Ngc Catalogue Ngc Catalogue

Total Page:16

File Type:pdf, Size:1020Kb

Ngc Catalogue Ngc Catalogue NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 NGC 31 - Galaxy Phoenix 13.9 00:10:39 -56:59:10 NGC 32 - Asterism Pegasus - 00:10:53 18:47:33 NGC 33 - Double Star Pisces - 00:10:57 03:40:35 NGC 34 See NGC 17 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 35 - Galaxy Cetus 14.1 00:11:10 -12:01:14 NGC 36 - Galaxy Pisces 13.3 00:11:22 06:23:20 NGC 37 - Galaxy Phoenix 13.7 00:11:23 -56:57:25 NGC 38 - Galaxy Pisces 13.3 00:11:47 -05:35:11 NGC 39 - Galaxy Andromeda 13.5 00:12:19 31:03:39 NGC 40 C2 Planetary Nebula Cepheus 12.3 00:13:01 72:31:21 NGC 41 - Galaxy Pegasus 13.7 00:12:48 22:01:26 NGC 42 - Galaxy Pegasus 13.8 00:12:56 22:06:03 NGC 43 - Galaxy Andromeda 12.6 00:13:01 30:54:56 NGC 44 - Star Andromeda - 00:13:13 31:17:12 NGC 45 - Galaxy Cetus 10.6 00:14:04 -23:10:53 NGC 46 - Star Pisces 11.7 00:14:10 05:59:14 NGC 47 NGC 58 Galaxy Cetus 13.1 00:14:31 -07:10:04 NGC 48 - Galaxy Andromeda 13.6 00:14:02 48:14:06 NGC 49 - Galaxy Andromeda 13.7 00:14:22 48:14:50 NGC 50 - Galaxy Cetus 12.3 00:14:45 -07:20:42 NGC 51 - Galaxy Andromeda 13.1 00:14:35 48:15:22 NGC 52 - Galaxy Pegasus 13.4 00:14:40 18:34:54 NGC 53 - Galaxy Tucana 12.6 00:14:43 -60:19:43 NGC 54 - Galaxy Cetus 13.4 00:15:08 -07:06:24 NGC 55 C72 Galaxy Sculptor 7.9 00:15:08 -39:13:10 NGC 56 Non-existent Non-existent Pisces - 00:15:21 12:26:40 NGC 57 - Galaxy Pisces 11.6 00:15:31 17:19:45 NGC 58 See NGC 47 Galaxy Cetus 13.1 00:14:31 -07:10:04 NGC 59 - Galaxy Cetus 12.4 00:15:25 -21:26:41 NGC 60 - Galaxy Pisces 14.1 00:15:58 -00:18:13 NGC 61 - Galaxy Cetus 13.0 00:16:24 -06:19:02 NGC 62 - Galaxy Cetus 13.2 00:17:05 -13:29:11 NGC 63 - Galaxy Pisces 11.7 00:17:45 11:27:00 NGC 64 - Galaxy Cetus 13.2 00:17:30 -06:49:30 NGC 65 - Galaxy Cetus 13.9 00:18:59 -22:52:48 NGC 66 - Galaxy Cetus 13.5 00:19:05 -22:56:11 NGC 67 - Galaxy Andromeda 14.2 00:18:15 30:03:48 NGC 68 - Galaxy Andromeda 12.9 00:18:18 30:04:21 NGC 69 - Galaxy Andromeda 14.7 00:18:20 30:02:26 NGC 70 IC 1539 Galaxy Andromeda 13.5 00:18:22 30:04:44 NGC 71 - Galaxy Andromeda 13.2 00:18:24 30:03:47 NGC 72 - Galaxy Andromeda 13.5 00:18:28 30:02:26 NGC 73 - Galaxy Cetus 13.7 00:18:39 -15:19:18 2 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 74 - Galaxy Andromeda 14.8 00:18:49 30:03:41 NGC 75 - Galaxy Pisces 13.2 00:19:26 06:26:59 NGC 76 - Galaxy Andromeda 13.1 00:19:38 29:56:03 