Conceptual Analysis of Black Hole Entropy in String Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mr. Jeffery Morehouse Executive Director, Bring Abducted Children Home and Father of a Child Kidnapped to Japan
Mr. Jeffery Morehouse Executive Director, Bring Abducted Children Home and Father of a Child Kidnapped to Japan House Foreign Affairs Committee Monday, December 10, 2018 Reviewing International Child Abduction Thank you to Chairman Smith and the committee for inviting me here to share my expertise and my personal experience on the ongoing crisis and crime of international parental child abduction in Japan. Japan is internationally known as a black hole for child abduction. There have been more than 400 U.S. children kidnapped to Japan since 1994. To date, the Government of Japan has not returned a single American child to an American parent. Bring Abducted Children Home is a nonprofit organization dedicated to the immediate return of internationally abducted children being wrongfully detained in Japan and strives to end Japan's human rights violation of denying children unfettered access to both parents. We also work with other organizations on the larger goal of resolving international parental child abduction worldwide. We are founding partners in The Coalition to End International Parental Child Abduction uniting organizations to work passionately to end international parental kidnapping of children through advocacy and public policy reform. At the beginning of this year The G7 Kidnapped to Japan Reunification Project formed as an international alliance of partners who are parents and organizations from several countries including Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States. The objective is to bring about a rapid resolution to this crisis affecting the human rights of thousands of children abducted to or within Japan. Many Japanese citizens and officials have shared with me that they are deeply ashamed of these abductions and need help from the U.S. -
Limits on New Physics from Black Holes Arxiv:1309.0530V1
Limits on New Physics from Black Holes Clifford Cheung and Stefan Leichenauer California Institute of Technology, Pasadena, CA 91125 Abstract Black holes emit high energy particles which induce a finite density potential for any scalar field φ coupling to the emitted quanta. Due to energetic considerations, φ evolves locally to minimize the effective masses of the outgoing states. In theories where φ resides at a metastable minimum, this effect can drive φ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to φ. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking. arXiv:1309.0530v1 [hep-ph] 2 Sep 2013 1 Contents 1 Introduction3 2 Finite Density Potential4 2.1 Hawking Radiation Distribution . .4 2.2 Classical Derivation . .6 2.3 Quantum Derivation . .8 3 Catalyzed Vacuum Decay9 3.1 Scalar Potential . .9 3.2 Point Particle Instability . 10 3.3 Black Hole Instability . 11 3.3.1 Tadpole Instability . -
A Note on Background (In)Dependence
RU-91-53 A Note on Background (In)dependence Nathan Seiberg and Stephen Shenker Department of Physics and Astronomy Rutgers University, Piscataway, NJ 08855-0849, USA [email protected], [email protected] In general quantum systems there are two kinds of spacetime modes, those that fluctuate and those that do not. Fluctuating modes have normalizable wavefunctions. In the context of 2D gravity and “non-critical” string theory these are called macroscopic states. The theory is independent of the initial Euclidean background values of these modes. Non- fluctuating modes have non-normalizable wavefunctions and correspond to microscopic states. The theory depends on the background value of these non-fluctuating modes, at least to all orders in perturbation theory. They are superselection parameters and should not be minimized over. Such superselection parameters are well known in field theory. Examples in string theory include the couplings tk (including the cosmological constant) arXiv:hep-th/9201017v2 27 Jan 1992 in the matrix models and the mass of the two-dimensional Euclidean black hole. We use our analysis to argue for the finiteness of the string perturbation expansion around these backgrounds. 1/92 Introduction and General Discussion Many of the important questions in string theory circle around the issue of background independence. String theory, as a theory of quantum gravity, should dynamically pick its own spacetime background. We would expect that this choice would be independent of the classical solution around which the theory is initially defined. We may hope that the theory finds a unique ground state which describes our world. We can try to draw lessons that bear on these questions from the exactly solvable matrix models of low dimensional string theory [1][2][3]. -
Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities . -
Black Hole Production and Graviton Emission in Models with Large Extra Dimensions
