Inflation, Large Branes, and the Shape of Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anomalies, Dualities, and Topology of D = 6 N = 1 Superstring Vacua
RU-96-16 NSF-ITP-96-21 CALT-68-2057 IASSNS-HEP-96/53 hep-th/9605184 Anomalies, Dualities, and Topology of D =6 N =1 Superstring Vacua Micha Berkooz,1 Robert G. Leigh,1 Joseph Polchinski,2 John H. Schwarz,3 Nathan Seiberg,1 and Edward Witten4 1Department of Physics, Rutgers University, Piscataway, NJ 08855-0849 2Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 3California Institute of Technology, Pasadena, CA 91125 4Institute for Advanced Study, Princeton, NJ 08540 Abstract We consider various aspects of compactifications of the Type I/heterotic Spin(32)/Z2 theory on K3. One family of such compactifications in- cludes the standard embedding of the spin connection in the gauge group, and is on the same moduli space as the compactification of arXiv:hep-th/9605184v1 25 May 1996 the heterotic E8 × E8 theory on K3 with instanton numbers (8,16). Another class, which includes an orbifold of the Type I theory re- cently constructed by Gimon and Polchinski and whose field theory limit involves some topological novelties, is on the moduli space of the heterotic E8 × E8 theory on K3 with instanton numbers (12,12). These connections between Spin(32)/Z2 and E8 × E8 models can be demonstrated by T duality, and permit a better understanding of non- perturbative gauge fields in the (12,12) model. In the transformation between Spin(32)/Z2 and E8 × E8 models, the strong/weak coupling duality of the (12,12) E8 × E8 model is mapped to T duality in the Type I theory. The gauge and gravitational anomalies in the Type I theory are canceled by an extension of the Green-Schwarz mechanism. -
Eternal Inflation and Its Implications
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 6811–6826 doi:10.1088/1751-8113/40/25/S25 Eternal inflation and its implications Alan H Guth Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected] Received 8 February 2006 Published 6 June 2007 Online at stacks.iop.org/JPhysA/40/6811 Abstract Isummarizetheargumentsthatstronglysuggestthatouruniverseisthe product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Although inflation is generically eternal into the future, it is not eternal into the past: it can be proven under reasonable assumptions that the inflating region must be incomplete in past directions, so some physics other than inflation is needed to describe the past boundary of the inflating region. PACS numbers: 98.80.cQ, 98.80.Bp, 98.80.Es 1. Introduction: the successes of inflation Since the proposal of the inflationary model some 25 years ago [1–4], inflation has been remarkably successful in explaining many important qualitative and quantitative properties of the universe. In this paper, I will summarize the key successes, and then discuss a number of issues associated with the eternal nature of inflation. -
Some Comments on Physical Mathematics
Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century. -
2005 March Meeting Gears up for Showtime in the City of Angels
NEWS See Pullout Insert Inside March 2005 Volume 14, No. 3 A Publication of The American Physical Society http://www.aps.org/apsnews 2005 March Meeting Gears Up for Reborn Nicholson Medal Showtime in the City of Angels Stresses Mentorship Established in memory of Dwight The latest research relevance to the design R. Nicholson of the University of results on the spin Hall and creation of next- Iowa, who died tragically in 1991, effect, new chemistry generation nano-electro- and first given in 1994, the APS with superatoms, and mechanical systems Nicholson Medal has been reborn several sessions cel- (NEMS). Moses Chan this year as an award for human ebrating all things (Pennsylvania State Uni- outreach. According to the infor- Einstein are among the versity) will talk about mation contained on the Medal’s expected highlights at evidence of Bose-Einstein web site (http://www.aps.org/praw/ the 2005 APS March condensation in solid he- nicholso/index.cfm), the Nicholson meeting, to be held later lium, while Stanford Medal for Human Outreach shall Photo Credit: Courtesy of the Los Angeles Convention Center this month in Los University’s Zhixun Shen be awarded to a physicist who ei- Angeles, California. The will discuss how photo- ther through teaching, research, or Photo from Iowa University Relations. conference is the largest physics Boltzmann, and Ehrenfest, but also emission spectroscopy has science-related activities, Dwight R. Nicholson. meeting of the year, featuring some Emmy Noether, one of the rare emerged as a leading tool to push -
