UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Permalink https://escholarship.org/uc/item/8qh706tk Author Dzienkowski, Eric Michael Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Eric Michael Dzienkowski Committee in charge: Professor David Berenstein, Chair Professor Joe Polchinski Professor David Stuart September 2015 The Dissertation of Eric Michael Dzienkowski is approved. Professor Joe Polchinski Professor David Stuart Professor David Berenstein, Committee Chair July 2015 Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Copyright c 2015 by Eric Michael Dzienkowski iii To my family, who endured my absense for the better part of nine long years while I attempted to understand the universe. iv Acknowledgements There are many people and entities deserving thanks for helping me complete my dissertation. To my advisor, David Berenstein, for the guidance, advice, and support over the years. With any luck, I have absorbed some of your unique insight and intuition to solving problems, some which I hope to apply to my future as a physicist or otherwise. A special thanks to my collaborators Curtis Asplund and Robin Lashof-Regas. Curtis, it has been and will continue to be a pleasure working with you. Ad- ditional thanks for various comments and discussions along the way to Yuhma Asano, Thomas Banks, Frederik Denef, Jim Hartle, Sean Hartnoll, Matthew Hastings, Gary Horowitz, Christian Maes, Juan Maldacena, John Mangual, Don Marolf, Greg Moore, Niels Obers, Joe Polchisnki, Jorge Santos, Edward Shuryak, Christoph Sieg, Eva Silverstein, Mark Srednicki, and Matthias Staudacher. I was very fortunate to have the opportunity to interact with many talented physicists. As such, I would like to thank the members of the Gravity / High Energy Theory group at UCSB and the KITP for their contribution to my edu- cation. A particular thanks to Joseph Polchinski and David Stuart for serving on my committee. I would like to thank my friends and fellow graduate students, especially those who reside with me on the sixth floor of Broida, and in particular, Sebastian Fis- chetti, Keith Fratus, and Eric Mintun. Thank you for the many useful discussions and insights, and for sharing many working nights. To my family, for their tremendous amount of support and understanding from v 2700 miles away while I accomplished this goal. Work of E.D. supported by the Department of Energy Office of Science Grad- uate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. Work also supported in part by DOE grant DE-FG02-91ER40618, and grant DE-SC0011702. Work also supported in part by the National Science Foundation grant no. Phy05-51164, and grant no. PHYS- 1066293. Work additionally supported by the FWO - Vlaanderen, Project No. G.0651.11 and the Odysseus program, by the Federal Office for Scientific, Techni- cal and Cultural Affairs through the Interuniversity Attraction Poles Programme Belgian Science Policy P7/37, the European Science Foundation Holograv Net- work and by a grant from the John Templeton Foundation. The opinions ex- pressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The research leading to some of these results has received funding from the European Research Council under the European Communitys Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. [247252]. vi Curriculum Vitæ Eric Michael Dzienkowski Education 2015 Ph.D. in Physics (Expected), University of California, Santa Barbara. 2010 M.S. in Physics, Rensselaer Polytechnic Institute. 