Black hole production and graviton emission in models with large extra dimensions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe–Universit¨at in Frankfurt am Main von Benjamin Koch aus N¨ordlingen Frankfurt am Main 2007 (D 30) vom Fachbereich Physik der Johann Wolfgang Goethe–Universit¨at als Dissertation angenommen Dekan ........................................ Gutachter ........................................ Datum der Disputation ................................ ........ Zusammenfassung In dieser Arbeit wird die m¨ogliche Produktion von mikroskopisch kleinen Schwarzen L¨ochern und die Emission von Gravitationsstrahlung in Modellen mit großen Extra-Dimensionen untersucht. Zun¨achst werden der theoretisch-physikalische Hintergrund und die speziel- len Modelle des behandelten Themas skizziert. Anschließend wird auf die durchgefuhrten¨ Untersuchungen zur Erzeugung und zum Zerfall mikrosko- pisch kleiner Schwarzer L¨ocher in modernen Beschleunigerexperimenten ein- gegangen und die wichtigsten Ergebnisse zusammengefasst. Im Anschluss daran wird die Produktion von Gravitationsstrahlung durch Teilchenkollisio- nen diskutiert. Die daraus resultierenden analytischen Ergebnisse werden auf hochenergetische kosmische Strahlung angewandt. Die Suche nach einer einheitlichen Theorie der Naturkr¨afte Eines der großen Ziele der theoretischen Physik seit Einstein ist es, eine einheitliche und m¨oglichst einfache Theorie zu entwickeln, die alle bekannten Naturkr¨afte beschreibt. -
Exploring Black Holes As Particle Accelerators in Realistic Scenarios
Exploring black holes as particle accelerators in realistic scenarios Stefano Liberati∗ SISSA, Via Bonomea 265, 34136 Trieste, Italy and INFN, Sezione di Trieste; IFPU - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy Christian Pfeifer† ZARM, University of Bremen, 28359 Bremen, Germany José Javier Relancio‡ Dipartimento di Fisica “Ettore Pancini”, Università di Napoli Federico II, Napoli, Italy; INFN, Sezione di Napoli, Italy; Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza 50009, Spain The possibility that rotating black holes could be natural particle accelerators has been subject of intense debate. While it appears that for extremal Kerr black holes arbitrarily high center of mass energies could be achieved, several works pointed out that both theoretical as well as astrophysical arguments would severely dampen the attainable energies. In this work we study particle collisions near Kerr–Newman black holes, by reviewing and extending previously proposed scenarios. Most importantly, we implement the hoop conjecture for all cases and we discuss the astrophysical relevance of these collisional Penrose processes. The outcome of this investigation is that scenarios involving near-horizon target particles are in principle able to attain, sub-Planckian, but still ultra high, center of mass energies of the order of 1021 −1023 eV. Thus, these target particle collisional Penrose processes could contribute to the observed spectrum of ultra high-energy cosmic rays, even if the hoop conjecture is taken into account, and as such deserve further scrutiny in realistic settings. I. INTRODUCTION Since Penrose’s original paper [1], pointing out the possibility to exploit rotating black holes’ ergoregions to extract energy, there have been several efforts in the literature aiming at developing and optimizing this idea. -
Volunteer Handbook
VOLUNTEER MANUAL http://wku.edu/hardinplanetarium 270 – 745 – 4044 Volunteer Positions [email protected] [email protected] Audience Assistant 6 [email protected] mailing address: Tech Operator 10 1906 College Heights Blvd. Suspendisse aliquam mi Bowling Green, KY 42101-1077 placerat sem. Vestibulum mapping address: idProduction lorem commodo Assistant justo 12 1501 State Street, Bowling Green, KY euismod tristique. Suspendisse arcu libero, Mission: euismodPresenter sed, tempor id, 12 Hardin Planetarium’s mission is to inspire lifelong facilisis non, purus. learning through interactive experiences that are both Aenean ligula. inspiring and factually accurate. Our audiences will be Behind the Scenes 12 encouraged to engage with exhibits and live presentations that further the public understanding and enjoyment of science. Every member or our audience deserves to be treated with respect. We do everything possible to create Appendices an atmosphere where each person can enjoy her/himself and learn as much as possible. Set up / shut down 13 History: An iconic architectural landmark at Western Kentucky University, Hardin Planetarium was dedicated in October Star Stories set up 15 1967. The dome shaped building is 72-feet in diameter and 44 feet high. The interior includes two levels encompassing 6,000 square feet. The star chamber seats Emergency Procedures 16 over 100 spectators on upholstered benches arranged concentrically around the central projector system. Digitarium 16 The planetarium is named for Hardin Cherry Thompson quick-start guide [1938-1963], son of WKU president Kelly Thompson, who died during his senior year at the University. In 2012, audiences at Hardin Planetarium first enjoyed the power Volunteer Agreement 17 of full dome digital simulations, when the projection system was re-outfitted with a Digitalis Epsilon digital projector. -
