8.044: Statistical Physics I 1 February 5, 2019

Total Page:16

File Type:pdf, Size:1020Kb

8.044: Statistical Physics I 1 February 5, 2019 8.044: Statistical Physics I Lecturer: Professor Nikta Fakhri Notes by: Andrew Lin Spring 2019 My recitations for this class were taught by Professor Wolfgang Ketterle. 1 February 5, 2019 This class’s recitation teachers are Professor Jeremy England and Professor Wolfgang Ketterle, and Nicolas Romeo is the graduate TA. We’re encouraged to talk to the teaching team about their research – Professor Fakhri and Professor England work in biophysics and nonequilibrium systems, and Professor Ketterle works in experimental atomic and molecular physics. 1.1 Course information We can read the online syllabus for most of this information. Lectures will be in 6-120 from 11 to 12:30, and a 5-minute break will usually be given after about 50 minutes of class. The class’s LMOD website will have lecture notes and problem sets posted – unlike some other classes, all pset solutions should be uploaded to the website, because the TAs can grade our homework online. This way, we never lose a pset and don’t have to go to the drop boxes. There are two textbooks for this class: Schroeder’s “An Introduction to Thermal Physics” and Jaffe’s “The Physics of Energy.” We’ll have a reading list that explains which sections correspond to each lecture. Exam-wise, there are two midterms on March 12 and April 18, which take place during class and contribute 20 percent each to our grade. There is also a final that is 30 percent of our grade (during finals week). The remaining 30 percent of our grade comes from 11 or 12 problem sets (lowest grade dropped). Office hours haven’t been posted yet; they will also be posted on the website once schedules are sorted out. 1.2 Why be excited about 8.044? One of the driving principles behind this class is the phrase “More is different.” We can check the course website for the reading “More is Different” by P.W. Anderson. Definition 1 Thermodynamics is a branch of physics that provides phenomenological descriptions for properties of macroscopic systems in thermal equilibrium. Throughout this class, we’ll define each of the words in the definition above, and more generally, we’re going to learn about the physics of energy and matter as we experience it at normal, everyday time and length scales. The 1 most important feature is that we’re dealing with the physics of many particles at once – in fact, we’re going to be doing a statistical description of about 1024 particles at once. It would be very hard and basically useless to try to use ordinary equations of motion to describe the behavior of each particle. Fact 2 Because thermodynamics is a study of global properties, like magnetism or hardness, the largeness of our systems will often actually be an advantage in calculations. The concept of time asymmetry will also come up in this class. In Newton’s laws, Maxwell’s equations, or the Schrodinger equation, there is no real evidence that time needs to travel in a certain direction for the physics to be valid. But the “arrow of time” is dependent on some of the ideas we’ll discuss in this class. Two more ideas that will repeatedly come up are temperature and entropy. We’ll spend a lot of time precisely understanding those concepts, and we’ll understand that it doesn’t make sense to talk about the temperature of an individual particle – it only does to define temperature with regards to a larger system. Meanwhile, entropy is possibly the most influential concept coming from statistical mechanics: it was originally understood as a thermodynamic property of heat engines, which is where much of this field originated. But now, entropy is science’s fundamental measure of disorder and information, and it can quantify ideas from image compression to the heat death of the Universe. Here’s a list of some of the questions we’ll be asking in this class: • What is the difference between a solid, liquid, and gas? • What makes a material an insulator or a conductor? • How do we understand other properties of materials, like magnets, superfluids, superconductors, white dwarfs, neutron stars, stretchiness of rubber, and physics of living systems? None of these are immediately apparent from the laws of Newton, Maxwell, or Schrodinger. Instead, we’re going to need to develop a theoretical framework with two main parts: • Thermodynamics: this is the machinery that describes macroscopic quantities such as entropy, temperature, magnetization, and their relationship. • Statistical mechanics: this is the statistical machinery at the microscopic level. What are each of the degrees of freedom doing in our system? These concepts have been incorporated into different other STEM fields: for example, they come up in Monte- Carlo methods, descriptions of ensembles, understanding phases, nucleation, fluctuations, bioinformatics, and (now the foundation of most of physics) quantum statistical mechanics. 