The Two-Dimensional Bose Gas in Box Potentials Laura Corman

Total Page:16

File Type:pdf, Size:1020Kb

The Two-Dimensional Bose Gas in Box Potentials Laura Corman The two-dimensional Bose Gas in box potentials Laura Corman To cite this version: Laura Corman. The two-dimensional Bose Gas in box potentials. Physics [physics]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE014. tel-01449982 HAL Id: tel-01449982 https://tel.archives-ouvertes.fr/tel-01449982 Submitted on 30 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT de l’Université de recherche Paris Sciences Lettres – PSL Research University préparée à l’École normale supérieure The Two-Dimensional Bose École doctorale n°564 Gas in Box Potentials Spécialité: Physique Soutenue le 02.06.2016 Composition du Jury : par Laura Corman M Tilman Esslinger ETH Zürich Rapporteur Mme Hélène Perrin Université Paris XIII Rapporteur M Zoran Hadzibabic Cambridge University Membre du Jury M Gilles Montambaux Université Paris XI Membre du Jury M Jean Dalibard Collège de France Directeur de thèse M Jérôme Beugnon Université Paris VI Membre invité ABSTRACT Degenerate atomic gases are a versatile tool to study many-body physics. They offer the possibility to explore low-dimension physics, which strongly differs from the three dimensional (3D) case due to the enhanced role of fluctuations. In this work, we study degenerate 2D Bose gases whose original in-plane confi- nement is uniform and of arbitrary shape. These 2D uniform traps, which we first developed on an existing set-up, were subsequently implemented on a new set-up using versatile optical potentials. We present a series of experiments that take advantage of this flexible geo- metry. First, we study the static and dynamic behaviours of a uniform gas at the transition between a 3D normal and a 2D superfluid state. We observe the establishement of extended phase coherence, followed, as the gas is quench cooled, by the apparition of topological defects whose scaling is compared to the Kibble-Zurek prediction. Second, we present the first results of the new set-up : we investigate collective effects in light-matter interactions, where the resonance properties of a dense ensemble of atoms are strongly modified with respect to the single atom ones. Last, we develop two experimental proposals for the new set-up. The first one studies how a 2D gas can be uniformly evaporated using the tilted lattice providing the 2D confinement. In the second one, we propose to produce su- percurrents in a deterministic way in ring-shaped traps either by condensing in an artificial gauge field or by implementing a topological vortex pump. RÉSUMÉ Les gaz quantiques atomiques constituent un outil de choix pour étudier la physique à N corps grâce à leurs nombreux paramètres de contrôle. Ils offrent la possibilité d’explorer la physique en basse dimension, modifiée par rapport au cas à trois dimensions (3D) à cause du rôle accru des fluctuations. Dans ce travail, nous étudions le gaz de Bose à deux dimensions (2D) avec un confine- ment original dans le plan atomique, uniforme et de motif arbitraire. Ces gaz 2D et uniformes, développés sur un montage existant, ont été installés sur un nouveau montage grâce à des potentiels optiques polyvalents. Nous présentons une série d’expériences exploitant cette géométrie flexible. D’abord, nous étudions le comportement statique et dynamique d’un gaz uni- forme lors de la transition d’un état 3D normal vers un état 2D superfluide. Nous observons l’établissement de la cohérence de phase dans un gaz à l’équi- libre puis nous montrons l’apparition après une trempe de défauts topolo- giques dont le nombre est comparé à la prédiction de Kibble-Zurek. Ensuite, nous étudions grâce au nouveau montage les effets collectifs dans l’interaction lumière-matière, où les propriétés de résonance d’un nuage d’atomes dense sont fortement modifiées par rapport à celles d’un atome unique. iii Enfin, nous proposons deux protocoles pour le nouveau montage. Le premier permet d’évaporer de manière uniforme un gaz 2D grâce au réseau incliné du confinement à 2D. Le second propose de produire des supercourants de manière déterministe dans des pièges en anneaux, soit par condensation dans un champ de jauge, soit en réalisant une pompe à vortex topologique. iv REMERCIEMENTS Les performances individuelles, ce n’est pas le plus important. On gagne et on perd en équipe. Zinedine Zidane L’examen du doctorat semble une épreuve solitaire tant pour la rédaction du manuscrit que pour la présentation orale ; ce n’est qu’une apparence, et les résultats présentés ici sont fortement le produit — direct ou indirect — d’une équipe, d’interactions