NGC 77 - Galaxy Cetus 14.8 00:20:02 -22:31:56 NGC 78 - Galaxy Pisces 12.8 00:20:26 00:49:35 NGC 79 - Galaxy Andromeda 14.0 00:21:03 22:34:02 NGC 80 - Galaxy Andromeda 12.1 00:21:11 22:21:28 NGC 81 - Galaxy Andromeda 15.7 00:21:13 22:23:00 NGC 82 - Galaxy Andromeda - 00:21:18 22:27:40 NGC 83 - Galaxy Andromeda 12.5 00:21:23 22:26:03 NGC 84 - Galaxy Andromeda - 00:21:21 22:37:09 NGC 85 - Galaxy Andromeda 14.8 00:21:26 22:30:44 NGC 86 - Galaxy Andromeda 14.8 00:21:29 22:33:23 NGC 87 - Galaxy Phoenix 14.3 00:21:14 -48:37:44 NGC 88 - Galaxy Phoenix 14.4 00:21:22 -48:38:23 NGC 89 - Galaxy Phoenix 13.5 00:21:24 -48:39:55 NGC 90 - Star Andromeda 13.7 00:21:52 22:24:02 NGC 91 - Galaxy Andromeda 15.1 00:21:52 22:22:08 NGC 92 - Galaxy Phoenix 13.1 00:21:31 -48:37:29 NGC 93 - Galaxy Andromeda 13.2 00:22:03 22:24:32 NGC 94 - Galaxy Andromeda 14.6 00:22:14 22:29:00 NGC 95 - Galaxy Pisces 12.5 00:22:14 10:29:31 NGC 96 - Galaxy Andromeda 14.6 00:22:18 22:32:48 NGC 97 - Galaxy Andromeda 12.3 00:22:30 29:44:44 NGC 98 - Galaxy Phoenix 12.7 00:22:49 -45:16:06 NGC 99 - Galaxy Pisces 13.7 00:24:00 15:46:12 NGC 100 - Galaxy Pisces 13.3 00:24:03 16:29:11 NGC 101 - Galaxy Sculptor 12.8 00:23:54 -32:32:11 NGC 102 - Galaxy Cetus 13.5 00:24:36 -13:57:22 NGC 103 - Open Cluster Cassiopeia 9.8 00:25:17 61:19:19 NGC 104 47 Tucanae, C106 Globular Cluster Tucana 4.0 00:24:05 -72:04:49 NGC 105 - Galaxy Pisces 13.2 00:25:17 12:53:01 NGC 106 - Galaxy Pisces 13.7 00:24:44 -05:08:56 NGC 107 - Galaxy Cetus 14.2 00:25:42 -08:17:00 NGC 108 - Galaxy Andromeda 12.1 00:26:00 29:12:43 NGC 109 - Galaxy Andromeda 13.7 00:26:15 21:48:28 NGC 110 - Open Cluster Cassiopeia - 00:27:25 71:23:26 NGC 111 Non-existent Non-existent Cetus - 00:26:38 -02:37:30 NGC 112 - Galaxy Andromeda 13.6 00:26:49 31:42:10 NGC 113 - Galaxy Cetus 13.1 00:26:55 -02:30:02 NGC 114 - Galaxy Cetus 13.8 00:26:58 -01:47:09 NGC 115 - Galaxy Sculptor 13.1 00:26:46 -33:40:34 NGC 116 - Galaxy Cetus - 00:27:09 -07:56:18 NGC 117 - Galaxy Cetus 14.3 00:27:11 01:20:03 NGC 118 - Galaxy Cetus 13.6 00:27:16 -01:46:47 NGC 119 - Galaxy Phoenix 13.0 00:26:58 -56:58:40 NGC 120 - Galaxy Cetus 13.4 00:27:30 -01:30:49 NGC 121 - Globular Cluster Tucana 11.2 00:26:47 -71:32:12 NGC 122 - Star Cetus 15.4 00:27:38 -01:38:24 NGC 123 - Star Cetus 14.2 00:27:36 -01:35:58 NGC 124 - Galaxy Cetus 13.0 00:27:52 -01:48:37 NGC 125 - Galaxy Pisces 12.1 00:28:50 02:50:19 NGC 126 - Galaxy Pisces 14.2 00:29:08 