: the conformal compactification of the entire Euclidean spacetime also has the topology of a flat, compact, four-dimensional space. arXiv:hep-th/0410115v2 19 Oct 2004 1. Nearly Flat or Really Flat? Linde has recently argued [1] that, at least in some circumstances, we should regard cosmological models with flat or negatively curved compact spatial sections as the norm from an Inflationary point of view. Here we wish to argue that cosmic holography, in the novel form proposed by Maldacena and Maoz [2], gives a deep new interpretation of this idea, and also sharpens it very considerably to exclude the negative case. This focuses our attention on cosmological models with flat, compact spatial sections. Current observations [3] show that the spatial sections of our Universe [as defined by observers for whom local isotropy obtains] are fairly close to being flat: the total density parameter Ω satisfies Ω = 1.02 0.02 at 95% confidence level, if we allow the imposition ± of a reasonable prior [4] on the Hubble parameter. -
Anomalies, Dualities, and Topology of D = 6 N = 1 Superstring Vacua
RU-96-16 NSF-ITP-96-21 CALT-68-2057 IASSNS-HEP-96/53 hep-th/9605184 Anomalies, Dualities, and Topology of D =6 N =1 Superstring Vacua Micha Berkooz,1 Robert G. Leigh,1 Joseph Polchinski,2 John H. Schwarz,3 Nathan Seiberg,1 and Edward Witten4 1Department of Physics, Rutgers University, Piscataway, NJ 08855-0849 2Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 3California Institute of Technology, Pasadena, CA 91125 4Institute for Advanced Study, Princeton, NJ 08540 Abstract We consider various aspects of compactifications of the Type I/heterotic Spin(32)/Z2 theory on K3. One family of such compactifications in- cludes the standard embedding of the spin connection in the gauge group, and is on the same moduli space as the compactification of arXiv:hep-th/9605184v1 25 May 1996 the heterotic E8 × E8 theory on K3 with instanton numbers (8,16). Another class, which includes an orbifold of the Type I theory re- cently constructed by Gimon and Polchinski and whose field theory limit involves some topological novelties, is on the moduli space of the heterotic E8 × E8 theory on K3 with instanton numbers (12,12). These connections between Spin(32)/Z2 and E8 × E8 models can be demonstrated by T duality, and permit a better understanding of non- perturbative gauge fields in the (12,12) model. In the transformation between Spin(32)/Z2 and E8 × E8 models, the strong/weak coupling duality of the (12,12) E8 × E8 model is mapped to T duality in the Type I theory. The gauge and gravitational anomalies in the Type I theory are canceled by an extension of the Green-Schwarz mechanism. -
A Note on Background (In)Dependence
RU-91-53 A Note on Background (In)dependence Nathan Seiberg and Stephen Shenker Department of Physics and Astronomy Rutgers University, Piscataway, NJ 08855-0849, USA [email protected], [email protected] In general quantum systems there are two kinds of spacetime modes, those that fluctuate and those that do not. Fluctuating modes have normalizable wavefunctions. In the context of 2D gravity and “non-critical” string theory these are called macroscopic states. The theory is independent of the initial Euclidean background values of these modes. Non- fluctuating modes have non-normalizable wavefunctions and correspond to microscopic states. The theory depends on the background value of these non-fluctuating modes, at least to all orders in perturbation theory. They are superselection parameters and should not be minimized over. Such superselection parameters are well known in field theory. Examples in string theory include the couplings tk (including the cosmological constant) arXiv:hep-th/9201017v2 27 Jan 1992 in the matrix models and the mass of the two-dimensional Euclidean black hole. We use our analysis to argue for the finiteness of the string perturbation expansion around these backgrounds. 1/92 Introduction and General Discussion Many of the important questions in string theory circle around the issue of background independence. String theory, as a theory of quantum gravity, should dynamically pick its own spacetime background. We would expect that this choice would be independent of the classical solution around which the theory is initially defined. We may hope that the theory finds a unique ground state which describes our world. We can try to draw lessons that bear on these questions from the exactly solvable matrix models of low dimensional string theory [1][2][3]. -
2018 APS Prize and Award Recipients
APS Announces 2018 Prize and Award Recipients The APS would like to congratulate the recipients of these APS prizes and awards. They will be presented during APS award ceremonies throughout the year. Both March and April meeting award ceremonies are open to all APS members and their guests. At the March Meeting, the APS Prizes and Awards Ceremony will be held Monday, March 5, 5:45 - 6:45 p.m. at the Los Angeles Convention Center (LACC) in Los Angeles, CA. At the April Meeting, the APS Prizes and Awards Ceremony will be held Sunday, April 15, 5:30 - 6:30 p.m. at the Greater Columbus Convention Center in Columbus, OH. In addition to the award ceremonies, most prize and award recipients will give invited talks during the meeting. Some recipients of prizes, awards are recognized at APS unit meetings. For the schedule of APS meetings, please visit http://www.aps.org/meetings/calendar.cfm. Nominations are open for most 2019 prizes and awards. We encourage members to nominate their highly-qualified peers, and to consider broadening the diversity and depth of the nomination pool from which honorees are selected. For nomination submission instructions, please visit the APS web site (http://www.aps.org/programs/honors/index.cfm). Prizes 2018 APS MEDAL FOR EXCELLENCE IN PHYSICS 2018 PRIZE FOR A FACULTY MEMBER FOR RESEARCH IN AN UNDERGRADUATE INSTITUTION Eugene N. Parker University of Chicago Warren F. Rogers In recognition of many fundamental contributions to space physics, Indiana Wesleyan University plasma physics, solar physics and astrophysics for over 60 years. -