2010 B.S. in Physics and Mathematics, Rensselaer Polytechnic In- stitute. Publications [1] E. Dzienkowski, Excited States of Open Strings from N = 4 SYM, arXiv:1507.01595 [2] D. Berenstein, E. Dzienkowski, and R. Lashof-Regas, Spinning the Fuzzy Sphere, arXiv:1506.0172. [3] D. Berenstein and E. Dzienkowski, Giant gravitons and the emergence of geometric limits in beta-deformations of N = 4 SYM, JHEP 1501 (2015) 126, [arXiv:1408.3620]. [4] D. Berenstein and E. Dzienkowski, Numerical Evidence for Firewalls, arXiv:1311.1168. [5] D. Berenstein and E. Dzienkowski, Open spin chains for giant gravitons and relativity, JHEP 1308 (2013) 047, [arXiv:1305.2394]. [6] C. T. Asplund, D. Berenstein, and E. Dzienkowski, Large N classical dynam- ics of holographic matrix models, Phys. Rev. D87 (2013), no. 8 084044, [arXiv:1211.3425]. [7] D. Berenstein and E. Dzienkowski, Matrix embeddings on flat R3 and the geometry of membranes, Phys. Rev. D86, 086001 (2012) [arXiv:1204.2788]. vii Abstract Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality by Eric Michael Dzienkowski We explore the emergence of locality and geometry in string theories from the perspective of gauge theories using gauge / gravity duality. First, we explicitly construct open strings stretched between giant gravitons in N = 4 SYM. We find that these strings satisfy a relativistic dispersion relation up to three-loop order and conjecture that this should hold to all loop orders. We find the explicit dual solution to the string sigma model and find exact agreement with the geometric nature of the SYM operator and dispersion relation. Using these open strings as probes, we explore the local field theory on the worldvolume of the giant gravitons. Second, we use classical configurations in holographic matrix models to un- derstand the emergence of geometry from matrix coordinates. We construct an effective Hamiltonian for a probe brane that observes the geometry in a back- ground matrix configuration from which we can construct membranes embedded in three dimensional space. Adding angular momentum to these configurations we are able to observe continuous topology changes. We also study the classical evolution of holographic matrix models to generate a microcanonical ensemble of configurations and study their thermal and chaotic behavior. We argue that these thermal configurations are dual to black holes. viii Contents Curriculum Vitae vii Abstract viii 1 Introduction 1 1.1 Permissions and Attributes . .8 Part I Open Strings in AdS / CFT 10 2 Introduction 11 3 Anomalous Dimensions of Open Strings 17 3.1 The su(2) Sector . 17 3.2 Giant Gravitons and Open Strings . 20 3.3 Strings as Cuntz Oscillator Chains . 25 3.4 The Cuntz Hamiltonian . 30 3.5 Discussion . 52 4 Exploring the Ground State 56 4.1 Finding the Ground State . 56 4.2 Geometry from Giant Gravitons and Strings . 59 4.3 Correcting the Ground State . 65 4.4 A Relativistic Dispersion Relation . 80 4.5 The Open String Dual . 92 4.6 Discussion . 98 5 Emergence of Geometric Limits in N = 4 SYM 102 5.1 Marginal Deformations of N = 4 SYM . 102 ix 5.2 The β-Deformed Cuntz Chain . 109 5.3 Geometric Limit Interpretation . 113 5.4 Discussion . 121 Part II Geometry from Matrix Models 123 6 Introduction 124 7 The Geometry of Membranes 131 7.1 Orbifolding The BFSS and BMN Matrix Models . 131 7.2 The Index: Adding a D0-brane Probe . 137 7.3 Fuzzy Spheres and Emergent Surfaces . 147 7.4 A Linking Number . 154 7.5 Discussion . 161 8 Classical Dynamics of Holographic Matrix Models 165 8.1 Observables and Symmetry . 165 8.2 Numerical Implementation . 172 8.3 Thermalization . 177 8.4 Power Spectra and Classical Chaos . 188 8.5 Factorization . 200 8.6 Discussion . 206 9 Black Holes From Matrix Models 208 9.1 Gravity From Matrix Models . 209 9.2 Aspects of Matrix Black Holes . 214 9.3 Exploring the Gapless Region . 218 9.4 Locating the Horizon . 226 9.5 Discussion . 229 10 Adding Angular Momentum 232 10.1 The Hamiltonian and the Ansatz . 233 10.2 Symmetry Considerations . 240 10.3 The Solutions as a Set of Critical Points . 245 10.4 The case of 2 × 2 matrices . 251 10.5 The case of 3 × 3 matrices . 255 10.6 Other Examples . 264 10.7 Large N ................................ 266 10.8 Topology Change . 274 x 10.9 Discussion . 