Orbit-ALA Sampler 2021.Indd
ALA ANNUAL EXCLUSIVE SAMPLER 7/20/21 8/17/21 9/8/21 Notes from the Wildwood Whispers The Seven Visitations Burning Age Willa Reece of Sydney Burgess Claire North Redhook • pg. 17 Andy Marino Orbit • pg. 2 Redhook • pg. 27 9/21/21 10/19/21 10/26/21 The Body Scout Sistersong Far from the Light Lincoln Michel Lucy Holland of Heaven Orbit • pg. 38 Redhook • pg. 46 Tade Thompson Orbit • pg. 55 WWW.ORBITBOOKS.NET Chapter 1 Yue was twelve when she saw the kakuy of the forest, but later she lied and said she saw only fl ame. “Keep an eye on Vae!” hollered her aunty from her workshop door. “Are you listening to me?” It was the long, hot summer when children paddled barefoot in the river through the centre of Tinics, a time for chasing but- terfl ies and sleeping beneath the stars. School was out, and every class had found the thing that was demonstrably the best, most impressive thing to do. For the tenth grades about to take their aptitudes, it was cycling down the path from the wind farm head fi rst, until they either lost their courage or their bikes fl ipped and they cartwheeled with bloody knees and grazed elbows. For the seventh, it was preparing their kites for the fi ghting season; the ninth were learning how to kiss in the hidden grove behind the compression batteries, and to survive the fi rst heartbreak of a sixty- second romance betrayed. Yue should have been sitting on grassy roofs with her class, making important pronouncements about grown- up things, now that she was twelve and thus basically a philosopher- queen. -
Disrupting Entanglement of Black Holes Arxiv:1405.7365V2 [Hep-Th] 23 Jun 2014
CALT-TH-2014-139 Disrupting Entanglement of Black Holes Stefan Leichenauer Walter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena, CA 91125 Abstract We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstr¨omsolutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford [1] to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order log E/δE in units of the temperature. We conjecture that the parametric form of this timescale is universal. arXiv:1405.7365v2 [hep-th] 23 Jun 2014 email: [email protected] Contents 1 Introduction 3 2 The Setup 5 3 Temperature Dependence of Mutual Information 6 4 The Butterfly Effect 8 4.1 Shockwave Geometry . .8 4.2 Extremal Surfaces . 11 4.2.1 Surface Location . 12 4.2.2 Surface Area . 14 5 Discussion 15 A RNAdS Thermodynamics 16 B Exact Results in d = 4 17 C Near-Extremal Black Holes 18 2 1 Introduction The connection between geometry and entanglement is exciting and deep. In particular, the recent ER=EPR framework introduced by Maldacena and Susskind [2] suggests that, in a grav- itational theory, we should always associate entanglements with wormholes. -
An Unprecedented Global Communications Campaign for the Event Horizon Telescope First Black Hole Image
An Unprecedented Global Communications Campaign Best for the Event Horizon Telescope First Black Hole Image Practice Lars Lindberg Christensen Colin Hunter Eduardo Ros European Southern Observatory Perimeter Institute for Theoretical Physics Max-Planck Institute für Radioastronomie [email protected] [email protected] [email protected] Mislav Baloković Katharina Königstein Oana Sandu Center for Astrophysics | Harvard & Radboud University European Southern Observatory Smithsonian [email protected] [email protected] [email protected] Sarah Leach Calum Turner Mei-Yin Chou European Southern Observatory European Southern Observatory Academia Sinica Institute of Astronomy and [email protected] [email protected] Astrophysics [email protected] Nicolás Lira Megan Watzke Joint ALMA Observatory Center for Astrophysics | Harvard & Suanna Crowley [email protected] Smithsonian HeadFort Consulting, LLC [email protected] [email protected] Mariya Lyubenova European Southern Observatory Karin Zacher Peter Edmonds [email protected] Institut de Radioastronomie de Millimétrique Center for Astrophysics | Harvard & [email protected] Smithsonian Satoki Matsushita [email protected] Academia Sinica Institute of Astronomy and Astrophysics Valeria Foncea [email protected] Joint ALMA Observatory [email protected] Harriet Parsons East Asian Observatory Masaaki Hiramatsu [email protected] Keywords National Astronomical Observatory of Japan Event Horizon Telescope, media relations, [email protected] black holes An unprecedented coordinated campaign for the promotion and dissemination of the first black hole image obtained by the Event Horizon Telescope (EHT) collaboration was prepared in a period spanning more than six months prior to the publication of this result on 10 April 2019. -
Math, Physics, and Calabi–Yau Manifolds
Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901). -
Round Table Talk: Conversation with Nathan Seiberg
Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress.