Reversed out (White) Reversed

Total Page:16

File Type:pdf, Size:1020Kb

Reversed out (White) Reversed Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments. endeavors while educating hundreds campus to learn how a physics of successful space scientists. degree can lead to satisfying careers in academia and beyond. DEPARTMENTS 2 LETTER FROM THE CHAIR 20 DONOR SPOTLIGHT 22 DEPARTMENT NEWS 30 IN MEMORY 33 PHYSICS IN THE MEDIA 37 UNDERGRADUATE AFFAIRS 40 GRADUATE AFFAIRS 44 ALUMNI AFFAIRS LETTER FROM THE CHAIR photo credit: Ben Ailes Dear Alumni, Parents, Colleagues and Friends, New Campbell Hall Greetings from Berkeley! As I write, New Campbell Hall construction is winding down and we have started moving into the new building, which will Has it really been a year? Serving as Chair of Berkeley’s be completed by the end of the Fall semester. New Campbell Department of Physics continues to be an incredibly rewarding Hall will then revert to its old moniker – Campbell Hall – as experience. I am proud of the accomplishments of our physics renovations will be complete. While there are boxes everywhere community this past year, and look forward to our new adven- and quite a few construction workers still making final touches tures in 2014-2015. here and there, the new space is really quite amazing. Berkeley Physics Ranks #1 The open layout and third-floor bridge between Campbell The 2014 Academic Ranking of World Universities ranked and LeConte Halls will better integrate the astrophysics communi- Berkeley Physics the #1 physics department worldwide. This ties in the Physics and Astronomy Departments, providing many ranking, also known as the “Shanghai Ranking,” has become opportunities for collaboration. The Berkeley Center for one of the most closely watched and respected rankings since Cosmological Physics (BCCP), will have a new and visible home its first compilation in 2003. It is strongly focused towards on the third floor of Campbell Hall, right beside the bridge to research excellence, and our movement into the top position is LeConte. This arrangement will completely change the dynamic of an incredible achievement – one that reflects the combined LeConte Hall, bringing the open and interactive design of Campbell accomplishments of our students, faculty, and alumni as well as across to LeConte. I am excited to see what new collaborations the support of our friends and staff. and discoveries are enabled by this new infrastructure. I am proud that Berkeley Physics shines in research excel- New Learning Center for Undergraduates lence while also fulfilling our sacred teaching mission – continuing Moving forward, the completion of New Campbell Hall frees up to produce more undergraduate majors of any university in the the construction project management space on the first floor of nation. Thank you for your strong support in making Cal the best LeConte Hall. It's the perfect venue for a new student opportu- place on earth for students to pursue their physics education nity–the Undergrad Collaboration and Learning Center (UCLC). and for faculty to excel in research. The UCLC will provide a visible home for our majors in the department, providing space for quiet study and collaboration, Academic Ranking of World Universities in Physics-2014 social interaction, peer mentoring, as well as dedicated space for 1 University of California-Berkeley our active student groups. The Campus has recently approved our 2 Princeton University plan, and we have begun a detailed design and study phase to 3 Massachusetts Institute of Technology (MIT) optimize use. Your feedback and ideas are welcome, as will be 4 Harvard University your support. We will be actively seeking partners for our official 5 California Institute of Technology UCLC Campaign. Contact our new Development and Communications Director, Susan Houghton at shoughton@ Source: shanghairanking.com berkeley.edu, for more details. 2 Physics at Berkeley | Fall 2014 Undergraduate Physics Degrees: ate student mentor in a semester-long program that includes PhD Degree Institutions 2010-2012 advising, small-group discussions, special events, and excursions. Institution Degrees The goal of the program is to foster closer ties among our undergrad students through small group interactions, ties that University of California-Berkeley 118 will help support them throughout their undergraduate careers Massachusetts Institute of Technology 86 here at Berkeley. This program has already been an incredible Cornell University, All Campuses 80 success. Over 150 students are enrolled for the Fall 2014 semester, University of Washington - Seattle 68 well beyond our expectations. University of Illinois at Urbana-Champaign 64 Focus on Communications Source: American Physical Society At the start of this semester the Berkeley Department of Physics launched a new website. I hope you’ve had a chance to peruse it and Student-Led Initiatives to re-connect with us! Over a year in the making, it is designed to Our students never cease to amaze me with their boundless provide much better accessibility to breaking news and current enthusiasm for physics and their dedication to enhancing the events in the department. The site is very much a work in prog- educational environment for their peers. This past year our ress – please visit physics.berkeley.edu and give us your feedback. students founded IGenSpectrum, an organization to promote We want to hear from all alumni, friends, and colleagues. community and visibility for LGBT students in the department. I am also pleased to welcome Susan Houghton, our new To our knowledge, this is the first university department-level Director of Development and Communications. Susan has a lot LGBT organization in physics in the nation. IGenSpectrum of exciting ideas for expanding the started a speaker series as well as a Berkeley Physics communications pres- peer-mentoring program for summer ence and I look forward to being able to research students. They have already share new discoveries and memorable had a major impact on enhancing the BERKELEY CONtiNUES TO events in the department with you as environment of the department. PRODUCE MORE PHYSICS they happen. The student-led Career Development Initiative for the Physical Sciences (CDIPS) UNDERGRADUATES MAJORS Public Events is entering its third year of educating OF ANY UNIVERSitY IN Berkeley Physics hosts a number of public graduate and postgraduate students for THE NAtiON. events throughout the year, and you are careers outside academia, and strength- welcome and encouraged to attend. ening ties between academic science Looking forward to the Spring semester, and industry. These students are run- you are invited to attend the ning an incredibly successful speaker Oppenheimer Lecture on February 23, series that hosts Berkeley PhD alumni 2015. Andrei Linde, Professor of Physics successful in non-academic or non-traditional careers to inform at Stanford, will be talking about inflation in the early universe. the students about the wide variety of careers available to PhD On March 9, Eric Betzig, 2014 Nobel Laureate in Chemistry, students in the physical sciences. I encourage any of our alumni will discuss his revolutionary microscopy techniques in a special who might be interested in sharing their career experiences to be public lecture. in touch with us. Contact Gabe Dunn at [email protected]. Of course we always look forward to a great turnout for the ever-popular Cal Day. Please join us for the next CalDay, on Berkeley Connect Saturday April 18. Physics joined a handful of other departments on campus this I encourage you to learn more in the following pages about past Spring in piloting Berkeley Connect, a new mentoring pro- the outstanding research and exciting activities going on in gram at Cal. Berkeley Connect offers undergraduate students a Berkeley Physics. Your support and participation in our program chance to connect with their peers, graduate students, profes- is appreciated. You play a critical role in creating the opportuni- sors, and alumni based on a shared love of (in our case) physics. ties for our students and faculty to excel. Best wishes for 2014-15! This program pairs a small undergraduate group with a gradu- – Steve Boggs Fall 2014 | Physics at Berkeley 3 BERKELEY’S SPACE SCIENCES LabORATORY GOING ON SIX DECADES OF EDUCATION AND SPACE EXPLORATION 4 Physics at Berkeley | Fall 2014 n the tree-shaded hillside high above the Berkeley campus sits a scientific facility created specifical- ly for investigations that must be conducted above Earth’s atmo- sphere.
Recommended publications
  • WINTER 2013 - Volume 60, Number 4 the Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A
    WINTER 2013 - Volume 60, Number 4 WWW.AFHISTORICALFOUNDATION.ORG The Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A. “Tooey” Spaatz MEMBERSHIP BENEFITS and other air power pioneers, the Air Force Historical All members receive our exciting and informative Foundation (AFHF) is a nonprofi t tax exempt organization. Air Power History Journal, either electronically or It is dedicated to the preservation, perpetuation and on paper, covering: all aspects of aerospace history appropriate publication of the history and traditions of American aviation, with emphasis on the U.S. Air Force, its • Chronicles the great campaigns and predecessor organizations, and the men and women whose the great leaders lives and dreams were devoted to fl ight. The Foundation • Eyewitness accounts and historical articles serves all components of the United States Air Force— Active, Reserve and Air National Guard. • In depth resources to museums and activities, to keep members connected to the latest and AFHF strives to make available to the public and greatest events. today’s government planners and decision makers information that is relevant and informative about Preserve the legacy, stay connected: all aspects of air and space power. By doing so, the • Membership helps preserve the legacy of current Foundation hopes to assure the nation profi ts from past and future US air force personnel. experiences as it helps keep the U.S. Air Force the most modern and effective military force in the world. • Provides reliable and accurate accounts of historical events. The Foundation’s four primary activities include a quarterly journal Air Power History, a book program, a • Establish connections between generations.