278 11 Conclusions 282 A Conventions and Relations for the Lie Algebra of U(N) 285 B Cuntz Algebra and Hamiltonians 288 B.1 Cuntz Oscillators . 288 B.2 Closed Cuntz Hamiltonians . 290 B.3 Open Cuntz Hamiltonians . 291 C Proof of First Order Ground State Correction 293 D BFSS and BMN model conventions 295 E Fermion Decomposition 298 F Fermionic Modes Between Displaced Fuzzy Spheres 300 F.1 Diagonal Fermionic Modes . 300 F.2 Off-diagonal modes . 303 G Measuring the Temperature 306 Bibliography 308 xi Chapter 1 Introduction Quantum mechanics has been a powerful framework for building physical models of the universe that describe phenomena which occur at length scales comparable to that of an atom. It has a tremendous range of applicability, from the electron- ics in our mobile devices to processes occurring at the center of our Sun. It has revolutionized the way we understand particles and measurements. We learned that particle and wave like behavior have a unified description called the wave function. The act of measuring once can change the outcome of future measure- ments. These notions challenge our classical understanding of the world and have truly affected the way we interpret reality. As we probed nature over the past century, we determined that many of the observed phenomena were due to the following four fundamental interactions: electromagnetic, weak, strong, and gravitational. The first three of these interac- tions have a very good quantum mechanical description called the Standard Model of particle physics.
Recommended publications
  • Amplitudes, Form Factors and the Dilatation Operator in $\Mathcal {N
    HU-MATH-2014-26 HU-EP-14/38 Amplitudes, Form Factors and the Dilatation Operator in N = 4 SYM Theory Matthias Wilhelm Institut f¨ur Mathematik und Institut f¨ur Physik Humboldt-Universit¨at zu Berlin IRIS Geb¨aude Zum Großen Windkanal 6 12489 Berlin [email protected] Abstract We study the form factor of a generic gauge-invariant local composite operator in = 4 SYM theory. At tree level and for a minimal number of external on-shell N super fields, we find that the form factor precisely yields the spin-chain picture of integrability in the language of scattering amplitudes. Moreover, we compute the cut- constructible part of the one-loop correction to this minimal form factor via generalised unitarity. From its UV divergence, we obtain the complete one-loop dilatation operator of = 4 SYM theory. Thus, we provide a field-theoretic derivation of a relation N between the one-loop dilatation operator and the four-point tree-level amplitude which was observed earlier. We also comment on the implications of our findings in the context of integrability. Keywords. PACS: 11.15.-q; 11.30.Pb; 11.25.Tq; 11.55.-m arXiv:1410.6309v3 [hep-th] 24 Mar 2015 Keywords: Super-Yang-Mills; Form factors; On-shell methods; Anomalous dimensions; Integrability Contents 1 Introduction 2 2 Form factors and spin chains 4 2.1 Composite operators and spin chains 5 2.2 Form factors in the free theory 9 3 One-loop form factors 14 3.1 The triangle coefficient from the triple cut 17 3.2 The bubble coefficient from the double cut 20 3.3 Summary of the result 23 4 Divergences, renormalisation and the dilatation operator 24 5 Conclusion and outlook 27 A Some facts about amplitudes 30 B Example calculations 31 B.1 su(2) subsector 31 B.2 sl(2) subsector 33 C Basis integrals 35 1 Introduction The maximally supersymmetric Yang-Mills theory ( = 4 SYM theory) in 3+1 dimensions N is frequently called the hydrogen atom of the 21st century, and it might be the first non- trivial quantum field theory that can be solved exactly.
    [Show full text]
  • Math, Physics, and Calabi–Yau Manifolds
    Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901).
    [Show full text]
  • Round Table Talk: Conversation with Nathan Seiberg
    Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress.