02:48:40 NGC 127 - Galaxy Pisces 14.8 00:29:12 02:52:24 NGC 128 - Galaxy Pisces 11.8 00:29:15 02:51:54 NGC 129 - Open Cluster Cassiopeia 6.5 00:29:58 60:12:42 NGC 130 - Galaxy Pisces 14.4 00:29:19 02:52:16 NGC 131 - Galaxy Sculptor 13.2 00:29:38 -33:15:37 NGC 132 - Galaxy Cetus 12.6 00:30:11 02:05:35 NGC 133 - Open Cluster Cassiopeia 9.4 00:31:18 63:21:06 NGC 134 - Galaxy Sculptor 10.4 00:30:22 -33:14:42 NGC 135 IC 26 Galaxy Cetus 15.1 00:31:46 -13:20:16 NGC 136 - Open Cluster Cassiopeia - 00:31:31 61:30:33 NGC 137 - Galaxy Pisces 12.8 00:30:58 10:12:31 NGC 138 - Galaxy Pisces 13.7 00:30:59 05:09:35 NGC 139 - Galaxy Pisces 14.4 00:31:07 05:04:42 NGC 140 - Galaxy Andromeda 13.2 00:31:20 30:47:31 NGC 141 - Galaxy Pisces 14.5 00:31:18 05:10:46 NGC 142 - Galaxy Cetus 13.8 00:31:08 -22:37:10 NGC 143 - Galaxy Cetus 14.4 00:31:15 -22:33:36 NGC 144 - Galaxy Cetus 13.8 00:31:21 -22:38:46 NGC 145 - Galaxy Cetus 12.7 00:31:46 -05:09:14 NGC 146 - Open Cluster Cassiopeia 9.1 00:33:03 63:18:06 3 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 147 C17 Galaxy Cassiopeia 9.5 00:33:12 48:30:26 NGC 148 - Galaxy Sculptor 12.2 00:34:15 -31:47:10 NGC 149 - Galaxy Andromeda 13.7 00:33:50 30:43:25 NGC 150 - Galaxy Sculptor 11.4 00:34:16 -27:48:18 NGC 151 NGC 153 Galaxy Cetus 11.6 00:34:03 -09:42:18 NGC 152 - Globular Cluster Tucana - 00:32:57 -73:06:58 NGC 153 See NGC 151 Galaxy Cetus 11.6 00:34:03 -09:42:18 NGC 154 - Galaxy Cetus 14.0 00:34:19 -12:39:21 NGC 155 - Galaxy Cetus 13.3 00:34:40 -10:45:58 NGC 156 - Double Star Cetus - 00:34:36 -08:20:22 NGC 157 - Galaxy Cetus 10.4 00:34:46 -08:23:46 NGC 158 - Double Star Cetus - 00:35:05 -08:20:42 NGC 159 - Galaxy Phoenix 13.7 00:34:35 -55:47:23 NGC 160 - Galaxy Andromeda 12.7 00:36:04 23:57:29 NGC 161 - Galaxy Cetus 13.4 00:35:34 -02:50:54 NGC 162 - Galaxy Andromeda 15.0 00:36:09 23:57:44 NGC 163 - Galaxy Cetus 12.7 00:36:00 -10:07:17 NGC 164 - Galaxy Pisces 15.8 00:36:33 02:45:00 NGC 165 - Galaxy Cetus 13.1 00:36:29 -10:06:23 NGC 166 - Galaxy Cetus 14.3 00:35:49 -13:36:38 NGC 167 - Galaxy Cetus 13.7 00:35:23 -23:22:29 NGC 168 - Galaxy Cetus 14.0 00:36:39 -22:35:37 NGC 169 - Galaxy Andromeda 12.4 00:36:52 23:59:29 NGC 170 - Galaxy Cetus 14.4 00:36:46 01:53:11 NGC 171 NGC 175 Galaxy Cetus 12.2 00:37:22 -19:56:04 NGC 172 - Galaxy Cetus 13.4 00:37:14 -22:35:12 NGC 173 - Galaxy Cetus 13.0 00:37:12 01:56:32 NGC 174 - Galaxy Sculptor 12.9 00:36:59 -29:28:40 NGC 175 See NGC 