fructueuses avec collègues, amis et famille que j’aimerais remercier ici. Tout d’abord, je tiens à remercier Jean Dalibard qui a accepté que je rejoigne l’expérience rubidium en tant que doctorante. Cela réalisait ainsi une ancienne aspiration de ma part suite à un bref échange que j’avais eu avec lui à la suite d’une conférence de vulgarisation à l’Observatoire de Paris, et qui s’était peu à peu concrétisée grâce à des stages dans son équipe. Ses capacités scientifiques internationalement reconnues sont associées à un souci pédagogique remar- quable qui m’a permis de comprendre énorméments d’aspects de la physique, depuis les cours de l’École polytechnique jusqu’aux discussions impromptues le matin autour d’un tableau et d’un café. Sa modestie et sa bienveillance ont contribué grandement à construire une atmosphère de travail où chacun peut apprendre et proposer ses idées (et je le remercie également d’avoir écouté mes propositions plus ou moins fantaisistes au cours de ces quatre années !). Je tiens également à remercier Jérôme Beugnon qui travaillait sur l’ancienne expérience (dite “rubidium 2”) et qui a pris en main la gestion de l’équipe de la nouvelle expérience “rubidium 3”. Sa franchise, son humour et son pragma- tisme ont permis la construction rapide de l’expérience. La thèse étant rarement un long fleuve tranquille d’un point de vue personnel, je lui suis également très reconnaissante de m’avoir écoutée et aidée lorsque je rencontrais des problèmes pas nécessairement scientifiques qui pouvaient influencer mon travail. Je tiens tout particulièrement à remercier Jean et Jérôme pour leur suivi infail- lible lors du feuilleton des travaux à l’ENS qui ont conduit à l’arrêt prématuré de l’expérience “rubidium 2”, afin de trouver la meilleure solution pour la fin de ma thèse. Rétrospectivement, construire la nouvelle expérience jusqu’à l’obtention de premiers résultats a été un choix très satisfaisant pour moi, et je les remercie à la fois de m’avoir proposé plusieurs options et de m’avoir inté- grée dans la nouvelle équipe. Je remercie également l’école doctorale et Jean- Marc Berroir pour avoir été compréhensifs au vu de la situation des travaux. Mes remerciements vont également à Sylvain Nascimbène, “observateur“ sur les expériences rubidium (en particulier avec le début de la construction de l’expérience dysprosium). Il était toujours possible de passer dans son bureau pour discuter d’un sujet de physique de manière décontractée. Je resterai par- ticulièrement impressionnée par sa capacité de concentration en réunion où v certains points de physique étaient tranchés dans la minute — quand j’espèrai secrètement profiter de quelques minutes de calme en sortant pour réfléchir au problème ! Lors des présentations du métier de chercheur que j’ai eu l’occasion de faire dans des classes de lycée, on n’échappe pas à la traditionnelle “journée-type” du doctorant. Pour moi une certitude : elle a lieu dans la salle de manip, en- tourée de collègues et amis avec qui la discussion permet d’avancer. Je tiens ainsi à remercier toutes les personnes avec lesquelles j’ai travaillé directement au cours de ces quatre années. Tout d’abord, je remercie Rémi pour m’avoir initiée au fonctionnement de l’expérience “rubidium 2”, des boîtiers électron- iques cachés sous la chambre à vide au fonctionnement des mystérieuses switch boxes. Sa capacité à s’attaquer à un problème nouveau pour l’expérience (comme ce fut le cas pour le premier défrichage des possibilités ouvertes par la production de gaz dans des boîtes) a été un exemple pour moi. Je remer- cie également chaleureusement Christof, dont la bonne humeur inattaquable et l’enthousiasme pour les projets m’ont beaucoup aidé lors des moments in- certains de ma première année de thèse. Je garde également un excellent sou- venir de nos convergences musicales, littéraires, etc. Merci également à Lau- riane pour son engagement dans l’expérience, en particulier pour la prise et l’interprétation des données qui ont conduit à la compréhension de la conden- sation transverse. La lente agonie de l’expérience, éprouvée par les marteaux- piqueurs, m’a été moins pénible grâce à Andrea, en stage long, grâce à sa bonne humeur et son autonomie. Je voudrais aussi remercier Tom, avec qui j’ai eu l’occasion de travailler sur les deux expériences. Je garderai en mémoire le comptage de vortex lorsque nous les avons vu apparaître pour la première fois dans les carrés, ainsi que la joie de voir le premier BEC sur “rubidium 3”. Son esprit d’équipe, son dévouement et sa volonté d’en savoir toujours plus ont largement contribué à l’atmosphère très agréable de cette nouvelle expérience.
