Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes

Total Page:16

File Type:pdf, Size:1020Kb

Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities . 25 2.2.3 Extending the framework to dynamical spacetimes . 27 vi CONTENTS 2.2.4 The role of excitations... 29 2.2.5 ...and interacting fields . 30 2.3 A short bottom line . 30 3 The failure of a semiclassical black hole treatment 31 3.1 Black hole entropy and the information paradox . 31 3.1.1 Hawking radiation . 32 3.1.2 Negative heat capacity . 33 3.1.3 Information paradox . 33 3.2 ...really a paradox? Solution proposals . 34 3.3 A complete quantum treatment as the ultimate cure . 36 II Towards a quantum description of spacetime 39 4 Black holes as Bose-Einstein condensates of gravitons 41 4.1 Introducing black hole’s Quantum-N portrait . 41 4.1.1 The Universality of N ....................... 42 4.1.2 Leakiness and emergent thermality . 43 4.1.3 Black holes as classicalons . 44 4.1.4 Quantum corrections . 44 4.2 Toy models for the N portrait . 45 4.2.1 Bose-Einstein condensates at the verge of quantum phase transition 46 4.2.2 Using derivative couplings instead . 49 4.2.3 Numerical treatment of our model . 55 5 Finding the building blocks of spacetime 59 5.1 The motivation behind . 59 5.2 Quantum bound states in the Hamiltonian spectrum . 60 5.3 Quantum bound states in QCD . 61 5.3.1 Auxiliary current description . 63 5.3.2 Calculating observables in QCD - sum rules . 66 5.3.3 Large-Nc bound states in QCD . 71 5.4 Transferring QCD methods to gravity . 72 5.4.1 ACD for gravitational bound states . 72 5.4.2 Multilocal current construction . 74 5.4.3 Sum rules with regard to gravitational bound states . 74 5.4.4 Large-N physics . 74 6 Applying the constituent description to Schwarzschild black holes 77 6.1 Observables at the partonic level . 77 6.1.1 Black holes’ constituent number density . 77 6.1.2 Black holes’ energy density and mass . 81 6.2 Going beyond the partonic level - Scattering processes . 82 6.2.1 Probing the black hole structure . 83 6.2.2 Chronological ordering . 84 CONTENTS vii 6.2.3 Constituent representation of A .................. 85 6.2.4 Analytic properties of C ...................... 86 6.2.5 Constituent distribution at parton level . 88 6.2.6 Including corrections . 90 6.3 Prospects for the future . 91 6.3.1 Deriving black hole formation, entropy and Hawking radiation . 91 6.3.2 Demonstrating the emergence of geometry . 91 6.3.3 Applications of our formalism to other spacetimes - A generalization of the ACD . 92 6.3.4 Applications to QCD . 93 Conclusions and Outlook 95 A Driving a detector towards its limits 99 B Introducing an alternative: A corpuscular description of Anti-de Sitter spacetime 101 B.1 AdS - an overview . 102 B.2 Scalar 2-point function in the corpuscular description of AdS . 104 B.2.1 Scattering on linearized AdS . 104 B.2.2 Scalar propagator in AdS . 106 B.3 Further applications . 108 Acknowledgements 110 viii CONTENTS Zusammenfassung In dieser Dissertation stellen wir eine neuartige Sichtweise auf Raumzeitgeometrien vor, welche selbige als Produkt der Kondensation einer hohen Anzahl von Quanten auf einer ausgezeichneten, flachen Hintergrundmetrik betrachtet. Wir untermauern diesen Ansatz im Hinblick auf die Rolle von Raumzeitsingularitäten innerhalb der Quanten- feldtheorie sowie mit semiklassischen Betrachtungen schwarzer Löcher. Abgesehen von der allgemeinen Relativitätstheorie ist in allen anderen Theorien die Raumzeit eine feste gegebene Größe, so dass etwaige Singularitäten nur im Zusammen- hang mit Observablen auftauchen und dann durch Renormierungstechniken entfernt oder eben als schlicht unphysikalisch eingestuft werden. Das singuläre Verhalten von Raumzeiten an sich hingegen ist pathologisch. Die Vorhersage solcher Singularitäten im Sinne geodätischer Unvollständigkeit fand ihren Höhepunkt in den berühmten Sin- gularitätentheoremen von Hawking und Penrose. Obwohl diese Theoreme nur sehr grundlegende Annahmen voraussetzen, stellen