171 Galaxy Cetus 12.2 00:37:22 -19:56:04 NGC 176 - Open Cluster Tucana 12.7 00:35:59 -73:09:58 NGC 177 - Galaxy Cetus 13.3 00:37:34 -22:32:57 NGC 178 IC 39 Galaxy Cetus 12.6 00:39:08 -14:10:20 NGC 179 - Galaxy Cetus 13.3 00:37:46 -17:51:00 NGC 180 - Galaxy Pisces 12.9 00:37:58 08:38:05 NGC 181 - Galaxy Andromeda 14.9 00:38:23 29:28:24 NGC 182 - Galaxy Pisces 12.4 00:38:12 02:43:43 NGC 183 - Galaxy Andromeda 12.7 00:38:29 29:30:42 NGC 184 - Galaxy Andromeda 14.7 00:38:36 29:26:51 NGC 185 C18 Galaxy Cassiopeia 9.2 00:38:58 48:20:14 NGC 186 - Galaxy Pisces 13.4 00:38:25 03:09:58 NGC 187 - Galaxy Cetus 13.2 00:39:30 -14:39:23 NGC 188 C1 Open Cluster Cepheus 8.1 00:47:30 85:15:30 NGC 189 - Open Cluster Cassiopeia 8.8 00:39:36 61:05:42 NGC 190 - Galaxy Pisces 14.0 00:38:55 07:03:44 NGC 191 - Galaxy Cetus 12.5 00:38:59 -09:00:10 NGC 192 - Galaxy
Recommended publications
  • Eclipse Newsletter
    ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN 2 NUMBER 1 JANUARY – FEBRUARY 2018 PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] 1 MCAO PUBLIC NIGHTS AND FAMILY NIGHTS. The general public and MCAO members are invited to visit the Observatory on select Monday evenings at 8PM for Public Night programs. These programs include discussions and illustrated talks on astronomy, planetarium programs and offer the opportunity to view the planets, moon and other objects through the telescope, weather permitting. Due to limited parking and seating at the observatory, admission is by reservation only. Public Night attendance is limited to adults and students 5th grade and above. If you are interested in making reservations for a public night, you can contact us by calling 302-654- 6407 between the hours of 9 am and 1 pm Monday through Friday. Or you can email us any time at [email protected] or [email protected]. The public nights will be presented even if the weather does not permit observation through the telescope. The admission fees are $3 for adults and $2 for children. There is no admission cost for MCAO members, but reservations are still required. If you are interested in becoming a MCAO member, please see the link for membership. We also offer family memberships. Family Nights are scheduled from late spring to early fall on Friday nights at 8:30PM. These programs are opportunities for families with younger children to see and learn about astronomy by looking at and enjoying the sky and its wonders.