M5-Branes, D4-Branes and Quantum 5D Super-Yang-Mills
CERN-PH-TH/2010-294 KCL-MTH-10-17 M5-Branes, D4-Branes and Quantum 5D super-Yang-Mills N. Lambert a,∗,† , C. Papageorgakis b,‡ and M. Schmidt-Sommerfeld a,§ aTheory Division, CERN 1211 Geneva 23, Switzerland bDepartment of Mathematics, King’s College London The Strand, London WC2R 2LS, UK Abstract We revisit the relation of the six-dimensional (2, 0) M5-brane Conformal Field Theory compactified on S1 to 5D maximally supersymmetric Yang-Mills Gauge Theory. We show that in the broken phase 5D super-Yang-Mills contains a arXiv:1012.2882v3 [hep-th] 22 Feb 2011 spectrum of soliton states that can be identified with the complete Kaluza-Klein modes of an M2-brane ending on the M5-branes. This provides evidence that the (2, 0) theory on S1 is equivalent to 5D super-Yang-Mills with no additional UV degrees of freedom, suggesting that the latter is in fact a well-defined quantum theory and possibly finite. ∗On leave of absence from King’s College London. †E-mail address: [email protected] ‡E-mail address: [email protected] §E-mail address: [email protected] 1 Introduction Multiple M5-branes are believed to be described at low energies by a novel, interacting, strongly coupled, 6D CFT with (2, 0) supersymmetry. Very little is known about such a theory and it is not expected to have a Lagrangian description. According to the type IIA/M-theory duality it arises as the strong-coupling, UV fixed-point of multiple D4-branes whose dynamics are obtained from open string theory. -
Some Comments on Physical Mathematics
Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century. -
2005 March Meeting Gears up for Showtime in the City of Angels
NEWS See Pullout Insert Inside March 2005 Volume 14, No. 3 A Publication of The American Physical Society http://www.aps.org/apsnews 2005 March Meeting Gears Up for Reborn Nicholson Medal Showtime in the City of Angels Stresses Mentorship Established in memory of Dwight The latest research relevance to the design R. Nicholson of the University of results on the spin Hall and creation of next- Iowa, who died tragically in 1991, effect, new chemistry generation nano-electro- and first given in 1994, the APS with superatoms, and mechanical systems Nicholson Medal has been reborn several sessions cel- (NEMS). Moses Chan this year as an award for human ebrating all things (Pennsylvania State Uni- outreach. According to the infor- Einstein are among the versity) will talk about mation contained on the Medal’s expected highlights at evidence of Bose-Einstein web site (http://www.aps.org/praw/ the 2005 APS March condensation in solid he- nicholso/index.cfm), the Nicholson meeting, to be held later lium, while Stanford Medal for Human Outreach shall Photo Credit: Courtesy of the Los Angeles Convention Center this month in Los University’s Zhixun Shen be awarded to a physicist who ei- Angeles, California. The will discuss how photo- ther through teaching, research, or Photo from Iowa University Relations. conference is the largest physics Boltzmann, and Ehrenfest, but also emission spectroscopy has science-related activities, Dwight R. Nicholson. meeting of the year, featuring some Emmy Noether, one of the rare emerged as a leading tool to push -
TASI Lectures on Emergence of Supersymmetry, Gauge Theory And
TASI Lectures on Emergence of Supersymmetry, Gauge Theory and String in Condensed Matter Systems Sung-Sik Lee1,2 1Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton ON L8S4M1, Canada 2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON N2L2Y5, Canada Abstract The lecture note consists of four parts. In the first part, we review a 2+1 dimen- sional lattice model which realizes emergent supersymmetry at a quantum critical point. The second part is devoted to a phenomenon called fractionalization where gauge boson and fractionalized particles emerge as low energy excitations as a result of strong interactions between gauge neutral particles. In the third part, we discuss about stability and low energy effective theory of a critical spin liquid state where stringy excitations emerge in a large N limit. In the last part, we discuss about an attempt to come up with a prescription to derive holographic theory for general quantum field theory. arXiv:1009.5127v2 [hep-th] 16 Dec 2010 Contents 1 Introduction 1 2 Emergent supersymmetry 2 2.1 Emergence of (bosonic) space-time symmetry . .... 3 2.2 Emergentsupersymmetry . .. .. 4 2.2.1 Model ................................... 5 2.2.2 RGflow .................................. 7 3 Emergent gauge theory 10 3.1 Model ....................................... 10 3.2 Slave-particletheory ............................... 10 3.3 Worldlinepicture................................. 12 4 Critical spin liquid with Fermi surface 14 4.1 Fromspinmodeltogaugetheory . 14 4.1.1 Slave-particle approach to spin-liquid states . 14 4.1.2 Stability of deconfinement phase in the presence of Fermi surface... 16 4.2 Lowenergyeffectivetheory . .. .. 17 4.2.1 Failure of a perturbative 1/N expansion ............... -