1.3 An example from biology Many living systems perform processes that are irreversible, and the behavior of these processes can be quantified in terms of how much entropy is produced by them. Statistical physics and information theory help us do this! As a teaser, imagine we have a biological system where movement of particles is influenced by both thermal motion and motor proteins. By watching a video, we can track each individual particle, and looking at the trajectory forward and backward, and we can construct a relative entropy _ hSi X pf ≡ D[pforwardjjpbackward] = pf ln kB pb 2 which compares the probability distributions of forward and backward motion, and the point is that this relates to the entropy production rate of the system! But it’ll take us a lot of work to get to that kind of result, so we’ll start with some definitions and important concepts. To summarize this general overview, there’s two complementary paths going on here: Thermodynamics =) global properties =) (temperature, entropy, magnetization, etc.); and Statistical physics =) (microscopic world to macroscopic world): We’ll also spend time on two “diversions:” quantum mechanic will help us construct the important states that we will end up “counting” in statistical physics, and basic probability theory will give us a statistical description of the properties we’re trying to describe (since entropy itself is an information theory metric)! To fully discuss these topics, we’re going to need some mathematics, particularly multivariable calculus. 1.4 Definitions We’ll start by talking about the basic concepts of heat, internal energy, thermal energy, and temperature. Definition 3 (Tentative) Thermal energy is the collective energy contained in the relative motion of a large number of particles that compose a macroscopic system. Heat is the transfer of that thermal energy. (We’ll try to be careful in distinguishing between energy and the transfer of that energy throughout this class.) Definition 4 Internal energy, often denoted U, is the sum of all contributions to the energy of a system as an isolated whole. This internal energy U is usually made up of a sum of different contributions: • Kinetic energy of molecular motion, including translational, vibrational, and rotational motion, • Potential energy due to interactions between particles in the system, and • Molecular, atomic, and nuclear binding energies. Notably, this does not include the energy of an external field or the kinetic and potential energy of the system as a whole, because we care about behavior that is internal to our system of study. Example 5 Consider a glass of water on a table, and compare it to the same glass at a higher height. This doesn’t change the internal energy, even though the glass has gained some overall gravitational potential energy. Definition 6 (Tentative) Temperature is what we measure on a thermometer. 3 As a general rule, if we remove some internal energy from a system, the temperature will decrease. But there are cases where it will plateau as well! For example, if we plot temperature as a function of the internal energy, it is linear for each phase state (solid, liquid, vapor), but plateaus during phase changes, because it takes some energy to transform ice to water to vapor. And now we’re ready to make some slightly more precise definitions: Definition 7 Let U0 be the energy of a system at tempreature T = 0. Thermal energy is the part of the internal energy of a system above U = U0. Notice that with this definition, the binding energy does not contribute to thermal energy (because that’s present even at T = 0;U = U0), but the other sources of internal energy (kinetic energy, potential energy) will still contribute. Definition 8 Heat is the transfer of thermal energy from a system to another system. This is not a property of the system: instead, it’s energy in motion! And heat transfer can occur as heat conduction or radiation, a change in temperature, or other things that occur at the microscopic level. 1.5 States and state variables The next discussion is a little bit more subtle – we want to know what it means for our system to be in a particular state. In classical mechanics, a state is specified by the position and velocity of all objects at time t. So if we’re given the two numbers fxi (t); x_i (t)g for each i (that is, for every particle in our system), we have specified everything we might want to know. Meanwhile, in quantum mechanics, the state of a system is specified by quantum numbers: for example, jn1; ··· ; nM i (for some nonnegative integers ni ) is one way we might describe the system. But we have a completely different definition of “state” now that we’re in a macroscopic system: Definition 9 A system which has settled down is in a state of thermodynamic equilibrium or thermodynamic macrostate.
Recommended publications
  • Statistical Physics Problem Sets 5–8: Statistical Mechanics
    Statistical Physics xford hysics Second year physics course A. A. Schekochihin and A. Boothroyd (with thanks to S. J. Blundell) Problem Sets 5{8: Statistical Mechanics Hilary Term 2014 Some Useful Constants −23 −1 Boltzmann's constant kB 1:3807 × 10 JK −27 Proton rest mass mp 1:6726 × 10 kg 23 −1 Avogadro's number NA 6:022 × 10 mol Standard molar volume 22:414 × 10−3 m3 mol−1 Molar gas constant R 8:315 J mol−1 K−1 1 pascal (Pa) 1 N m−2 1 standard atmosphere 1:0132 × 105 Pa (N m−2) 1 bar (= 1000 mbar) 105 N m−2 Stefan{Boltzmann constant σ 5:67 × 10−8 Wm−2K−4 2 PROBLEM SET 5: Foundations of Statistical Mechanics If you want to try your hand at some practical calculations first, start with the Ideal Gas questions Maximum Entropy Inference 5.1 Factorials. a) Use your calculator to work out ln 15! Compare your answer with the simple version of Stirling's formula (ln N! ≈ N ln N − N). How big must N be for the simple version of Stirling's formula to be correct to within 2%? b∗) Derive Stirling's formula (you can look this up in a book). If you figure out this derivation, you will know how to calculate the next term in the approximation (after N ln N − N) and therefore how to estimate the precision of ln N! ≈ N ln N − N for any given N without calculating the factorials on a calculator. Check the result of (a) using this method.
    [Show full text]
  • Influence of Boundary Conditions on Statistical Properties of Ideal Bose
    PHYSICAL REVIEW E, VOLUME 65, 036129 Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates Martin Holthaus* Fachbereich Physik, Carl von Ossietzky Universita¨t, D-26111 Oldenburg, Germany Kishore T. Kapale and Marlan O. Scully Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching, Germany and Department of Physics and Institute for Quantum Studies, Texas A&M University, College Station, Texas 77843 ͑Received 23 October 2001; published 27 February 2002͒ We investigate the probability distribution that governs the number of ground-state particles in a partially condensed ideal Bose gas confined to a cubic volume within the canonical ensemble. Imposing either periodic or Dirichlet boundary conditions, we derive asymptotic expressions for all its cumulants. Whereas the conden- sation temperature becomes independent of the boundary conditions in the large-system limit, as implied by Weyl’s theorem, the fluctuation of the number of condensate particles and all higher cumulants remain sensi- tive to the boundary conditions even in that limit. The implications of these findings for weakly interacting Bose gases are briefly discussed. DOI: 10.1103/PhysRevE.65.036129 PACS number͑s͒: 05.30.Ch, 05.30.Jp, 03.75.Fi ␤ϭ When London, in 1938, wrote his now-famous papers on with 1/(kBT), where kB denotes Boltzmann’s constant. Bose-Einstein condensation of an ideal gas ͓1,2͔, he simply Note that the product runs over the excited states only, ex- considered a free system of N noninteracting Bose particles cluding the ground state ␯ϭ0; the frequencies of the indi- without an external trapping potential, imposing periodic vidual oscillators being given by the excited-states energies boundary conditions on a cubic volume V.
    [Show full text]
  • The Two-Dimensional Bose Gas in Box Potentials Laura Corman
    The two-dimensional Bose Gas in box potentials Laura Corman To cite this version: Laura Corman. The two-dimensional Bose Gas in box potentials. Physics [physics]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE014. tel-01449982 HAL Id: tel-01449982 https://tel.archives-ouvertes.fr/tel-01449982 Submitted on 30 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT de l’Université de recherche Paris Sciences Lettres – PSL Research University préparée à l’École normale supérieure The Two-Dimensional Bose École doctorale n°564 Gas in Box Potentials Spécialité: Physique Soutenue le 02.06.2016 Composition du Jury : par Laura Corman M Tilman Esslinger ETH Zürich Rapporteur Mme Hélène Perrin Université Paris XIII Rapporteur M Zoran Hadzibabic Cambridge University Membre du Jury M Gilles Montambaux Université Paris XI Membre du Jury M Jean Dalibard Collège de France Directeur de thèse M Jérôme Beugnon Université Paris VI Membre invité ABSTRACT Degenerate atomic gases are a versatile tool to study many-body physics. They offer the possibility to explore low-dimension physics, which strongly differs from the three dimensional (3D) case due to the enhanced role of fluctuations.
    [Show full text]
  • Condensation of Bosons with Several Degrees of Freedom Condensación De Bosones Con Varios Grados De Libertad
    Condensation of bosons with several degrees of freedom Condensación de bosones con varios grados de libertad Trabajo presentado por Rafael Delgado López1 para optar al título de Máster en Física Fundamental bajo la dirección del Dr. Pedro Bargueño de Retes2 y del Prof. Fernando Sols Lucia3 Universidad Complutense de Madrid Junio de 2013 Calificación obtenida: 10 (MH) 1 [email protected], Dep. Física Teórica I, Universidad Complutense de Madrid 2 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid 3 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid Abstract The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited as a first step to tackle the more complex case of a molecular condensate, where several degrees of freedom have to be taken into account. In the charged bose gas, the conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to (1/2) NkB and a gradual condensation at lower temperatures. In the molecular case, which is currently in progress, we have studied the condensation of rotational levels in a two–dimensional trap within the Bogoliubov approximation, showing that multi–step condensation also occurs.
    [Show full text]
  • Solid State Physics
    Solid State Physics Chetan Nayak Physics 140a Franz 1354; M, W 11:00-12:15 Office Hour: TBA; Knudsen 6-130J Section: MS 7608; F 11:00-11:50 TA: Sumanta Tewari University of California, Los Angeles September 2000 Contents 1 What is Condensed Matter Physics? 1 1.1 Length, time, energy scales . 1 1.2 Microscopic Equations vs. States of Matter, Phase Transitions, Critical Points ................................... 2 1.3 Broken Symmetries . 3 1.4 Experimental probes: X-ray scattering, neutron scattering, NMR, ther- modynamic, transport . 3 1.5 The Solid State: metals, insulators, magnets, superconductors . 4 1.6 Other phases: liquid crystals, quasicrystals, polymers, glasses . 5 2 Review of Quantum Mechanics 7 2.1 States and Operators . 7 2.2 Density and Current . 10 2.3 δ-function scatterer . 11 2.4 Particle in a Box . 11 2.5 Harmonic Oscillator . 12 2.6 Double Well . 13 2.7 Spin . 15 2.8 Many-Particle Hilbert Spaces: Bosons, Fermions . 15 3 Review of Statistical Mechanics 18 ii 3.1 Microcanonical, Canonical, Grand Canonical Ensembles . 18 3.2 Bose-Einstein and Planck Distributions . 21 3.2.1 Bose-Einstein Statistics . 21 3.2.2 The Planck Distribution . 22 3.3 Fermi-Dirac Distribution . 23 3.4 Thermodynamics of the Free Fermion Gas . 24 3.5 Ising Model, Mean Field Theory, Phases . 27 4 Broken Translational Invariance in the Solid State 30 4.1 Simple Energetics of Solids . 30 4.2 Phonons: Linear Chain . 31 4.3 Quantum Mechanics of a Linear Chain . 31 4.3.1 Statistical Mechnics of a Linear Chain .
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • Fluctuations of the Bose-Einstein Condensate 11
    FLUCTUATIONS OF THE BOSE-EINSTEIN CONDENSATE SOURAV CHATTERJEE AND PERSI DIACONIS Abstract. This article gives a rigorous analysis of the fluctuations of the Bose-Einstein condensate for a system of non-interacting bosons in an arbitrary potential, assuming that the system is governed by the canonical ensemble. As a result of the analysis, we are able to tell the order of fluctuations of the condensate fraction as well as its limiting distribution upon proper centering and scaling. This yields interesting results. For example, for a system of n bosons in a 3D harmonic trap near the transition temperature, the order of fluctuations of the conden- sate fraction is n−1=2 and the limiting distribution is normal, whereas for the 3D uniform Bose gas, the order of fluctuations is n−1=3 and the limiting distribution is an explicit non-normal distribution. For a 2D harmonic trap, the order of fluctuations is n−1=2(log n)1=2, which is larger than n−1=2 but the limiting distribution is still normal. All of these results come as easy consequences of a general theorem. 1. Introduction Consider a system of n non-interacting particles, each of which can be in one of a discrete set of quantum states. If the particles are distinguish- able, then the state of the system is described by the n-tuple consisting of the states of the n particles. On the other hand if the particles are in- distinguishable, then the state of the system is described by the sequence (n0; n1; n2;:::), where nj is the number of particles in state j.
    [Show full text]
  • Unit 9 Free Electron Theory of Metals
    UNIT 9 FREE ELECTRON THEORY OF METALS Structure 9.1 Introduction Objectives 9.2 Drude - Lorentz Theory Electrical Conductivity Thermal Properties 9.3 Sommerfeld Model Fermi Energy and Fermi Surface Temperature Dependence of Electrical and Thermal Properties 9.4 Summary 9.5 Terminal Questions 9.6 Solutions and Answers 9.1 INTRODUCTION In Blocks 1 and 2, you have learnt about crystal structure and crystal binding. These helped you to understand the elastic properties of solids. You have studied that elastic and to some extent, thermal properties of solids can be understood in terms of vibrations of atoms about their respective equilibrium positions. However, many physical properties of solids can be explained only when sub-atomic details such as motion of electrons are taken into consideration. In this unit, you will learn one such microscopic theory: free electron theory of metals which successfully explains some of their electrical and therinal properties. Metals are perhaps the most versatile materials from the point of view of utility. We all know that due to hardness and rigidity, metals are ideal materials for making machines, industrial equipment, household goods, automobiles, ships etc. Similarly, iron is an essential ingredient of modem structures such as ceilings, flyovers and pillars, because of its strength and stability. Further, metals like copper and aluminium are used in power transmission and distribution and so on. In view of their so many and so varied uses, it is important to understand their physical properties. In your school physics course, you learnt that electrons are responsible for electrical conduction in metals. This means that to understand the electrical properties, we have to investigate the behaviour of electrons.
    [Show full text]
  • The Ideal Bose Gas in Open Harmonic Trap Systems and Its Condensation Revisited
    The ideal Bose gas in open harmonic trap systems and its condensation revisited. Baptiste Savoie, Mathieu Beau To cite this version: Baptiste Savoie, Mathieu Beau. The ideal Bose gas in open harmonic trap systems and its condensation revisited.. 2013. hal-00834558 HAL Id: hal-00834558 https://hal.archives-ouvertes.fr/hal-00834558 Preprint submitted on 16 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The ideal Bose gas in open harmonic trap systems and its condensation revisited. June 16, 2013 Mathieu Beau∗, Baptiste Savoie† Abstract We rigorously revisit a textbook model used to figure out the Bose-Einstein condensation (BEC) phenomenon created by dilute cold alkali atoms gases in a magnetic-optical trap. It consists of a d-dimensional (d = 1, 2, 3) ideal non-relativistic spin-0 Bose gas confined in a box and trapped in an isotropic harmonic potential. Throughout we review and clarify a series of methods involved in the derivation of the thermodynamics in the grand-canonical situation. To make the derivation consistent with the usual rules of the statistical mechanics, we assign through our open-trap limit approach the role of canonical parameter to a rescaled number of particles (instead of an effective density involving the pulsation of the trap).