    [Show full text]
  • MESSIER 13 RA(2000) : 16H 41M 42S DEC(2000): +36° 27'
    MESSIER 13 RA(2000) : 16h 41m 42s DEC(2000): +36° 27’ 41” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Hercules BEST VIEW: Late July DISCOVERY: Edmond Halley, 1714 DISTANCE: 25,100 ly DIAMETER: 145 ly APPARENT MAGNITUDE: +5.8 APPARENT DIMENSIONS: 20’ Starry Night FOV: 1.00 Lyra FOV: 60.00 Libra MESSIER 6 (Butterfly Cluster) RA(2000) : 17Ophiuchus h 40m 20s DEC(2000): -32° 15’ 12” M6 Sagitta Serpens Cauda Vulpecula Scutum Scorpius Aquila M6 FOV: 5.00 Telrad Delphinus Norma Sagittarius Corona Australis Ara Equuleus M6 Triangulum Australe BASIC INFORMATION OBJECT TYPE: Open Cluster Telescopium CONSTELLATION: Scorpius Capricornus BEST VIEW: August DISCOVERY: Giovanni Batista Hodierna, c. 1654 DISTANCE: 1600 ly MicroscopiumDIAMETER: 12 – 25 ly Pavo APPARENT MAGNITUDE: +4.2 APPARENT DIMENSIONS: 25’ – 54’ AGE: 50 – 100 million years Telrad Indus MESSIER 7 (Ptolemy’s Cluster) RA(2000) : 17h 53m 51s DEC(2000): -34° 47’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Scorpius BEST VIEW: August DISCOVERY: Claudius Ptolemy, 130 A.D. DISTANCE: 900 – 1000 ly DIAMETER: 20 – 25 ly APPARENT MAGNITUDE: +3.3 APPARENT DIMENSIONS: 80’ AGE: ~220 million years FOV:Starry 1.00Night FOV: 60.00 Hercules Libra MESSIER 8 (THE LAGOON NEBULA) RA(2000) : 18h 03m 37s DEC(2000): -24° 23’ 12” Lyra M8 Ophiuchus Serpens Cauda Cygnus Scorpius Sagitta M8 FOV: 5.00 Scutum Telrad Vulpecula Aquila Ara Corona Australis Sagittarius Delphinus M8 BASIC INFORMATION Telescopium OBJECT TYPE: Star Forming Region CONSTELLATION: Sagittarius Equuleus BEST
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Circumstellar Material in Type Ia Supernovae Via Sodium Absorption
    Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features A. Sternberg1∗, A. Gal-Yam1∗, J. D. Simon2, D. C. Leonard3, R. M. Quimby4, M. M. Phillips5, N. Morrell5, I. B. Thompson2, I. Ivans6, J. L. Marshall7, A. V. Filippenko8, G. W. Marcy8, J. S. Bloom8, F. Patat9, R. J. Foley10, D. Yong11, B. E. Penprase12, D. J. Beeler12, C. Allende Prieto13,14, G. S. Stringfellow15 1Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100, Israel. 2Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101, USA. 3Department of Astronomy, San Diego State University, San Diego, CA 92182, USA. 4Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA. 5Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile. 6Deparment of Physics & Astronomy, The University of Utah, Salt Lake City, UT 84112, USA. 7Department of Physics, Texas A&M University, 4242 TAMU, College Station, TX 77843, USA. 8Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA. 9European Southern Observatory (ESO), Karl Schwarzschild Strasse 2, 85748, Garching bei M¨unchen, Germany. 10Clay Fellow, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. 11Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Rd., Weston ACT 2611, Australia. 12Department of Physics and Astronomy, Pomona College, 610 N. College Ave., Claremont, CA 91711, USA. 13Instituto de Astrof´ısica de Canarias, 38205, La Laguna, Tenerife, Spain. arXiv:1108.3664v1 [astro-ph.HE] 18 Aug 2011 14Departamento de Astrof´ısica, Universidad de La Laguna, 38206, La Laguna, Tenerife, Spain.