Recommended publications
  • Statistical Physics Problem Sets 5–8: Statistical Mechanics
    Statistical Physics xford hysics Second year physics course A. A. Schekochihin and A. Boothroyd (with thanks to S. J. Blundell) Problem Sets 5{8: Statistical Mechanics Hilary Term 2014 Some Useful Constants −23 −1 Boltzmann's constant kB 1:3807 × 10 JK −27 Proton rest mass mp 1:6726 × 10 kg 23 −1 Avogadro's number NA 6:022 × 10 mol Standard molar volume 22:414 × 10−3 m3 mol−1 Molar gas constant R 8:315 J mol−1 K−1 1 pascal (Pa) 1 N m−2 1 standard atmosphere 1:0132 × 105 Pa (N m−2) 1 bar (= 1000 mbar) 105 N m−2 Stefan{Boltzmann constant σ 5:67 × 10−8 Wm−2K−4 2 PROBLEM SET 5: Foundations of Statistical Mechanics If you want to try your hand at some practical calculations first, start with the Ideal Gas questions Maximum Entropy Inference 5.1 Factorials. a) Use your calculator to work out ln 15! Compare your answer with the simple version of Stirling's formula (ln N! ≈ N ln N − N). How big must N be for the simple version of Stirling's formula to be correct to within 2%? b∗) Derive Stirling's formula (you can look this up in a book). If you figure out this derivation, you will know how to calculate the next term in the approximation (after N ln N − N) and therefore how to estimate the precision of ln N! ≈ N ln N − N for any given N without calculating the factorials on a calculator. Check the result of (a) using this method.
    [Show full text]
  • Chapter 3 Bose-Einstein Condensation of an Ideal
    Chapter 3 Bose-Einstein Condensation of An Ideal Gas An ideal gas consisting of non-interacting Bose particles is a ¯ctitious system since every realistic Bose gas shows some level of particle-particle interaction. Nevertheless, such a mathematical model provides the simplest example for the realization of Bose-Einstein condensation. This simple model, ¯rst studied by A. Einstein [1], correctly describes important basic properties of actual non-ideal (interacting) Bose gas. In particular, such basic concepts as BEC critical temperature Tc (or critical particle density nc), condensate fraction N0=N and the dimensionality issue will be obtained. 3.1 The ideal Bose gas in the canonical and grand canonical ensemble Suppose an ideal gas of non-interacting particles with ¯xed particle number N is trapped in a box with a volume V and at equilibrium temperature T . We assume a particle system somehow establishes an equilibrium temperature in spite of the absence of interaction. Such a system can be characterized by the thermodynamic partition function of canonical ensemble X Z = e¡¯ER ; (3.1) R where R stands for a macroscopic state of the gas and is uniquely speci¯ed by the occupa- tion number ni of each single particle state i: fn0; n1; ¢ ¢ ¢ ¢ ¢ ¢g. ¯ = 1=kBT is a temperature parameter. Then, the total energy of a macroscopic state R is given by only the kinetic energy: X ER = "ini; (3.2) i where "i is the eigen-energy of the single particle state i and the occupation number ni satis¯es the normalization condition X N = ni: (3.3) i 1 The probability
    [Show full text]
  • Influence of Boundary Conditions on Statistical Properties of Ideal Bose
    PHYSICAL REVIEW E, VOLUME 65, 036129 Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates Martin Holthaus* Fachbereich Physik, Carl von Ossietzky Universita¨t, D-26111 Oldenburg, Germany Kishore T. Kapale and Marlan O. Scully Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching, Germany and Department of Physics and Institute for Quantum Studies, Texas A&M University, College Station, Texas 77843 ͑Received 23 October 2001; published 27 February 2002͒ We investigate the probability distribution that governs the number of ground-state particles in a partially condensed ideal Bose gas confined to a cubic volume within the canonical ensemble. Imposing either periodic or Dirichlet boundary conditions, we derive asymptotic expressions for all its cumulants. Whereas the conden- sation temperature becomes independent of the boundary conditions in the large-system limit, as implied by Weyl’s theorem, the fluctuation of the number of condensate particles and all higher cumulants remain sensi- tive to the boundary conditions even in that limit. The implications of these findings for weakly interacting Bose gases are briefly discussed. DOI: 10.1103/PhysRevE.65.036129 PACS number͑s͒: 05.30.Ch, 05.30.Jp, 03.75.Fi ␤ϭ When London, in 1938, wrote his now-famous papers on with 1/(kBT), where kB denotes Boltzmann’s constant. Bose-Einstein condensation of an ideal gas ͓1,2͔, he simply Note that the product runs over the excited states only, ex- considered a free system of N noninteracting Bose particles cluding the ground state ␯ϭ0; the frequencies of the indi- without an external trapping potential, imposing periodic vidual oscillators being given by the excited-states energies boundary conditions on a cubic volume V.