    [Show full text]
  • Black Hole Singularities in the Framework of Gauge/String Duality By
    Black Hole Singularities in the Framework of Gauge/String Duality by Guido Nicola Innocenzo Festuccia Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2007 @ Guido Nicola Innocenzo Festuccia, MMVII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author ... Department of Physics 1May 18, 2007 Certified by. Hong Liu C Assistant Professor Thesis Supervisor Accepted by.............. ..............A p .m .. 2homas eytak Professor and Associate Department Head for Education ARCHIVES LIBRARIES Black Hole Singularities in the Framework of Gauge/String Duality by Guido Nicola Innocenzo Festuccia Submitted to the Department of Physics on May 18, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this dissertation black hole singularities are studied using the AdS/CFT correspon- dence. These singularities show up in the CFT in the behavior of finite-temperature correlation functions. A direct relation is established between space-like geodesics in the bulk and momentum space Wightman functions of CFT operators of large dimen- sions. This allows to probe the regions inside the horizon and near the singularity using the CFT. Information about the black hole singularity is encoded in the expo- nential falloff of finite-temperature correlators at large imaginary frequency. We also find a UV/UV connection that governs physics inside the horizon. For the case the bulk theory lives in 5 dimensions the dual theory is an SU(N) Yang-Mills theory on a sphere, a bounded many-body system.
    [Show full text]
  • Statistical Physics Approach to M-Theory Integrals∗
    Nonperturbative Quantum Effects 2000 PROCEEDINGS Statistical Physics Approach to M-theory Integrals∗ Werner Krauth and Matthias Staudacher CNRS-Laboratoire de Physique Statistique, Ecole Normale Sup´erieure 24, rue Lhomond F-75231 Paris Cedex 05 E-mail: [email protected] Albert-Einstein-Institut, Max-Planck-Institut f¨ur Gravitationsphysik Am M¨uhlenberg 1 D-14476 Golm E-mail: [email protected] Abstract: We explain the concepts of computational statistical physics which have proven very help- ful in the study of Yang-Mills integrals, an ubiquitous new class of matrix models. Issues treated are: Absolute convergence versus Monte Carlo computability of near-singular integrals, singularity detec- tion by Markov-chain methods, applications to asymptotic eigenvalue distributions and to numerical evaluations of multiple bosonic and supersymmetric integrals. In many cases already, it has been possible to resolve controversies between conflicting analytical results using the methods presented here. Keywords: Monte Carlo Methods, M-theory, Matrix Models, Yang-Mills Theory. 1. Introduction theories. Furthermore, they appear in proposed formulations of string theory (the IKKT model) Recent work in field theory has revealed the exis- and M-theory. It remains to be elucidated whether tence of an important new class of gauge-invariant they contain further non-perturbative informa- matrix models. At the difference of the clas- tion on gauge theories via the Eguchi-Kawai mech- sic Wigner-type models, interest now focusses anism. on integrals of D non-linearly coupled matrices For the sake of brevity (cf. [1] for complete Xµ,µ =1;:::D.TheXµare constructed from definitions), we write down (even for supersym- A the generators T of the fundamental representa- metric Yang-Mills theories) only the effective bo- G X XAT tion of a given Lie algebra Lie( ): µ = µ A, sonic integral, which is obtained after integrat- with A =1;:::;dim(G).