    [Show full text]
  • The Loop-Gas Approach to Bose-Einstein Condensation for Trapped Particles WJ Mullin [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2000 The loop-gas approach to Bose-Einstein condensation for trapped particles WJ Mullin [email protected] Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty_pubs Part of the Physics Commons Recommended Citation Mullin, WJ, "The loop-gas approach to Bose-Einstein condensation for trapped particles" (2000). AMERICAN JOURNAL OF PHYSICS. 51. Retrieved from https://scholarworks.umass.edu/physics_faculty_pubs/51 This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. The Loop-Gas Approach to Bose-Einstein Condensation for Trapped Particles William J. Mullin Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003 (January 22, 1999) We examine Bose-Einstein condensation (BEC) for particles trapped in a harmonic potential by considering it as a transition in the length of permutation cycles that arise from wave-function symmetry. This “loop-gas” approach was originally developed by Feynman in his path-integral study of BEC for an homogeneous gas in a box. For the harmonic oscillator potential it is possible to treat the ideal gas exactly so that one can easily see how standard approximations become more accurate in the thermodynamic limit (TDL). One clearly sees that the condensate is made up of very long permutation loops whose length fluctuates ever more wildly as the number of particles increases.
    [Show full text]
  • Gross-Pitaevskii Limit of a Homogeneous Bose Gas At
    Gross-Pitaevskii Limit of a Homogeneous Bose Gas at Positive Temperature Andreas Deuchert, Robert Seiringer We consider a dilute, homogeneous Bose gas at positive temperature. The system is investi- gated in the Gross-Pitaevskii limit, where the scattering length a is so small that the interaction energy is of the same order of magnitude as the spectral gap of the Laplacian, and for tempera- tures that are comparable to the critical temperature of the ideal gas. We show that the difference between the specific free energy of the interacting system and the one of the ideal gas is to leading order given by 4πa 2̺2 ̺2 . Here ̺ denotes the density of the system and ̺ is the expected − 0 0 condensate density of the ideal gas. Additionally, we show that the one-particle density matrix of any approximate minimizer of the Gibbs free energy functional is to leading order given by the one of the ideal gas. This in particular proves Bose-Einstein condensation with critical tempera- ture given by the one of the ideal gas to leading order. One key ingredient of our proof is a novel use of the Gibbs variational principle that goes hand in hand with the c-number substitution. Contents 1. Introduction and main results 2 1.1. Backgroundandsummary . ......... 2 1.2. Notation....................................... ....... 3 1.3. Themodel....................................... ...... 3 1.4. The ideal Bose gas on the torus . ............ 5 1.5. Themaintheorem................................. ........ 5 1.6. Extension to the case of Dirichlet boundary conditions ..................... 7 1.7. Theproofstrategy............................... .......... 9 2. Proof of the upper bound 10 arXiv:1901.11363v3 [math-ph] 14 Jan 2020 2.1.
    [Show full text]
  • Thermal & Statistical Physics
    Part II Thermal & Statistical Physics Eugene Terentjev rm.245 Bragg Relevant websites: http://www-teach.phy.cam.ac.uk/teaching/webpages.php http://www.bss.phy.cam.ac.uk/~emt1000/statphys.html Michaelmas 2012 Part II Thermal & Statistical Energy Over-arching concept … Often-misused concept … Physical “definition”: there exists a certain scalar quantity that does not change in all the possible transformations that Nature undergoes. This is essentially an abstract mathematical constraint, but we really can’t tell what energy “is”… Potential Energy Kinetic Energy Mass Energy Thermal Energy 1 Michaelmas 2012 Part II Thermal & Statistical Dissipation of energy In most areas of physics we only consider the situations where the total energy of a given system was conserved. The forces may have done some work , but it was possible to convert it back into potential energy . In many situations, however, some of the work will be “lost ”. Where would the energy go, if there is a universal Law of conservation of energy? We say it converts into “ heat ”. One often thinks that “heat” is just the form of kinetic energy of many particles – but since there are so many of them ( 10 23 in a spoon of water ) we have no hope of harvesting this energy back… so it is considered “lost”. Michaelmas 2012 Part II Thermal & Statistical Dissipation of energy This loss of energy into heat is called “energy dissipation”. It is a result of wet friction (or “dissipative friction”), which in most cases is a force proportional, and opposite in direction to the velocity : F v friction = −γ F N v F fr fr v mg Compare this with the dry friction (resistance), which is F N friction = −µ The force of friction is directly proportional to the applied load.
    [Show full text]