wir ihre physikalische Relevanz in Frage. Am Beispiel eines schwarzen Lochs zeigen wir, dass jegliche klassische Detektortheo- rie zusammenbricht weit bevor geodätische Unvollständigkeit einsetzen kann. Davon abgesehen verdeutlichen wir, dass das Heranziehen von Punktteilchen zur Diagnose von Raumzeitanomalien in Bereichen starker Krümmung eine zu starke Vereinfachung darstellt. Angesichts dieser Ergebnisse drängt sich die Frage auf, inwieweit Quantenobjekte von Raumzeitsingularitäten betroffen sind. Basierend auf der für quantenmechanis- che Testteilchen zugeschnittenen Definition geodätischer Unvollständigkeit sammeln wir Ideen für eine Vollständigkeitsanalyse dynamischer Systeme. Eine Weiterentwicklung unserer Ansätze zeigt, dass insbesondere die Schwarzschildgeometrie keinerlei patholo- gisches Verhalten bezüglich der Betrachtung von Quantenobjekten hervorruft. Dieses Resultat soll aber nicht darüber hinwegtäuschen, dass die hier verwandte semiklassische Behandlung weiterhin mit vielen ungelösten Paradoxa behaftet ist. Es ist für uns deshalb unabdingbar, auch den geometrischen Hintergrund quantentheo- retisch zu beschreiben. Unsere ersten Schritte in diese Richtung machen wir mit Hilfe eines nicht-relativistischen Modells, das unter Verwendung skalarer Felder nur die wichtigsten Eigenschaften der allgemeinen Relativitätstheorie umfasst. Hierbei fassen wir schwarze Löcher als gebun- dene Quantenzustände auf, die aus einer Vielzahl N von langwelligen Gravitonen beste- hen und einem kollektiven Potential unterworfen sind. Wir modellieren unser System so, dass es sich an einem Phasenübergang befindet. Dies hat zwangsläufig zur Folge, dass keine Störungstheorie mehr anwendbar ist und wir gezwungen sind auch eine numerische Analyse unseres Modells vorzunehmen. Dabei erhalten wir starke Anzeichen dafür, dass x Zusammenfassung unsere Modellbeschreibung Korrekturen aufweist, die mit 1/N skalieren. Dies entspricht genau dem zugrundeliegenden so genannten Quanten-N-Portrait schwarzer Löcher und vermag das entscheidende Merkmal hinsichtlich einer Auflösung des schon lange beste- henden Informationsparadoxons zu sein. Trotz dieser ermutigenden Ergebnisse müssen wir feststellen, dass solch ein nicht-relativistisches Modell schlichtweg keine ausreichend befriedigende Beschreibung schwarzer Löcher liefern kann. Wir wenden uns im Folgenden deshalb einem relativistischen Verfahren zu, um Raum- zeitgeometrien mit gebundenen Quantensystemen großer Konstituentenzahl in Einklang zu bringen. Basierend auf einer nicht-trivialen Vakuumstruktur, welche eine Konden- sation von Gravitonen zulässt, stellen wir eine Verbindung zwischen In-Mediums Mod- ifikationen und einem kollektiven Potential her. Dabei betrachten wir die Minkowski- Raumzeit als fundamental und verstehen andere Raumzeitgeometrien als gebundene Zustände auf Minkowski, welche sich im Grenzwert unendlicher Konstituentenzahlen ergeben. Diese Konstruktion gebundener Zustände ist analog zur Beschreibung von Hadronen in der Quantenchromodynamik - es werden die gleichen nicht-perturbativen Methoden verwendet, wie z.B die Hilfsstrombeschreibung oder die Operatorprodukt- Entwicklung. Da wir vor allem an der Beschreibung schwarzer Löcher interessiert sind, entwickeln wir obige Konstruktion im Hinblick auf die Schwarzschildgeometrie. Da- rauf basierend wiederholen wir, wie deren Konstituenten- sowie Energiedichte auf Par- tonebene hergeleitet werden kann und wie sich zeigen lässt, dass sich die Masse eines schwarzen Loches proportional zur Anzahl seiner Konstituenten verhält. Wir nutzen die genannten Ergebnisse sodann, um über die Partonebene hinaus Vorhersagen zu treffen. Wir betrachten insbesondere die Streuung eines skalaren Teilchens am schwarzen Loch und zeigen explizit, dass die Konstituentenverteilung eine Observable darstellt, welche prinzipiell in einem Experiment gemessen und damit unsere Theorie stützen könnte. Darüber hinaus vermitteln wir eine Methodik, die auch zur Beschreibung der Forma- tion schwarzer Löcher sowie der Hawking-Strahlung eingesetzt werden