    [Show full text]
  • Bulk Witten Indices and the Number of Normalizable Ground States in Supersymmetric Quantum Mechanics of Orthogonal, Symplectic and Exceptional Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server AEI-2000-037 hep-th/0006234 Bulk Witten Indices and the Number of Normalizable Ground States in Supersymmetric Quantum Mechanics of Orthogonal, Symplectic and Exceptional Groups Matthias Staudacher ∗ Albert-Einstein-Institut, Max-Planck-Institut f¨ur Gravitationsphysik Am M¨uhlenberg 1 D-14476 Golm, Germany Abstract This note addresses the question of the number of normalizable vacuum states in supersymmetric quantum mechanics with sixteen supercharges and arbitrary semi-simple compact gauge group, up to rank three. After eval- uating certain contour integrals obtained by appropriately adapting BRST deformation techniques we propose novel rational values for the bulk indices. Our results demonstrate that an asymptotic method for obtaining the bound- ary contribution to the index, originally due to Green and Gutperle, fails for groups other than SU(N). We then obtain likely values for the number of ground states of these systems. In the case of orthogonal and symplectic groups our finding is consistent with recent conjectures of Kac and Smilga, but appears to contradict their result in the case of the exceptional group G2. ∗[email protected] 1 Supersymmetric Yang-Mills theories dimensionally reduced to zero spacial dimensions were initially considered as interesting examples for susy quantum mechanics [1], [2]. The Hamiltonian of these systems reads 1 1 H = Tr P P [X ;X ][X ;X ] Ψ [Γi X ; Ψ ] : (1) 2 i i i j i j α αβ i β 2g − 2 − ! where the bosonic (Xi) and fermionic (Ψi) degrees of freedom take values in the Lie algebra of the compact gauge group.
    [Show full text]
  • The Future of Theoretical Physics and Cosmology Celebrating Stephen Hawking's 60Th Birthday
    The Future of Theoretical Physics and Cosmology Celebrating Stephen Hawking's 60th Birthday Edited by G. W. GIBBONS E. P. S. SHELLARD S. J. RANKIN CAMBRIDGE UNIVERSITY PRESS Contents List of contributors xvii Preface xxv 1 Introduction Gary Gibbons and Paul Shellard 1 1.1 Popular symposium 2 1.2 Spacetime singularities 3 1.3 Black holes 4 1.4 Hawking radiation 5 1.5 Quantum gravity 6 1.6 M theory and beyond 7 1.7 De Sitter space 8 1.8 Quantum cosmology 9 1.9 Cosmology 9 1.10 Postscript 10 Part 1 Popular symposium 15 2 Our complex cosmos and its future Martin Rees '• • •. V 17 2.1 Introduction . ...... 17 2.2 The universe observed . 17 2.3 Cosmic microwave background radiation 22 2.4 The origin of large-scale structure 24 2.5 The fate of the universe 26 2.6 The very early universe 30 vi Contents 2.7 Multiverse? 35 2.8 The future of cosmology • 36 3 Theories of everything and Hawking's wave function of the universe James Hartle 38 3.1 Introduction 38 3.2 Different things fall with the same acceleration in a gravitational field 38 3.3 The fundamental laws of physics 40 3.4 Quantum mechanics 45 3.5 A theory of everything is not a theory of everything 46 3.6 Reduction 48 3.7 The main points again 49 References 49 4 The problem of spacetime singularities: implications for quantum gravity? Roger Penrose 51 4.1 Introduction 51 4.2 Why quantum gravity? 51 4.3 The importance of singularities 54 4.4 Entropy 58 4.5 Hawking radiation and information loss 61 4.6 The measurement paradox 63 4.7 Testing quantum gravity? 70 Useful references for further
    [Show full text]
  • MATTERS of GRAVITY Contents
    MATTERS OF GRAVITY The newsletter of the Topical Group on Gravitation of the American Physical Society Number 36 Fall 2010 Contents GGR News: we hear that . , by David Garfinkle ..................... 4 Network of Gravitational-wave Detectors, by Stan Whitcomb ........ 5 Research briefs: New tests of General Relativity, by Quentin Bailey ............. 7 Conference reports: Theory Meets Data Analysis, by Steve Detweiler .............. 11 Ascona Conference, by Simon Ross ..................... 14 Condensed Matter at AdS/CFT/Strings 2010, by Christopher Herzog . 17 1 Editor David Garfinkle Department of Physics Oakland University Rochester, MI 48309 Phone: (248) 370-3411 Internet: garfinkl-at-oakland.edu WWW: http://www.oakland.edu/?id=10223&sid=249#garfinkle Associate Editor Greg Comer Department of Physics and Center for Fluids at All Scales, St. Louis University, St. Louis, MO 63103 Phone: (314) 977-8432 Internet: comergl-at-slu.edu WWW: http://www.slu.edu/colleges/AS/physics/profs/comer.html ISSN: 1527-3431 DISCLAIMER: The opinions expressed in the articles of this newsletter represent the views of the authors and are not necessarily the views of APS. The articles in this newsletter are not peer reviewed. 2 Editorial The next newsletter is due February 1st. This and all subsequent issues will be available on the web at https://files.oakland.edu/users/garfinkl/web/mog/ All issues before number 28 are available at http://www.phys.lsu.edu/mog Any ideas for topics that should be covered by the newsletter, should be emailed to me, or Greg Comer, or the relevant correspondent. Any comments/questions/complaints about the newsletter should be emailed to me.