Round Table Talk: Conversation with Nathan Seiberg
Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress. -
David Olive: His Life and Work
David Olive his life and work Edward Corrigan Department of Mathematics, University of York, YO10 5DD, UK Peter Goddard Institute for Advanced Study, Princeton, NJ 08540, USA St John's College, Cambridge, CB2 1TP, UK Abstract David Olive, who died in Barton, Cambridgeshire, on 7 November 2012, aged 75, was a theoretical physicist who made seminal contributions to the development of string theory and to our understanding of the structure of quantum field theory. In early work on S-matrix theory, he helped to provide the conceptual framework within which string theory was initially formulated. His work, with Gliozzi and Scherk, on supersymmetry in string theory made possible the whole idea of superstrings, now understood as the natural framework for string theory. Olive's pioneering insights about the duality between electric and magnetic objects in gauge theories were way ahead of their time; it took two decades before his bold and courageous duality conjectures began to be understood. Although somewhat quiet and reserved, he took delight in the company of others, generously sharing his emerging understanding of new ideas with students and colleagues. He was widely influential, not only through the depth and vision of his original work, but also because the clarity, simplicity and elegance of his expositions of new and difficult ideas and theories provided routes into emerging areas of research, both for students and for the theoretical physics community more generally. arXiv:2009.05849v1 [physics.hist-ph] 12 Sep 2020 [A version of section I Biography is to be published in the Biographical Memoirs of Fellows of the Royal Society.] I Biography Childhood David Olive was born on 16 April, 1937, somewhat prematurely, in a nursing home in Staines, near the family home in Scotts Avenue, Sunbury-on-Thames, Surrey. -
Is String Theory Holographic? 1 Introduction
Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5]. -
2012-2013 Chair James Rosenzweig
Department of Physics Astronomy ANNUAL REPORT 2013 219728_AnnualReport.indd 1 11/18/13 4:02 PM UCLA Physics and Astronomy Department 2012-2013 Chair James Rosenzweig Chief Administrative Officer Will Spencer Feature Article Eric Hudson Editorial Assistants Corinna Koehnenkamp, D.L. MacLaughlan-Dumes, Laurie Ultan-Thomas Design Mary Jo Robertson © 2013 by the Regents of the University of California All rights reserved. Requests for additional copies of the publication UCLA Department of Physics and Astronomy 2012-2013 Annual Report may be sent to: Office of the Chair UCLA Department of Physics and Astronomy 430 Portola Plaza Box 951547 Los Angeles California 90095-1547 For more information on the Department see our website: http://www.pa.ucla.edu/ UCLA DEPARTMENT OF PHYSICS & ASTRONOMY 219728_AnnualReport.indd 2 11/18/13 4:02 PM Department of Physics Astronomy& 2013 Annual Report UNIVERSITY OF CALIFORNIA, LOS ANGELES 219728_AnnualReport.indd 3 11/18/13 4:02 PM CONTENTS FEATURE ARTICLE: P.7 “Harnessing quantum interactions for the future of science and technology” GIVING TO THE DEPARTMENT P.15 UCLA ALUMNI P.18 ASTRONOMY & ASTROPHYSICS P.19 ASTROPARTICLE PHYSICS P.31 PHYSICS RESEARCH HIGHLIGHTS P.37 PHYSICS & ASTRONOMY FACULTY/RESEARCHERS P.60 DEPARTMENT NEWS P.61 OUTREACH-ASTRONOMY LIVE P. 64 GRADUATION 2012-13 P.66 219728_AnnualReport.indd 4 11/18/13 4:02 PM Message from the Chair As Chair of the UCLA Department of Physics and Astronomy, it is with pride that I present to you our 2013 Annual Report. This document is intended to give an overview of the departmental accomplishments recorded in the last year, extending from recog- nition of faculty excellence in teaching and research, to the welcoming of new members to our ranks. -
Thoughts About Quantum Field Theory Nathan Seiberg IAS