    [Show full text]
  • Arxiv:2102.13616V2 [Cond-Mat.Quant-Gas] 30 Jul 2021 That Preserve Stability of the Underlying Problem1
    Self-stabilized Bose polarons Richard Schmidt1, 2 and Tilman Enss3 1Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany 2Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 Munich, Germany 3Institut f¨urTheoretische Physik, Universit¨atHeidelberg, 69120 Heidelberg, Germany (Dated: August 2, 2021) The mobile impurity in a Bose-Einstein condensate (BEC) is a paradigmatic many-body problem. For weak interaction between the impurity and the BEC, the impurity deforms the BEC only slightly and it is well described within the Fr¨ohlich model and the Bogoliubov approximation. For strong local attraction this standard approach, however, fails to balance the local attraction with the weak repulsion between the BEC particles and predicts an instability where an infinite number of bosons is attracted toward the impurity. Here we present a solution of the Bose polaron problem beyond the Bogoliubov approximation which includes the local repulsion between bosons and thereby stabilizes the Bose polaron even near and beyond the scattering resonance. We show that the Bose polaron energy remains bounded from below across the resonance and the size of the polaron dressing cloud stays finite. Our results demonstrate how the dressing cloud replaces the attractive impurity potential with an effective many-body potential that excludes binding. We find that at resonance, including the effects of boson repulsion, the polaron energy depends universally on the effective range. Moreover, while the impurity contact is strongly peaked at positive scattering length, it remains always finite. Our solution highlights how Bose polarons are self-stabilized by repulsion, providing a mechanism to understand quench dynamics and nonequilibrium time evolution at strong coupling.
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • Bose Polarons at Finite Temperature and Strong Coupling
    Bose polarons at finite temperature and strong coupling Pietro Massignan Outline ✦ Quantum mixtures ✦ Impurities in an ideal Fermi sea (“Fermi polarons”) ✦ Impurities in a weakly-interacting Bose gas (“Bose polarons”) ✦ Zero-temperature physics ✦ New features appearing at non-zero temperature Collaborators Nils Guenther Maciej Lewenstein Georg M. Bruun Quantum Mixtures in CondMat 3He-4He ultracold gaseous mixtures: FF (BEC-BCS crossover) [Zwerger, Lecture Notes in Phys.] B+FF superfluids (coherent/damped dynamics) ENS-Paris BB mixtures (ultradilute quantum liquid droplets) Stuttgart, Innsbruck, Barcelona spinor gases, SU(N) invariant systems Kyoto, Florence, Munich, … quantum magnets, quantum Hall systems, spin-liquids quark-gluon plasma neutron stars Very different microscopically, but ∃ common emergent and universal many-body descriptions. 4 Universality in Quantum Mixtures 20 orders of magnitude difference in temperature Coulomb plasma but similar transport properties! e.g., shear viscosity/entropy density: [Adams et al., NJP 2012] 5 Many-body systems (from Richard Mattuck’s book) 6 Quasi-Particles No chance of studying real particles Landau: of importance are the collective excitations, which generally behave as quasi-particles! a QP is a “free” particle with: @ q. numbers (charge, spin, ...) @ renormalized mass @ chemical potential @ shielded interactions @ lifetime 7 Ultracold atoms chemical composition interaction strength temperature periodic potentials physical dimension atom-light coupling exotic interactions (x-wave, spin-orbit) dynamics disorder periodic driving (shaken optical lattices) 8 Imbalanced Fermi gases Two-component Fermi gas with N↑≫N↓: a strongly-interacting system, or an ensemble of weakly-interacting quasi-particles (a Fermi liquid) 3 m N 5/3 E = ✏F N 1+ # + N Ep + ..., 5 " m⇤ N # " ✓ " ◆ # kinetic energy chemical potential (energy) kinetic energy of one polaron of the Fermi sea of the polarons (m* is their effective mass) 9 Spectrum of Fermi polarons low power RF: high power RF: repulsive pol.