Recommended publications
  • Quantum Black Holes
    Quantum Black Holes Xavier Calmet Physics & Astronomy University of Sussex Standard Model of particle physics It is described by a quantum field theory. Like athletes, coupling constants run (with energy)…. fast or slow When does gravity become important? The Planck mass is the energy scale A grand unification? at which quantum Is there actually only gravitational effects one fundamental interaction? become important. Doing quantum gravity is challenging • We do not know how to do calculations in quantum gravity. • Unifying gravity and quantum mechanics is difficult. • One can however show a few features such a theory should have, most notably: there is a minimal length in nature (e.g. XC, M. Graesser and S. Hsu) which corresponds to the size of the quantum fluctuations of spacetime itself. • New tools/theories are needed: string theory, loop quantum gravity, noncommutative geometry, nonperturbative quantum gravity… maybe something completely different. Quantization of gravity is an issue in the high energy regime which is tough to probe experimentally Dimensional analysis: 19 MP ~10 GeV but we shall see that it does not need to be the case. Since we do not have data: thought experiments can give us some clues. Why gravity do we need to quantize gravity? One example: linearized gravity coupled to matter (described by a quantum field theory) is problematic: See talk of Claus Kiefer We actually do not even know at what energy scale quantum gravity becomes strong! Let me give you two examples TeV gravity extra-dimensions where MP is the effective Planck scale in 4-dim ADD brane world RS warped extra-dimension Running of Newton’s constant XC, Hsu & Reeb (2008) • Consider GR with a massive scalar field • Let me consider the renormalization of the Planck mass: Like any other coupling constant: Newton’s constant runs! Theoretical physics can lead to anything… even business ideas! A large hidden sector! • Gravity can be strong at 1 TeV if Newton’s constant runs fast somewhere between eV range and 1 TeV.
    [Show full text]
  • Toy Models for Black Hole Evaporation
    UCSBTH-92-36 hep-th/9209113 Toy Models for Black Hole Evaporation∗ Steven B. Giddings† Department of Physics University of California Santa Barbara, CA 93106-9530 Abstract These notes first present a brief summary of the puzzle of information loss to black holes, of its proposed resolutions, and of the flaws in the proposed resolutions. There follows a review of recent attempts to attack this problem, and other issues in black hole physics, using two-dimensional dilaton gravity theories as toy models. These toy models contain collapsing black holes and have for the first time enabled an explicit semiclassical treatment of the backreaction of the Hawking radiation on the geometry of an evaporating black hole. However, a complete answer to the information conundrum seems to require physics beyond the semiclassical approximation. Preliminary attempts to make progress arXiv:hep-th/9209113v2 11 Nov 1992 in this direction, using connections to conformal field theory, are described. *To appear in the proceedings of the International Workshop of Theoretical Physics, 6th Session, String Quantum Gravity and Physics at the Planck Energy Scale, 21 – 28 June 1992, Erice, Italy. † Email addresses: [email protected], [email protected]. Since the discovery of black holes, physicists have been faced with the possibility that they engender a breakdown of predictability. At the classical level this breakdown arises at the singularity. Classically we do not know how to evolve past it. Inclusion of quantum effects may serve as a remedy, allowing predictable evolution, by smoothing out the singularities of general relativity. However, as suggested by Hawking [1,2], quantum effects also present another sharp challenge to predictability through the mechanism of Hawking evaporation.