Thoughts About Quantum Field Theory Nathan Seiberg IAS Thank Edward Witten for many relevant discussions QFT is the language of physics It is everywhere • Particle physics: the language of the Standard Model • Enormous success, e.g. the electron magnetic dipole moment is theoretically 1.001 159 652 18 … experimentally 1.001 159 652 180... • Condensed matter • Description of the long distance properties of materials: phases and the transitions between them • Cosmology • Early Universe, inflation • … QFT is the language of physics It is everywhere • String theory/quantum gravity • On the string world-sheet • In the low-energy approximation (spacetime) • The whole theory (gauge/gravity duality) • Applications in mathematics especially in geometry and topology • Quantum field theory is the modern calculus • Natural language for describing diverse phenomena • Enormous progress over the past decades, still continuing 2011 Solvay meeting Comments on QFT 5 minutes, only one slide Should quantum field theory be reformulated? • Should we base the theory on a Lagrangian? • Examples with no semi-classical limit – no Lagrangian • Examples with several semi-classical limits – several Lagrangians • Many exact solutions of QFT do not rely on a Lagrangian formulation • Magic in amplitudes – beyond Feynman diagrams • Not mathematically rigorous • Extensions of traditional local QFT 5 How should we organize QFTs? QFT in High Energy Theory Start at high energies with a scale invariant theory, e.g. a free theory described by Lagrangian. Λ Deform it with • a finite set of coefficients of relevant (or marginally relevant) operators, e.g. masses • a finite set of coefficients of exactly marginal operators, e.g. in 4d = 4. -
Reversed out (White) Reversed
Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments. -
Our Cosmic Origins
Chapter 5 Our cosmic origins “In the beginning, the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move”. Douglas Adams, in The Restaurant at the End of the Universe “Oh no: he’s falling asleep!” It’s 1997, I’m giving a talk at Tufts University, and the legendary Alan Guth has come over from MIT to listen. I’d never met him before, and having such a luminary in the audience made me feel both honored and nervous. Especially nervous. Especially when his head started slumping toward his chest, and his gaze began going blank. In an act of des- peration, I tried speaking more enthusiastically and shifting my tone of voice. He jolted back up a few times, but soon my fiasco was complete: he was o↵in dreamland, and didn’t return until my talk was over. I felt deflated. Only much later, when we became MIT colleagues, did I realize that Alan falls asleep during all talks (except his own). In fact, my grad student Adrian Liu pointed out that I’ve started doing the same myself. And that I’ve never noticed that he does too because we always go in the same order. If Alan, I and Adrian sit next to each other in that order, we’ll infallibly replicate a somnolent version of “the wave” that’s so popular with soccer spectators. I’ve come to really like Alan, who’s as warm as he’s smart. Tidiness isn’t his forte, however: the first time I visited his office, I found most of the floor covered with a thick layer of unopened mail. -
Université Joseph Fourier Les Houches Session LXXXVII 2007
houches87cov.tex; 12/05/2008; 18:25 p. 1 1 Université Joseph Fourier 1 2 2 3 Les Houches 3 4 4 5 Session LXXXVII 5 6 6 7 2007 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 String Theory and the Real World: 15 16 16 17 From Particle Physics to Astrophysics 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 houches87cov.tex; 12/05/2008; 18:25 p. 2 1 Lecturers who contributed to this volume 1 2 2 3 3 4 4 I. Antoniadis 5 5 J.L.F. Barbón 6 6 Marcus K. Benna 7 7 Thibault Damour 8 8 Frederik Denef 9 9 F. Gianotti 10 10 G.F. Giudice 11 11 Kenneth Intriligator 12 12 Elias Kiritsis 13 13 Igor R. Klebanov 14 14 Marc Lilley 15 15 Juan M. Maldacena 16 16 Eliezer Rabinovici 17 17 Nathan Seiberg 18 18 Angel M. Uranga 19 19 Pierre Vanhove 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 houches87cov.tex; 12/05/2008; 18:25 p. 3 1 ÉCOLE D’ÉTÉ DE PHYSIQUE DES HOUCHES 1 2 2 3 SESSION LXXXVII, 2 JULY–27 JULY 2007 3 4 4 5 5 6 6 COLE THÉMATIQUE DU 7 É CNRS 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 STRING THEORY AND THE REAL WORLD: 15 16 16 17 FROM PARTICLE PHYSICS TO ASTROPHYSICS 17 18 18 19 19 20 20 21 21 Edited by 22 22 23 C.