    [Show full text]
  • Condensation of Bosons with Several Degrees of Freedom Condensación De Bosones Con Varios Grados De Libertad
    Condensation of bosons with several degrees of freedom Condensación de bosones con varios grados de libertad Trabajo presentado por Rafael Delgado López1 para optar al título de Máster en Física Fundamental bajo la dirección del Dr. Pedro Bargueño de Retes2 y del Prof. Fernando Sols Lucia3 Universidad Complutense de Madrid Junio de 2013 Calificación obtenida: 10 (MH) 1 [email protected], Dep. Física Teórica I, Universidad Complutense de Madrid 2 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid 3 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid Abstract The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited as a first step to tackle the more complex case of a molecular condensate, where several degrees of freedom have to be taken into account. In the charged bose gas, the conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to (1/2) NkB and a gradual condensation at lower temperatures. In the molecular case, which is currently in progress, we have studied the condensation of rotational levels in a two–dimensional trap within the Bogoliubov approximation, showing that multi–step condensation also occurs.
    [Show full text]
  • Dynamic Correlations in a Charged Bose Gas
    XA9745097 IC/97/95 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS K. Tankeshwar B. Tanatar and M.P. Tosi MIRAMARE-TRIESTE IC/97/95 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS K. Tankeshwar Center for Advanced Study in Physics, Department of Physics, Panjab University, 160 014 Chandigarh, India and International Centre for Theoretical Physics, Trieste, Italy, B. Tanatar1 Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey and International Centre for Theoretical Physics, Trieste, Italy and M.P. Tosi2 Scuola Normale Superiore, 1-56126 Pisa, Italy and International Centre for Theoretical Physics, Trieste, Italy. MIRAMARE - TRIESTE August 1997 1 Regular Associate of the ICTP. 2 On leave of absence. ABSTRACT We evaluate the ground state properties of a charged Bose gas at T = 0 within the quan­ tum version of the self-consistent field approximation of Singwi, Tosi, Land and Sjolander (STLS). The dynamical nature of the local field correction is retained to include dynamic correlation effects. The resulting static structure factor S(q) and the local field factor Ci(q) exhibit properties not described by other mean-field theories. 1 I. INTRODUCTION The homogeneous gas of electrons interacting via the Coulomb potential is a useful model1 to understand a vast range of physical phenomena. The continuing interest in this model stems partly from the realization of physical systems in the laboratory which lend themselves to such a description, and partly from theoretical reasons to understand the basic properties of a many body system.
    [Show full text]
  • Solid State Physics
    Solid State Physics Chetan Nayak Physics 140a Franz 1354; M, W 11:00-12:15 Office Hour: TBA; Knudsen 6-130J Section: MS 7608; F 11:00-11:50 TA: Sumanta Tewari University of California, Los Angeles September 2000 Contents 1 What is Condensed Matter Physics? 1 1.1 Length, time, energy scales . 1 1.2 Microscopic Equations vs. States of Matter, Phase Transitions, Critical Points ................................... 2 1.3 Broken Symmetries . 3 1.4 Experimental probes: X-ray scattering, neutron scattering, NMR, ther- modynamic, transport . 3 1.5 The Solid State: metals, insulators, magnets, superconductors . 4 1.6 Other phases: liquid crystals, quasicrystals, polymers, glasses . 5 2 Review of Quantum Mechanics 7 2.1 States and Operators . 7 2.2 Density and Current . 10 2.3 δ-function scatterer . 11 2.4 Particle in a Box . 11 2.5 Harmonic Oscillator . 12 2.6 Double Well . 13 2.7 Spin . 15 2.8 Many-Particle Hilbert Spaces: Bosons, Fermions . 15 3 Review of Statistical Mechanics 18 ii 3.1 Microcanonical, Canonical, Grand Canonical Ensembles . 18 3.2 Bose-Einstein and Planck Distributions . 21 3.2.1 Bose-Einstein Statistics . 21 3.2.2 The Planck Distribution . 22 3.3 Fermi-Dirac Distribution . 23 3.4 Thermodynamics of the Free Fermion Gas . 24 3.5 Ising Model, Mean Field Theory, Phases . 27 4 Broken Translational Invariance in the Solid State 30 4.1 Simple Energetics of Solids . 30 4.2 Phonons: Linear Chain . 31 4.3 Quantum Mechanics of a Linear Chain . 31 4.3.1 Statistical Mechnics of a Linear Chain .
