CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of

Total Page:16

File Type:pdf, Size:1020Kb

CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531, Japan 7Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305, Japan 8Chile Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 9Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan 10 arXiv:1910.03863v1 [astro-ph.GA] 9 Oct 2019 Department of Physics, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan 11Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan 12Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 13The Research Institute for Time Studies, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Yamaguchi 753-8511, Japan 14Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 15Institute of Astronomy and Astrophysics, Academia Sinica, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan 16Division of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, c 2018. Astronomical Society of Japan. 2 Publications of the Astronomical Society of Japan, (2018), Vol. 00, No. 0 Nagoya, Aichi 464-8602, Japan 17Tokyo University of Science, Faculty of Science Division II, Liberal Arts, 1-3, Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan 18College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan ∗E-mail: [email protected] Received 2018 December 17; Accepted 2019 September 18 Abstract Observations of the molecular gas in galaxies are vital to understanding the evolution and star- forming histories of galaxies. However, galaxies with molecular gas maps of their whole discs having sufficient resolution to distinguish galactic structures are severely lacking. Millimeter wavelength studies at a high angular resolution across multiple lines and transitions are par- ticularly needed, severely limiting our ability to infer the universal properties of molecular gas in galaxies. Hence, we conducted a legacy project with the 45 m telescope of the Nobeyama Radio Observatory, called the CO Multi-line Imaging of Nearby Galaxies (COMING), which simultaneously observed 147 galaxies with high far-infrared flux in 12CO, 13CO, and C18O J =1 − 0 lines. The total molecular gas mass was derived using the standard CO–to–H2 con- version factor and found to be positively correlated with the total stellar mass derived from the WISE 3.4µm band data. The fraction of the total molecular gas mass to the total stellar mass in galaxies does not depend on their Hubble types nor the existence of a galactic bar, although when galaxies in individual morphological types are investigated separately, the fraction seems to decrease with the total stellar mass in early-type galaxies and vice versa in late-type galax- ies. No differences in the distribution of the total molecular gas mass, stellar mass, and the total molecular gas to stellar mass ratio was observed between barred and non-barred galax- ies, which is likely the result of our sample selection criteria, in that we prioritized observing FIR bright (and thus molecular gas-rich) galaxies. Key words: galaxies: ISM — galaxies: statistics — atlases — surveys — methods: data analysis 1 Introduction mation is not uniform both within and between different galaxies. Some questions must be answered for us to un- How and where stars form in galaxies are clues to under- derstand the causes of a variety of star formations within standing galaxy evolution, and require information about a galaxy and among galaxies. the distribution, dynamics, and physical properties of their Many studies have observed the distribution and dy- molecular gas content. H II regions and massive stars namics of molecular gas in galaxies. Molecular gas in spi- are found in spiral arms (Lynds 1980; Garc´ıa G´omez & ral galaxy M 51 is primarily concentrated along the two Athanassoula 1993; Thilker et al. 2002; Oey et al. 2003; grand-design spiral arms, but also detected in the interarm Bresolin et al. 2005), while only a few are found in the regions (Garc´ıa-Burillo et al. 1993; Nakai et al. 1994). The bar of some barred spiral galaxies (Koopmann et al. 2001; velocity of molecular gas qualitatively changes at the spiral James et al. 2004; Hernandez et al. 2005; Erroz-Ferrer arm in accordance with density wave theory, and the esti- et al. 2015). Interacting and merging galaxies often dis- mated elliptical motion can explain the surface density con- play an abundance of star-forming regions in both their trast of the molecular gas between the spiral arms and the interface regions, especially compared to their spiral arms interarm regions (Kuno & Nakai 1997). Flocculent galax- (Koopmann et al. 2001; Wang et al. 2004; Torres-Flores ies also display molecular gas concentrations along their et al. 2014), while little new stars form even in the spiral spiral arms, such as in NGC 5055 (Kuno et al. 1997). On- arms of some galaxies (van den Bergh 1976; Kennicutt & the-fly (OTF) observations of the barred spiral galaxy M 83 Edgar 1986; Masters et al. 2010; Fraser-McKelvie et al. showed that the CO