    [Show full text]
  • The Physics of Star Trek the Physics of Star Trek
    The Physics of Star Trek The Physics of Star Trek The Physics of Star Trek The Physics of Star Trek FOREWORD Stephen Hawking I was very pleased that Data decided to call Newton, Einstein, and me for a game of poker aboard the Enterprise. Here was my chance to turn the tables on the two great men of gravity, particularly Einstein, who didn't believe in chance or in God playing dice. Unfortunately, I never collected my winnings because the game had to be abandoned on account of a red alert. I contacted Paramount studios afterward to cash in my chips, but they didn't know the exchange rate. Science fiction like Star Trek is not only good fun but it also serves a serious purpose, that of expanding the human imagination. We may not yet be able to boldly go where no man (or woman) has gone before, but at least we can do it in the mind. We can explore how the human spirit might respond to future developments in science and we can speculate on what those developments might be. There is a two-way trade between science fiction and science. Science fiction suggests ideas that scientists incorporate into their theories, but sometimes science turns up notions that are stranger than any science fiction. Black holes are an example, greatly assisted by the inspired name that the physicist John Archibald Wheeler gave them. Had they continued with their original names of “frozen stars” or “gravitationally completely collapsed objects,” there wouldn't have been half so much written about them.
    [Show full text]
  • Quantum Vacuum Energy Density and Unifying Perspectives Between Gravity and Quantum Behaviour of Matter
    Annales de la Fondation Louis de Broglie, Volume 42, numéro 2, 2017 251 Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter Davide Fiscalettia, Amrit Sorlib aSpaceLife Institute, S. Lorenzo in Campo (PU), Italy corresponding author, email: [email protected] bSpaceLife Institute, S. Lorenzo in Campo (PU), Italy Foundations of Physics Institute, Idrija, Slovenia email: [email protected] ABSTRACT. A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. This model introduces the possibility to interpret gravity and the quantum behaviour of matter as two different aspects of the same origin. The change of the quantum vacuum energy density can be considered as the fundamental medium which determines a bridge between gravity and the quantum behaviour, leading to new interest- ing perspectives about the problem of unifying gravity with quantum theory. PACS numbers: 04. ; 04.20-q ; 04.50.Kd ; 04.60.-m. Key words: general relativity, three-dimensional space, quantum vac- uum energy density, quantum mechanics, generalized Klein-Gordon equation for the quantum vacuum energy density, generalized Dirac equation for the quantum vacuum energy density. 1 Introduction The standard interpretation of phenomena in gravitational fields is in terms of a fundamentally curved space-time. However, this approach leads to well known problems if one aims to find a unifying picture which takes into account some basic aspects of the quantum theory. For this reason, several authors advocated different ways in order to treat gravitational interaction, in which the space-time manifold can be considered as an emergence of the deepest processes situated at the fundamental level of quantum gravity.
    [Show full text]
  • Limits on New Physics from Black Holes Arxiv:1309.0530V1
    Limits on New Physics from Black Holes Clifford Cheung and Stefan Leichenauer California Institute of Technology, Pasadena, CA 91125 Abstract Black holes emit high energy particles which induce a finite density potential for any scalar field φ coupling to the emitted quanta. Due to energetic considerations, φ evolves locally to minimize the effective masses of the outgoing states. In theories where φ resides at a metastable minimum, this effect can drive φ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to φ. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking. arXiv:1309.0530v1 [hep-ph] 2 Sep 2013 1 Contents 1 Introduction3 2 Finite Density Potential4 2.1 Hawking Radiation Distribution . .4 2.2 Classical Derivation . .6 2.3 Quantum Derivation . .8 3 Catalyzed Vacuum Decay9 3.1 Scalar Potential . .9 3.2 Point Particle Instability . 10 3.3 Black Hole Instability . 11 3.3.1 Tadpole Instability .