    [Show full text]
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Permalink https://escholarship.org/uc/item/2sv8b4x5 Author Mcgehee Jr., Robert Stephen Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Hitoshi Murayama, Chair Professor Alexander Givental Professor Yasunori Nomura Summer 2020 Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Copyright 2020 by Robert Stephen Mcgehee Jr. 1 Abstract Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. Doctor of Philosophy in Physics University of California, Berkeley Professor Hitoshi Murayama, Chair An abundance of evidence from diverse cosmological times and scales demonstrates that 85% of the matter in the Universe is comprised of nonluminous, non-baryonic dark matter. Discovering its fundamental nature has become one of the greatest outstanding problems in modern science. Other persistent problems in physics have lingered for decades, among them the electroweak hierarchy and origin of the baryon asymmetry. Little is known about the solutions to these problems except that they must lie beyond the Standard Model. The first half of this dissertation explores dark matter models motivated by their solution to not only the dark matter conundrum but other issues such as electroweak naturalness and baryon asymmetry.
    [Show full text]
  • Saul Perlmutter Receives Nobel Prize in Physics 27 October 2011
    Saul Perlmutter receives Nobel Prize in physics 27 October 2011 wonderful that the Nobel Prize is being awarded for results which reflect humanity's long quest to understand our world and how we got here. The ideas and discoveries that led to our ability to measure the expansion history of the universe have a truly international heritage, with key contributions from almost every continent and culture. And quite appropriately, our result - the acceleration of the universe - was the product of two teams of scientists from around the world. These are the kinds of discoveries that the whole world can feel a part of and celebrate, as humanity advances its knowledge of our universe." Saul Perlmutter addresses reporters and Berkeley Lab "I offer my congratulations to Dr. Perlmutter and the staff at a press conference on the morning of October 4 entire Berkeley Lab team for their extraordinary following the announcement of his Nobel Prize in contributions to science, which are being Physics. Credit: Roy Kaltschmidt, Lawrence Berkeley recognized with the 2011 Nobel Prize in Physics," National Laboratory said Energy Secretary Steven Chu, former director of Berkeley Lab and himself a winner of the Nobel Prize in Physics in 1997. "His groundbreaking work showed us that the expansion of the universe is Saul Perlmutter, an astrophysicist at the U.S. actually speeding up rather than slowing down. Dr. Department of Energy's Lawrence Berkeley Perlmutter's award is another reminder of the National Laboratory and a professor of physics at incredible talent and world-leading expertise the University of California at Berkeley, has won America has at our National Laboratories.
    [Show full text]
  • Inflation, Large Branes, and the Shape of Space
    Inflation, Large Branes, and the Shape of Space Brett McInnes National University of Singapore email: [email protected] ABSTRACT Linde has recently argued that compact flat or negatively curved spatial sections should, in many circumstances, be considered typical in Inflationary cosmologies. We suggest that the “large brane instability” of Seiberg and Witten eliminates the negative candidates in the context of string theory. That leaves the flat, compact, three-dimensional manifolds — Conway’s platycosms. We show that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, Seiberg-Witten instability can be avoided only with difficulty. Using a specific cosmological model of the Maldacena-Maoz type, we explain how to do this, and we also show how the list of platycosmic candidates can be reduced to three. This leads to an extension of the basic idea: the conformal compactification of the entire Euclidean spacetime also has the topology of a flat, compact, four-dimensional space. arXiv:hep-th/0410115v2 19 Oct 2004 1. Nearly Flat or Really Flat? Linde has recently argued [1] that, at least in some circumstances, we should regard cosmological models with flat or negatively curved compact spatial sections as the norm from an Inflationary point of view. Here we wish to argue that cosmic holography, in the novel form proposed by Maldacena and Maoz [2], gives a deep new interpretation of this idea, and also sharpens it very considerably to exclude the negative case. This focuses our attention on cosmological models with flat, compact spatial sections. Current observations [3] show that the spatial sections of our Universe [as defined by observers for whom local isotropy obtains] are fairly close to being flat: the total density parameter Ω satisfies Ω = 1.02 0.02 at 95% confidence level, if we allow the imposition ± of a reasonable prior [4] on the Hubble parameter.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • Eternal Inflation and Its Implications
    IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 6811–6826 doi:10.1088/1751-8113/40/25/S25 Eternal inflation and its implications Alan H Guth Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected] Received 8 February 2006 Published 6 June 2007 Online at stacks.iop.org/JPhysA/40/6811 Abstract Isummarizetheargumentsthatstronglysuggestthatouruniverseisthe product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Although inflation is generically eternal into the future, it is not eternal into the past: it can be proven under reasonable assumptions that the inflating region must be incomplete in past directions, so some physics other than inflation is needed to describe the past boundary of the inflating region. PACS numbers: 98.80.cQ, 98.80.Bp, 98.80.Es 1. Introduction: the successes of inflation Since the proposal of the inflationary model some 25 years ago [1–4], inflation has been remarkably successful in explaining many important qualitative and quantitative properties of the universe. In this paper, I will summarize the key successes, and then discuss a number of issues associated with the eternal nature of inflation.