    [Show full text]
  • Investigating the Beehive Cluster with Gaia Blaise Whitesell — Astronomy Capstone 2019
    Investigating the Beehive Cluster with Gaia Blaise Whitesell — Astronomy Capstone 2019 In this problem set, we will explore the capabilities of the publicly available data from Gaia DR2, which can be found at http://gea.esac.esa.int/archive/ or queried directly from within Python. We will focus on a single target: the Beehive cluster (M44, also known as Praesepe or NGC 2632). This open cluster is located at a distance of roughly 200 pc in the constellation Cancer with coordinates (α; δ) = (130:1°; 19:67°). We will download Gaia data in the vicinity of the cluster, select only the stars belonging to the cluster, and then characterize the properties of those stars in the cluster. 1. Getting Data For our analysis we need these columns from the Gaia DR2 database gaiadr2.gaia_source: source_id A numeric identifier for the object ra Right ascension (degrees) dec Declination (degrees) parallax Parallax (mas) pmra Proper motion in right ascension (mas/yr) pmdec Proper motion in declination (mas/yr) phot_g_mean_mag Magnitude in Gaia G band (mags) bp_rp Gaia BP–RP color (mags) Select objects within 4 degrees of the cluster center. At the rough distance of the Beehive cluster, how many parsecs does that correspond to? We want to include objects at least that far in front and behind the cluster. Since we don’t know distances as precisely, we should expand the range by a factor of 3 or 4 to avoid missing cluster stars. What parallaxes (in mas) does this distance range correspond to? Use those parallax values as conditions to exclude objects far away from the cluster.
    [Show full text]
  • 2020 Observatory Schedule
    Astronomy Club of Akron 2020 Observatory Schedule 5031 Manchester Road, Akron, OH www.acaoh.org – The following events are open to the public. Please join us for stargazing and educational activities. Please arrive on time to avoid headlight distraction. – For notice of “impromptu star parties” not listed, send e-mail to [email protected] to request e-mail notification of unscheduled observing sessions. – Events will be cancelled if skies are cloudy. Always check website for star party status two hours before event. – This is an outdoor activity in an unheated environment. Nighttime temperatures drop rapidly, even during summer. A general rule of thumb is to dress for 15 degrees cooler than predicted nighttime low temperature. – Please respect those who set up their telescopes. Children should be supervised at all times. The observatory grounds are no place for toys or tomfoolery. – Please, No Smoking on observatory grounds. Smoke reacts with optical surfaces, damaging optical coatings. – Please, no use of cell phones or tablets in observatory (to preserve night vision). April 18 – 8:15pm July 18 – 9:00pm Venus is well placed for observing early, and then we’ll view Come out to view open cluster NGC6633, Wild Duck Ghost of Jupiter and the beautiful star cluster M37 through Cluster, Ring Nebula, M26 Star Cloud, and Swan Nebula the 16” observatory telescope and view Beehive Cluster using an OIII filter. through the 100mm wide field telescope. July 25 – 9:00pm April 25 – 8:30pm We’ll be observing a 5-day old Moon. This is a great Special Event: Messier Marathon – stay all night to observe opportunity to see crater central peaks lit up by the grazing all 110 Messier objects with ACA members.