    [Show full text]
  • HOMOGENEOUS EINSTEIN METRICS on SU(N) MANIFOLDS, HOOP CONJECTURE for BLACK RINGS, and ERGOREGIONS in MAGNETISED BLACK HOLE SPACE
    HOMOGENEOUS EINSTEIN METRICS ON SU(n) MANIFOLDS, HOOP CONJECTURE FOR BLACK RINGS, AND ERGOREGIONS IN MAGNETISED BLACK HOLE SPACETIMES A Dissertation by ABID HASAN MUJTABA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Christopher Pope Committee Members, Bhaskar Dutta Stephen Fulling Ergin Sezgin Head of Department, George R. Welch May 2013 Major Subject: Physics Copyright 2013 Abid Hasan Mujtaba ABSTRACT This Dissertation covers three aspects of General Relativity: inequivalent Einstein metrics on Lie Group Manifolds, proving the Hoop Conjecture for Black Rings, and investigating ergoregions in magnetised black hole spacetimes. A number of analytical and numerical techniques are employed to that end. It is known that every compact simple Lie Group admits a bi-invariant homogeneous Ein- stein metric. We use two ans¨atzeto probe the existence of additional inequivalent Einstein metrics on the Lie Group SU(n). We provide an explicit construction of 2k + 1 and 2k inequivalent Einstein metrics on SU(2k) and SU(2k + 1) respectively. We prove the Hoop Conjecture for neutral and charged, singly and doubly rotating black rings. This allows one to determine whether a rotating mass distribution has an event horizon, that it is in fact a black ring. We investigate ergoregions in magnetised black hole spacetimes. We show that, in general, rotating charged black holes (Kerr-Newman) immersed in an external magnetic field have ergoregions that extend to infinity near the central axis unless we restrict the charge to q = amB and keep B below a maximal value.
    [Show full text]
  • Black Hole Production and Graviton Emission in Models with Large Extra Dimensions
    Black hole production and graviton emission in models with large extra dimensions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe–Universit¨at in Frankfurt am Main von Benjamin Koch aus N¨ordlingen Frankfurt am Main 2007 (D 30) vom Fachbereich Physik der Johann Wolfgang Goethe–Universit¨at als Dissertation angenommen Dekan ........................................ Gutachter ........................................ Datum der Disputation ................................ ........ Zusammenfassung In dieser Arbeit wird die m¨ogliche Produktion von mikroskopisch kleinen Schwarzen L¨ochern und die Emission von Gravitationsstrahlung in Modellen mit großen Extra-Dimensionen untersucht. Zun¨achst werden der theoretisch-physikalische Hintergrund und die speziel- len Modelle des behandelten Themas skizziert. Anschließend wird auf die durchgefuhrten¨ Untersuchungen zur Erzeugung und zum Zerfall mikrosko- pisch kleiner Schwarzer L¨ocher in modernen Beschleunigerexperimenten ein- gegangen und die wichtigsten Ergebnisse zusammengefasst. Im Anschluss daran wird die Produktion von Gravitationsstrahlung durch Teilchenkollisio- nen diskutiert. Die daraus resultierenden analytischen Ergebnisse werden auf hochenergetische kosmische Strahlung angewandt. Die Suche nach einer einheitlichen Theorie der Naturkr¨afte Eines der großen Ziele der theoretischen Physik seit Einstein ist es, eine einheitliche und m¨oglichst einfache Theorie zu entwickeln, die alle bekannten Naturkr¨afte beschreibt.
