Arxiv:1509.06955V1 [Physics.Optics]
Statistical mechanics models for multimode lasers and random lasers F. Antenucci 1,2, A. Crisanti2,3, M. Ib´a˜nez Berganza2,4, A. Marruzzo1,2, L. Leuzzi1,2∗ 1 NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Lab, Rome, Piazzale A. Moro 2, I-00185, Roma, Italy 2 Dipartimento di Fisica, Universit`adi Roma “Sapienza,” Piazzale A. Moro 2, I-00185, Roma, Italy 3 ISC-CNR, UOS Sapienza, Piazzale A. Moro 2, I-00185, Roma, Italy 4 INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy We review recent statistical mechanical approaches to multimode laser theory. The theory has proved very effective to describe standard lasers. We refer of the mean field theory for passive mode locking and developments based on Monte Carlo simulations and cavity method to study the role of the frequency matching condition. The status for a complete theory of multimode lasing in open and disordered cavities is discussed and the derivation of the general statistical models in this framework is presented. When light is propagating in a disordered medium, the system can be analyzed via the replica method. For high degrees of disorder and nonlinearity, a glassy behavior is expected at the lasing threshold, providing a suggestive link between glasses and photonics. We describe in details the results for the general Hamiltonian model in mean field approximation and mention an available test for replica symmetry breaking from intensity spectra measurements. Finally, we summary some perspectives still opened for such approaches. The idea that the lasing threshold can be understood as a proper thermodynamic transition goes back since the early development of laser theory and non-linear optics in the 1970s, in particular in connection with modulation instability (see, e.g.,1 and the review2).
[Show full text]