    [Show full text]
  • Table of Contents (Print)
    NEWSPAPER The PandaX-II liquid xenon detector used for dark matter searches at the China Jin-Ping Underground Laboratory. Selected for an Editors’ Suggestion. [Andi Tan et al. (PandaX-II Collaboration), Phys. Rev. Lett. 117, 121303 (2016)] PHYSICAL REVIEW LETTERS Contents Articles published 10 September–16 September 2016 VOLUME 117, NUMBER 12 16 September 2016 General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. Direct Measurement of the Density Matrix of a Quantum System .................................................................... 120401 G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen Accessing Many-Body Localized States through the Generalized Gibbs Ensemble ........................................................... 120402 Stephen Inglis and Lode Pollet Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems ................................................................................................................................................................. 120403 Ying Li Quasiprobability Representations of Quantum Mechanics with Minimal Negativity .......................................................... 120404 Huangjun Zhu Grover Search and the No-Signaling Principle ..................................................................................................................... 120501 Ning Bao, Adam Bouland, and Stephen P. Jordan Gravitation and Astrophysics Observation of Noise Correlated by
    [Show full text]
  • Booklet 2008-09.Indd
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have achieved distinguished and significant advances, who have made outstanding contributions in culture and the arts, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference will be given to individuals whose significant work was recently achieved. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, is a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. In the 1950s he founded the film company Shaw Brothers (Hong Kong) Limited in Hong Kong. He has been Executive Chairman of Television Broadcasts Limited in Hong Kong since the 1970s. Mr Shaw has also founded two charities, The Sir Run Run Shaw Charitable Trust and The Shaw Foundation Hong Kong, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I am delighted to congratulate the six distinguished scientists who receive this year’s Shaw Prize. Their accomplishments enrich human knowledge and have a profound impact on the advancement of science. This year, the Shaw Prize recognises remarkable achievements in the areas of astronomy, life science and medicine, and mathematical sciences. The exemplary work and dedication of this year’s recipients vividly demonstrate that constant drive for excellence will eventually bear fruit.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • The Cosmic Microwave Background: the History of Its Experimental Investigation and Its Significance for Cosmology
    REVIEW ARTICLE The Cosmic Microwave Background: The history of its experimental investigation and its significance for cosmology Ruth Durrer Universit´ede Gen`eve, D´epartement de Physique Th´eorique,1211 Gen`eve, Switzerland E-mail: [email protected] Abstract. This review describes the discovery of the cosmic microwave background radiation in 1965 and its impact on cosmology in the 50 years that followed. This discovery has established the Big Bang model of the Universe and the analysis of its fluctuations has confirmed the idea of inflation and led to the present era of precision cosmology. I discuss the evolution of cosmological perturbations and their imprint on the CMB as temperature fluctuations and polarization. I also show how a phase of inflationary expansion generates fluctuations in the spacetime curvature and primordial gravitational waves. In addition I present findings of CMB experiments, from the earliest to the most recent ones. The accuracy of these experiments has helped us to estimate the parameters of the cosmological model with unprecedented precision so that in the future we shall be able to test not only cosmological models but General Relativity itself on cosmological scales. Submitted to: Class. Quantum Grav. arXiv:1506.01907v1 [astro-ph.CO] 5 Jun 2015 The Cosmic Microwave Background 2 1. Historical Introduction The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson, reported in Refs. [1, 2], has been a 'game changer' in cosmology. Before this discovery, despite the observation of the expansion of the Universe, see [3], the steady state model of cosmology still had a respectable group of followers.
    [Show full text]