Math, Physics, and Calabi–Yau Manifolds
Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901). -
Quantum Gravity and Quantum Chaos
Quantum gravity and quantum chaos Stephen Shenker Stanford University Walter Kohn Symposium Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 1 / 26 Quantum chaos and quantum gravity Quantum chaos $ Quantum gravity Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 2 / 26 Black holes are thermal Strong chaos underlies thermal behavior in ordinary systems Quantum black holes are thermal They have entropy [Bekenstein] They have temperature [Hawking] Suggests a connection between quantum black holes and chaos Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 3 / 26 AdS/CFT Gauge/gravity duality: AdS/CFT Thermal state of field theory on boundary Black hole in bulk Chaos in thermal field theory $ [Maldacena, Sci. Am.] what phenomenon in black holes? 2 + 1 dim boundary 3 + 1 dim bulk Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 4 / 26 Butterfly effect Strong chaos { sensitive dependence on initial conditions, the “butterfly effect" Classical mechanics v(0); v(0) + δv(0) two nearby points in phase space jδv(t)j ∼ eλLt jδv(0)j λL a Lyapunov exponent What is the \quantum butterfly effect”? Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 5 / 26 Quantum diagnostics Basic idea [Larkin-Ovchinnikov] General picture [Almheiri-Marolf-Polchinsk-Stanford-Sully] W (t) = eiHt W (0)e−iHt Forward time evolution, perturbation, then backward time -
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Permalink https://escholarship.org/uc/item/8qh706tk Author Dzienkowski, Eric Michael Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Eric Michael Dzienkowski Committee in charge: Professor David Berenstein, Chair Professor Joe Polchinski Professor David Stuart September 2015 The Dissertation of Eric Michael Dzienkowski is approved. Professor Joe Polchinski Professor David Stuart Professor David Berenstein, Committee Chair July 2015 Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Copyright c 2015 by Eric Michael Dzienkowski iii To my family, who endured my absense for the better part of nine long years while I attempted to understand the universe. iv Acknowledgements There are many people and entities deserving thanks for helping me complete my dissertation. To my advisor, David Berenstein, for the guidance, advice, and support over the years. With any luck, I have absorbed some of your unique insight and intuition to solving problems, some which I hope to apply to my future as a physicist or otherwise. A special thanks to my collaborators Curtis Asplund and Robin Lashof-Regas. Curtis, it has been and will continue to be a pleasure working with you. Ad- ditional thanks for various comments and discussions along the way to Yuhma Asano, Thomas Banks, Frederik Denef, Jim Hartle, Sean Hartnoll, Matthew Hastings, Gary Horowitz, Christian Maes, Juan Maldacena, John Mangual, Don Marolf, Greg Moore, Niels Obers, Joe Polchisnki, Jorge Santos, Edward Shuryak, Christoph Sieg, Eva Silverstein, Mark Srednicki, and Matthias Staudacher. -
Electric-Magnetic Duality, Matrices, & Emergent Spacetime
Electric-Magnetic Duality, Matrices, & Emergent Spacetime Shyamoli Chaudhuri1 1312 Oak Drive Blacksburg, VA 24060 Abstract This is a rough transcript of talks given at the Workshop on Groups & Algebras in M Theory at Rutgers University, May 31–Jun 04, 2005. We review the basic motivation for a pre-geometric formulation of nonperturbative String/M theory, and for an underlying eleven- dimensional electric-magnetic duality, based on our current understanding of the String/M Duality Web. We explain the concept of an emerging spacetime geometry in the large N limit of a U(N) flavor matrix Lagrangian, distinguishing our proposal from generic proposals for quantum geometry, and explaining why it can incorporate curved spacetime backgrounds. We assess the significance of the extended symmetry algebra of the matrix Lagrangian, raising the question of whether our goal should be a duality covariant, or merely duality invariant, Lagrangian. We explain the conjectured isomorphism between the O(1/N) corrections in any given large N scaling limit of the matrix Lagrangian, and the corresponding α′ corrections in a string effective Lagrangian describing some weak-coupling limit of the String/M Duality Web. arXiv:hep-th/0507116v4 23 Aug 2005 1Based on talks given at the Workshop on Groups & Algebras in M Theory, Rutgers University, May 31–Jun 04, 2005. Email: [email protected] 1 Introduction Understanding the symmetry principles and the fundamental degrees of freedom in terms of which nonperturbative String/M theory is formulated is a problem of outstanding importance in theoretical high energy physics. The Rutgers Mathematics workshop on Groups & Algebras in M Theory this summer devoted part of its schedule to an assessment of the significance of Lorentzian Kac-Moody algebras to recent conjectures for the symmetry algebra of String/M theory.