disc has a sharp edge, while the H I 2016). These observational results indicate that star for- disc more gradually extends to larger radii (Crosthwaite Publications of the Astronomical Society of Japan, (2018), Vol. 00, No. 0 3 et al. 2002). sure in cluster environments (Nakanishi et al. 2006). A In the recent years, CO observations with high spatial total of 28 Virgo cluster spirals were also mapped with resolution have resolved giant molecular clouds (GMCs) in the Five College Radio Astronomy Observatory (FCRAO) galaxies. Giant molecular cloud associations (GMAs) are 14 m telescope (Chung et al. 2009b); however, some galax- dominant in the spiral arms and broken up into GMCs in ies overlap with one another. The total number of mapped the interarm regions in M 51 (Koda et al. 2009). In the galaxies in these three surveys was 74. barred spiral galaxy NGC 4303, the molecular gas in the Many mapping observations of molecular gas, whose bar has a lower star formation efficiency (SFE) than that sample size numbers were 10 or fewer, and surveys with in the spiral arms, where the SFE is the star formation interferometers covering only the central regions have also rate (SFR) divided by the molecular gas mass (Momose been made [Sakamoto et al. 1999; Sofue et al. 2003; et al. 2010). The SFE depends on the environment at sub- CARMA STING (Survey Toward Infrared-bright Nearby kpc scales, and increases with the surface density of the Galaxies), Rahman et al. 2012]. However, combining such molecular gas (Momose et al. 2013). Meanwhile, in the data is not necessarily suitable for comparing many galax- local spiral galaxy M 33, the molecular gas fractions are ies because spatial resolutions and instrument sensitivity loosely correlated with the neutral gas fraction observed can wildly differ between surveys. In addition, observa- at the GMC scales, with particular variations in the inner tions with interferometers alone miss extended emission disc (Tosaki et al. 2011). A CARMA (Combined Array (i.e., are “resolved out”); hence, there are concerns that for Research in Millimeter Astronomy interferometer) and such observations underestimate the total molecular gas Nobeyama Nearby galaxies (CANON) survey resolved ap- mass of the target galaxies. If mapping does not extend proximately 200 GMCs in the inner discs of five galaxies across the entirety of the galactic disc, then correct infor- and revealed that they are similar to those in the Milky mation on the molecular gas and star formation in outer Way (Donovan Meyer et al. 2013). PAWS (Plateau de Bure regions, particularly in interacting galaxies, are impossible Interferometer Arcsecond Whirlpool Survey, Schinnerer to obtain. et al. 2013) observed M 51 at 40 pc resolution and Surveys targeting higher-J transitions have also been ∼ found that the dynamical environment of the GMCs sig- conducted, although they carry added caveats for estimat- nificantly influences their star-forming capability (Meidt ing the total molecular gas masses of the target galax- et al. 2013), and that feedback from massive stars affects ies. HERACLES (HEterodyne Receiver Array CO Line the dependency of the GMC properties on the environ- Extragalactic Survey, Leroy et al.
Recommended publications
  • Southern Arp - AM # Order
    Southern Arp - AM # Order A B C D E F G H I J 1 AM # Constellation Object Name RA DEC Mag. Size Uranom. Uranom. Millenium 2 1st Ed. 2nd Ed. 3 AM 0003-414 Phoenix ESO 293-G034 00h06m19.9s -41d30m00s 13.7 3.2 x 1.0 386 177 430 Vol I 4 AM 0006-340 Sculptor NGC 10 00h08m34.5s -33d51m30s 13.3 2.4 x 1.2 350 159 410 Vol I 5 AM 0007-251 Sculptor NGC 24 00h09m56.5s -24d57m47s 12.4 5.8 x 1.3 305 141 366 Vol I 6 AM 0011-232 Cetus NGC 45 00h14m04.0s -23d10m55s 11.6 8.5 x 5.9 305 141 366 Vol I 7 AM 0027-333 Sculptor NGC 134 00h30m22.0s -33d14m39s 11.4 8.5 x 2.0 351 159 409 Vol I 8 AM 0029-643 Tucana ESO 079- G003 00h32m02.2s -64d15m12s 12.6 2.7 x 0.4 440 204 409 Vol I 9 AM 0031-280B Sculptor NGC 150 00h34m15.5s -27d48m13s 12 3.9 x 1.9 306 141 387 Vol I 10 AM 0031-320 Sculptor NGC 148 00h34m15.5s -31d47m10s 13.3 2 x 0.8 351 159 387 Vol I 11 AM 0033-253 Sculptor IC 1558 00h35m47.1s -25d22m28s 12.6 3.4 x 2.5 306 141 365 Vol I 12 AM 0041-502 Phoenix NGC 238 00h43m25.7s -50d10m58s 13.1 1.9 x 1.6 417 177 449 Vol I 13 AM 0045-314 Sculptor NGC 254 00h47m27.6s -31d25m18s 12.6 2.5 x 1.5 351 176 386 Vol I 14 AM 0050-312 Sculptor NGC 289 00h52m42.3s -31d12m21s 11.7 5.1 x 3.6 351 176 386 Vol I 15 AM 0052-375 Sculptor NGC 300 00h54m53.5s -37d41m04s 9 22 x 16 351 176 408 Vol I 16 AM 0106-803 Hydrus ESO 013- G012 01h07m02.2s -80d18m28s 13.6 2.8 x 0.9 460 214 509 Vol I 17 AM 0105-471 Phoenix IC 1625 01h07m42.6s -46d54m27s 12.9 1.7 x 1.2 387 191 448 Vol I 18 AM 0108-302 Sculptor NGC 418 01h10m35.6s -30d13m17s 13.1 2 x 1.7 352 176 385 Vol I 19 AM 0110-583 Hydrus NGC
    [Show full text]
  • Radio Sources in Low-Luminosity Active Galactic Nuclei