    [Show full text]
  • The Radio Properties of a Complete Sample of Bright Galaxies
    Aust. J. Phys., 1982,35,321-50 The Radio Properties of a Complete Sample of Bright Galaxies J. I. Harnett School of Physics, University of Sydney, Sydney, N.S.W. 2006. Abstract Results are given for the radio continuum properties of an optically complete sample of 294 bright galaxies, 147 of which have been detected. Data were obtained with the 408 MHz Molonglo Radio Telescope. The radio luminosity functions for all galaxies and for spiral galaxies alone are derived and the radio emission for different galaxy types is investigated. Spectral indices of 73 galaxies which had been detected at other frequencies were derived; the mean index of a reliable subsample is <ex) = -0,71. 1. Introduction There have been many extensive surveys of continuum radio emission from bright galaxies. The earliest comprehensive survey of high sensitivity was that of Cameron (1971a, 1971b) using the Molonglo Cross Radio Telescope at 408 MHz. Cameron observed two optically complete samples south of b = + 18° and defined the radio luminosity function with reasonable statistics at radio powers of ~ 1022 W HZ-I. In the past decade the optical properties of galaxies have been revised so that the selection of an optically complete sample is more reliable. In addition, between 1970 and 1978 the sensitivity of the 408 MHz Molonglo Cross was improved by more than a magnitude, permitting more detections and more accurate measurements of weak' radio emission. Before observations at 408 MHz with the Molonglo Cross ceased in 1978, a new survey was made to improve Cameron's results and provide the best possible data base for subsequent investigations at different frequencies.
    [Show full text]
  • Flat Galaxy - Above 30 Deg
    Flat Galaxy - Above 30 Deg. DEC A B C D E F G H I J K L 1 Const. Object ID Other ID RA Dec Size (arcmin) Mag Urano. Urano. Millennium Notes 2 RFGC NGC hh mm ss dd mm ss.s Major Minor 1st Ed. 2nd Ed. 3 CVn 2245 NGC 4244 12 17 30 +37 48 31 19.4 2.1 10.2 107 54 633 Vol II Note: 4 Com 2335 NGC 4565 12 36 21 +25 59 06 15.9 1.9 10.6 149 71 677 Vol II Note: Slightly asymmetric dust lane 5 Dra 2946 NGC 5907 15 15 52 +56 19 46 12.8 1.4 11.3 50 22 568 Vol II Note: 6 Vir 2315 NGC 4517 12 32 46 +00 06 53 11.5 1.5 11.3 238 110 773 Vol II Note: Dust spots 7 Vir 2579 NGC 5170 13 29 49 -17 57 57 9.9 1.2 11.8 285 130 842 Vol II Note: Eccentric dust lane 8 UMa 2212 NGC 4157 12 11 05 +50 29 07 7.9 1.1 12.2 47 37 592 Vol II Note: 9 Vir 2449 MCG-3-33-30 13 03 17 -17 25 23 8.0 1.1 12.5 284 130 843 Vol II Note: Four knots in the centre 10 CVn 2495 NGC 5023 13 12 12 +44 02 17 7.3 0.8 12.7 75 37 609 Vol II Note: 11 Hya 2682 IC 4351 13 57 54 -29 18 57 6.1 0.8 12.9 371 148 888 Vol II Note: Dust lane.
    [Show full text]
  • Rotation Curves of High-Resolution LSB and SPARC Galaxies with Fuzzy and Multistate (Ultralight Boson) Scalar field Dark Matter
    MNRAS 475, 1447–1468 (2018) doi:10.1093/mnras/stx3208 Advance Access publication 2017 December 12 Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter T. Bernal,1‹† L. M. Fernandez-Hern´ andez,´ 1 T. Matos2‡ andM.A.Rodr´ıguez-Meza1‡ 1Departamento de F´ısica, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, Ciudad de Mexico´ 11801, Mexico 2Departamento de F´ısica, Centro de Investigacion´ y de Estudios Avanzados del IPN, AP 14-740, Ciudad de Mexico´ 07000, Mexico Accepted 2017 December 8. Received 2017 December 8; in original form 2017 January 4 ABSTRACT Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose–Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high- resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein–Klein–Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo.