    [Show full text]
  • The Non-Interacting Bose Gas
    Chapter 1 The non-interacting Bose gas Learning goals What is a Bose-Einstein condensate and why does it form? • What determines the critical temperature and the condensate fraction? • What changes for trapped systems? • The ideal, i.e. non-interacting Bose gas is the starting point for our discussions. Its properties are determined by the quantum statistics of the particles. In the grand canonical ensemble, we can write down the Bose distribution function, which leads to a criterion for Bose-Einstein con- densation. We define the critical temperature and the condensate fraction for the homogeneous gas before we turn to the experimentally relevant case of a gas trapped in a harmonic potential. 1.1 Introduction 1.1.1 Quantum statistics Quantum statistics tells us how to distribute particles on possible quantum states. It is essen- tially determined by the symmetry of the wave function upon a permutation of the particles. As the most simple example, we consider two particles which can be distributed in two boxes (quan- tum states), see Fig. 1.1. If the particles are distinguishable, in total four di↵erent possibilities exist. The probability to find two particles in the same state is then 1/2. This changes if we consider two indistinguishable bosons. Now, only three di↵erent combinations are possible, and the situation that two bosons occupy the same quantum state is enhanced to 2/3 - bosons tend to stick together! This is in contrast to fermions, where the Pauli exclusion principle prohibits the possibility of two particles being in the same state and only one possibility to arrange the particles exists.
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • Coherence and Perturbed Dynamics in Magnon Bose Einstein Condensates
    Experimentelle Physik Coherence and Perturbed Dynamics in Magnon Bose Einstein Condensates Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Physik der Mathematisch-Naturwissenschaftlichen Fakult¨at der Westf¨alischen Wilhelms-Universit¨at M¨unster vorgelegt von Patryk Nowik-Boltyk aus Grudziadz, Polen 2014 ii Dekan: Prof.Dr. Markus Donath Erster Gutachter: Prof.Dr. Sergej O. Demokritov Zweiter Gutachter: Prof.Dr. Carsten Fallnich Tag der m¨undlichen Pr¨ufung: Tag der Promotion: iii Zusammenfassung Die vorliegende Arbeit behandelt intrinsische sowie dynamische Eigenschaften eines Magnon Bose-Einstein Kondensats. Das Kondensat wird erzeugt indem, durch parametrisches Pumpen erzeugte, zus¨atzliche Magnonen in das thermische Magnonen Gas injiziert werden. Die darauffolgende Thermalisierung dir zus¨atzlichen Magnonen f¨uhrt zu einem neuen thermischen Gleichgewicht und resultiert Schlussendlich in der Erzeugung eines Bose-Einstein Kondensats. Als Medium f¨ur die Magnonen dient, aufgrund seiner besonders langen Magnon Lebensdauer, ein epitaktisch gewachsener, d¨unner Yttrium Eisen Granat Film. Brillouin Licht Streuung und magneto-optische, zeitaufgel¨oste Magnetometrie werden eingesetzt, um dieortliche ¨ und zeitliche Verteilung der Magnonen zu bestimmen. Das erste Experiment dieser Arbeit beweist eindeutig, dass die starke Uberbesetzung¨ des Grundzustandes tats¨achlich als Bose-Einstein Kondensation identifiziert werden kann. Zu diesem Zweck wurde eine neuartige stroboskopische Methode, basierend auf einer zeitaufgel¨osten magneto-optischen Magnetometrie, mit einer zuvor unerre- ichten Frequenzaufl¨osung von unter 200Hz, angewendet um das Kondensat zu un- tersuchen. Dieses Experiment hat gezeigt, dass das Kondensat einen hohen Grad an Koh¨arenz und eine Linienbreite von 2MHz bei einer Frequenz von etlichen GHz aufweist, was mit den Eigenschaften, die von einem Bose-Einstein Kondensat er- wartet werden,ubereinstimmt.
    [Show full text]