    [Show full text]
  • The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
    The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible
    [Show full text]
  • Geometrical Inequalities Bounding Angular Momentum and Charges in General Relativity
    Living Rev Relativ (2018) 21:5 https://doi.org/10.1007/s41114-018-0014-7 REVIEW ARTICLE Geometrical inequalities bounding angular momentum and charges in General Relativity Sergio Dain1 · María Eugenia Gabach-Clement1 Received: 10 October 2017 / Accepted: 1 June 2018 © The Author(s) 2018 Abstract Geometrical inequalities show how certain parameters of a physical system set restrictions on other parameters. For instance, a black hole of given mass can not rotate too fast, or an ordinary object of given size can not have too much electric charge. In this article, we are interested in bounds on the angular momentum and electromagnetic charges, in terms of total mass and size. We are mainly concerned with inequalities for black holes and ordinary objects. The former are the most studied systems in this context in General Relativity, and where most results have been found. Ordinary objects, on the other hand, present numerous challenges and many basic questions concerning geometrical estimates for them are still unanswered. We present the many results in these areas. We make emphasis in identifying the mathematical conditions that lead to such estimates, both for black holes and ordinary objects. Keywords Geometrical inequalities · Black holes · Ordinary objects The important moments in life are the ones we share with others. Sergio Dain This article is dedicated to the memory of Sergio Dain and Marcus Ansorg. Sergio Dain: Deceased. B María Eugenia Gabach-Clement [email protected] 1 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina 123 5 Page 2 of 74 S.
    [Show full text]
  • The Multiverse: Conjecture, Proof, and Science
    The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other.
    [Show full text]
  • SLAC-PUB3031 January 1983 (T) SPONTANEOUS CP VIOLATION IN
    SLAC-PUB3031 January 1983 (T) - . SPONTANEOUS CP VIOLATION IN EXTENDED TECHNICOLOR MODELS WITH HORIZONTAL V(2)t @ U(~)R FLAVOR SYMMETRIES (II)* WILLIAM GOLDSTEIN Stanford Linear Accelerator Center Stanford University, Stanford, California S&l05 ABSTRACT -- The results presented in Part I of this paper are extended to-include previously neglected electro-weak degrees of freedom, and are illustrated in a toy model. A problem associated with colored technifermions is identified and discussed. Some hope is offered for the disappointing quark mass matrix obtained in Part I. Submitted to Nuclear Physics B * Work supported by the Department of Energy, contract DEAC03-76SF00515. 1. INTRODUCTION In a previous paper [l], hereafter referred to as I, we investigated sponta- neous CP violation in a class of extended technicolor (ETC) models [2,3,4,5]. We constructed the effective Hamiltonian generated by broken EZ’C interactions and minimized its contribution to the vacuum energy, as called for by Dashen’s - . Theorem [S]. As originally pointed out by Dashen, and more recently by Eichten, Lane and Preskill in the context of the EK’ program, this aligning of the chiral vacuum and Hamiltonian can lead to CP violation from an initially CP symmet- ric theory [7,8]. The ETC models analyzed in I were distinguished by the global flavor invari- ance of the color-technicolor forces: GF = n u(2)L @ u@)R (1) For-- these models, we found that, in general, the occurrence of spontaneous CP violation is tied to CP nonconservation in the strong interactions and, thus, - to an unacceptably large neutron electric dipole moment.
    [Show full text]
  • Black Holes and Qubits
    Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-duff.pdf Black Holes and Qubits MICHAEL J. D UFF Blackett Labo ratory, Imperial C ollege London Abstract Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two. Introduction Whenever two very different areas of theoretical physics are found to share the same mathematics, it frequently leads to new insights on both sides. Here we describe how knowledge of string theory and M-theory leads to new discoveries about Quantum Information Theory (QIT) and vice-versa (Duff 2007; Kallosh and Linde 2006; Levay 2006). Bekenstein-Hawking entropy Every object, such as a star, has a critical size determined by its mass, which is called the Schwarzschild radius. A black hole is any object smaller than this. Once something falls inside the Schwarzschild radius, it can never escape. This boundary in spacetime is called the event horizon. So the classical picture of a black hole is that of a compact object whose gravitational field is so strong that nothing, not even light, can escape. Yet in 1974 Stephen Hawking showed that quantum black holes are not entirely black but may radiate energy, due to quantum mechanical effects in curved spacetime. In that case, they must possess the thermodynamic quantity called entropy.
    [Show full text]