    [Show full text]
  • Why Gravity Cannot Be Quantized Canonically, and What We Can We Do About It
    WHY GRAVITY CANNOT BE QUANTIZED CANONICALLY, AND WHAT WE CAN WE DO ABOUT IT Philip D. Mannheim Department of Physics University of Connecticut Presentation at Miami 2013, Fort Lauderdale December 2013 1 GHOST PROBLEMS, UNITARITY OF FOURTH-ORDER THEORIES AND PT QUANTUM MECHANICS 1. P. D. Mannheim and A. Davidson, Fourth order theories without ghosts, January 2000 (arXiv:0001115 [hep-th]). 2. P. D. Mannheim and A. Davidson, Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Phys. Rev. A 71, 042110 (2005). (0408104 [hep-th]). 3. P. D. Mannheim, Solution to the ghost problem in fourth order derivative theories, Found. Phys. 37, 532 (2007). (arXiv:0608154 [hep-th]). 4. C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100, 110402 (2008). (arXiv:0706.0207 [hep-th]). 5. C. M. Bender and P. D. Mannheim, Giving up the ghost, Jour. Phys. A 41, 304018 (2008). (arXiv:0807.2607 [hep-th]) 6. C. M. Bender and P. D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart, Phys. Rev. D 78, 025022 (2008). (arXiv:0804.4190 [hep-th]) 7. C. M. Bender and P. D. Mannheim, PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues, Phys. Lett. A 374, 1616 (2010). (arXiv:0902.1365 [hep-th]) 8. P. D. Mannheim, PT symmetry as a necessary and sufficient condition for unitary time evolution, Phil. Trans. Roy. Soc. A. 371, 20120060 (2013). (arXiv:0912.2635 [hep-th]) 9. C. M. Bender and P. D. Mannheim, PT symmetry in relativistic quantum mechanics, Phys.
    [Show full text]
  • List of Bright Nebulae Primary I.D. Alternate I.D. Nickname
    List of Bright Nebulae Alternate Primary I.D. Nickname I.D. NGC 281 IC 1590 Pac Man Neb LBN 619 Sh 2-183 IC 59, IC 63 Sh2-285 Gamma Cas Nebula Sh 2-185 NGC 896 LBN 645 IC 1795, IC 1805 Melotte 15 Heart Nebula IC 848 Soul Nebula/Baby Nebula vdB14 BD+59 660 NGC 1333 Embryo Neb vdB15 BD+58 607 GK-N1901 MCG+7-8-22 Nova Persei 1901 DG 19 IC 348 LBN 758 vdB 20 Electra Neb. vdB21 BD+23 516 Maia Nebula vdB22 BD+23 522 Merope Neb. vdB23 BD+23 541 Alcyone Neb. IC 353 NGC 1499 California Nebula NGC 1491 Fossil Footprint Neb IC 360 LBN 786 NGC 1554-55 Hind’s Nebula -Struve’s Lost Nebula LBN 896 Sh 2-210 NGC 1579 Northern Trifid Nebula NGC 1624 G156.2+05.7 G160.9+02.6 IC 2118 Witch Head Nebula LBN 991 LBN 945 IC 405 Caldwell 31 Flaming Star Nebula NGC 1931 LBN 1001 NGC 1952 M 1 Crab Nebula Sh 2-264 Lambda Orionis N NGC 1973, 1975, Running Man Nebula 1977 NGC 1976, 1982 M 42, M 43 Orion Nebula NGC 1990 Epsilon Orionis Neb NGC 1999 Rubber Stamp Neb NGC 2070 Caldwell 103 Tarantula Nebula Sh2-240 Simeis 147 IC 425 IC 434 Horsehead Nebula (surrounds dark nebula) Sh 2-218 LBN 962 NGC 2023-24 Flame Nebula LBN 1010 NGC 2068, 2071 M 78 SH 2 276 Barnard’s Loop NGC 2149 NGC 2174 Monkey Head Nebula IC 2162 Ced 72 IC 443 LBN 844 Jellyfish Nebula Sh2-249 IC 2169 Ced 78 NGC Caldwell 49 Rosette Nebula 2237,38,39,2246 LBN 943 Sh 2-280 SNR205.6- G205.5+00.5 Monoceros Nebula 00.1 NGC 2261 Caldwell 46 Hubble’s Var.
    [Show full text]