    [Show full text]
  • String Theory and Geometry of the Universe's Hidden Dimensions
    String Theory and Geometry of the Universe’s Hidden Dimensions Shing-Tung Yau Harvard University Fields Institute January 20, 2011 Introduction This is the second part of my talk, which relates to THE SHAPE OF INNER SPACE, a new book I’ve written with the science writer Steve Nadis. At the heart of this book is a mathematical conjecture, raised by the geometer Eugenio Calabi, which ties topology to geometry in ways that many mathematicians considered hard to believe. I was among them. My colleagues and I believed the conjecture was “too good to be true,” and, for several years, I tried very hard to prove it was wrong. In my abject failure to do so, I realized that Calabi must have been right after all. I then spent another several years amassing the tools I would need to prove the conjecture, just as he stated it. 2 VI. A Proof at Long Last I felt I was close to that point in May 1976. I had all the ducks lined up, as they say. Perhaps my confidence in this problem had something to do with the fact that my girlfriend and I got engaged at that time, while I was visiting her in Princeton. In June, I drove cross-country with my fiance and her parents from Princeton to Los Angeles. It was a very enjoyable trip. But for me, it wasn’t strictly for pleasure. Along the way, I was working behind the scenes. 3 As I drove and sightseed, I was thinking long and hard about solving both the Poincare conjecture and the Calabi conjecture-two of the biggest problems of the day.
    [Show full text]
  • SUMMER SCHOOL “THE STRUCTURE of LOCAL QUANTUM FIELDS” Overview in Recent Years We Have Seen Many New Insights Into the Mathe
    SUMMER SCHOOL \THE STRUCTURE OF LOCAL QUANTUM FIELDS" ORGS.: DIRK KREIMER WITH SPENCER BLOCH AND FRANCIS BROWN Overview In recent years we have seen many new insights into the mathemat- ical structure of renormalizable quantum field theories. Such theories still form the core of theoretical physics underwritten by their ability to predict the outcome of physics experiments. Progress was made in particular through understanding the math- ematical structure of renormalization and the renormalization group [1]. The identification of a Hopf algebra structure in renormalization by Kreimer in 1997 [2], much elaborated on by Connes and Kreimer in the years 1998-2001, now leads to an understanding of the computa- tional practice of perturbative quantum field theory in terms of alge- braic geometry and mixed Hodge structures, starting with the work of Bloch-Esnault-Kreimer [3] and Bloch-Kreimer [4]. As a result, Francis Brown was able to streamline the computa- tional techniques in Feynman diagram computations and to explain the connection to mixed Tate motives in a very impressive work recently [5, 6, 7], see also [8] by Aluffi and Marcolli, which directly connects to the detailed analysis of multiple zeta values and polylogarithms neces- sary in QFT computations [9, 10]. At the same time, from string theory we obtained the AdS/CFT cor- repondence which led to many new insights on the interplay between quantum fields and string theory. In particular, the Britto-Cachazo- Feng-Witten recursion relations [11] led to spectacular progress in con- formally invariant N=4 super Yang{Mills theory, and many conjectures concerning the transcendental nature of Green functions in such theo- ries were obtained by Beisert-Eden and Staudacher [12], by Korchem- sky [13] and many others.
    [Show full text]
  • The Shape of Inner Space Provides a Vibrant Tour Through the Strange and Wondrous Possibility SPACE INNER
    SCIENCE/MATHEMATICS SHING-TUNG $30.00 US / $36.00 CAN Praise for YAU & and the STEVE NADIS STRING THEORY THE SHAPE OF tring theory—meant to reconcile the INNER SPACE incompatibility of our two most successful GEOMETRY of the UNIVERSE’S theories of physics, general relativity and “The Shape of Inner Space provides a vibrant tour through the strange and wondrous possibility INNER SPACE THE quantum mechanics—holds that the particles that the three spatial dimensions we see may not be the only ones that exist. Told by one of the Sand forces of nature are the result of the vibrations of tiny masters of the subject, the book gives an in-depth account of one of the most exciting HIDDEN DIMENSIONS “strings,” and that we live in a universe of ten dimensions, and controversial developments in modern theoretical physics.” —BRIAN GREENE, Professor of © Susan Towne Gilbert © Susan Towne four of which we can experience, and six that are curled up Mathematics & Physics, Columbia University, SHAPE in elaborate, twisted shapes called Calabi-Yau manifolds. Shing-Tung Yau author of The Fabric of the Cosmos and The Elegant Universe has been a professor of mathematics at Harvard since These spaces are so minuscule we’ll probably never see 1987 and is the current department chair. Yau is the winner “Einstein’s vision of physical laws emerging from the shape of space has been expanded by the higher them directly; nevertheless, the geometry of this secret dimensions of string theory. This vision has transformed not only modern physics, but also modern of the Fields Medal, the National Medal of Science, the realm may hold the key to the most important physical mathematics.
    [Show full text]
  • Arxiv:1709.08937V2 [Math.SG] 30 Oct 2020 Batyrev and Borisov Succeeded in Generalizing Their Constructions to Include These Generalized Calabi– Yau Varieties
    Homological mirror symmetry for generalized Greene–Plesser mirrors NICK SHERIDAN AND IVAN SMITH ABSTRACT: We prove Kontsevich’s homological mirror symmetry conjecture for certain mirror pairs arising from Batyrev–Borisov’s ‘dual reflexive Gorenstein cones’ construction. In particular we prove HMS for all Greene–Plesser mirror pairs (i.e., Calabi–Yau hypersurfaces in quotients of weighted projective spaces). We also prove it for certain mirror Calabi–Yau complete intersections arising from Borisov’s construction via dual nef partitions, and also for certain Calabi–Yau complete intersections which do not have a Calabi–Yau mirror, but instead are mirror to a Calabi–Yau subcategory of the derived category of a higher-dimensional Fano variety. The latter case encompasses Kuznetsov’s ‘K3 category of a cubic fourfold’, which is mirror to an honest K3 surface; and also the analogous category for a quotient of a cubic sevenfold by an order-3 symmetry, which is mirror to a rigid Calabi–Yau threefold. 1 Introduction 1.1 Toric mirror constructions One of the first constructions of mirror pairs of Calabi–Yau varieties was due to Greene and Plesser [GP90]. They considered Calabi–Yau hypersurfaces in quotients of weighted projective spaces. They were interested in the three-dimensional case, but their construction works just as well in any dimension. Batyrev generalized this to a construction of mirror pairs of Calabi–Yau hypersurfaces in toric varieties [Bat94]. In Batyrev’s construction one considers dual reflexive lattice polytopes ∆ and ∆ˇ , correspond- ing to toric varieties Y and Yˇ . Batyrev conjectured that Calabi–Yau hypersurfaces in Y and Yˇ ought to be mirror.
    [Show full text]