    A&A 392, 53–82 (2002) Astronomy DOI: 10.1051/0004-6361:20020874 & c ESO 2002 Astrophysics Radio sources in low-luminosity active galactic nuclei III. “AGNs” in a distance-limited sample of “LLAGNs” N. M. Nagar1, H. Falcke2,A.S.Wilson3, and J. S. Ulvestad4 1 Arcetri Observatory, Largo E. Fermi 5, Florence 50125, Italy 2 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany e-mail: [email protected] 3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Adjunct Astronomer, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 4 National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA e-mail: [email protected] Received 23 January 2002 / Accepted 6 June 2002 Abstract. This paper presents the results of a high resolution radio imaging survey of all known (96) low-luminosity active galactic nuclei (LLAGNs) at D ≤ 19 Mpc. We first report new 2 cm (150 mas resolution using the VLA) and 6 cm (2 mas resolution using the VLBA) radio observations of the previously unobserved nuclei in our samples and then present results on the complete survey. We find that almost half of all LINERs and low-luminosity Seyferts have flat-spectrum radio cores when observed at 150 mas resolution. Higher (2 mas) resolution observations of a flux-limited subsample have provided a 100% (16 of 16) detection rate of pc-scale radio cores, with implied brightness temperatures ∼>108 K. The five LLAGNs with the highest core radio fluxes also have pc-scale “jets”.
    [Show full text]
  • The Radio Properties of a Complete Sample of Bright Galaxies
    Aust. J. Phys., 1982,35,321-50 The Radio Properties of a Complete Sample of Bright Galaxies J. I. Harnett School of Physics, University of Sydney, Sydney, N.S.W. 2006. Abstract Results are given for the radio continuum properties of an optically complete sample of 294 bright galaxies, 147 of which have been detected. Data were obtained with the 408 MHz Molonglo Radio Telescope. The radio luminosity functions for all galaxies and for spiral galaxies alone are derived and the radio emission for different galaxy types is investigated. Spectral indices of 73 galaxies which had been detected at other frequencies were derived; the mean index of a reliable subsample is <ex) = -0,71. 1. Introduction There have been many extensive surveys of continuum radio emission from bright galaxies. The earliest comprehensive survey of high sensitivity was that of Cameron (1971a, 1971b) using the Molonglo Cross Radio Telescope at 408 MHz. Cameron observed two optically complete samples south of b = + 18° and defined the radio luminosity function with reasonable statistics at radio powers of ~ 1022 W HZ-I. In the past decade the optical properties of galaxies have been revised so that the selection of an optically complete sample is more reliable. In addition, between 1970 and 1978 the sensitivity of the 408 MHz Molonglo Cross was improved by more than a magnitude, permitting more detections and more accurate measurements of weak' radio emission. Before observations at 408 MHz with the Molonglo Cross ceased in 1978, a new survey was made to improve Cameron's results and provide the best possible data base for subsequent investigations at different frequencies.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • Breaking the Radio – Gamma-Ray Connection in Arp 220
    MNRAS 000, 000{000 (0000) Preprint 16 January 2019 Compiled using MNRAS LATEX style file v3.0 Breaking the Radio { Gamma-Ray Connection in Arp 220 Tova M. Yoast-Hull? and Norman Murrayy Canadian Institute for Theoretical Astrophysics, University of Toronto, ON, M5S 3H8, Canada 16 January 2019 ABSTRACT Recent analyses of the γ-ray spectrum from the ultra-luminous infrared galaxy Arp 220 have revealed a discrepancy in the cosmic ray energy injection rates derived from the γ-rays versus the radio emission. While the observed radio emission is consistent with the star formation rate inferred from infrared observations, a significantly higher cosmic ray population is necessary to accurately model the measured γ-ray flux. To resolve this discrepancy between the radio and γ-ray observations, we find that we must increase the cosmic ray energy injection rate and account for an infrared optical depth greater than unity. Raising the energy injection rate naturally raises the total γ-ray flux but also raises the radio flux unless there is also an increase in the energy loss rate for cosmic ray leptons. A optically thick medium results in an increase in energy losses via inverse Compton for cosmic ray leptons and preserves agreement with submillimeter, millimeter, and infrared wavelength observations. Key words: cosmic rays { galaxies: individual (Arp 220) { galaxies: starburst { gamma rays: galaxies { radiative transfer { radio continuum: galaxies 1 INTRODUCTION collide with the ISM to produce neutral pions that subse- quently decay into γ-rays. Over the past decade, eight star-forming galaxies (mostly gi- In our current understanding, the correlation between ant spirals) have been detected in γ-rays by Fermi, including radio and FIR emission seen in star-forming galaxies requires M31 (NGC 0224), NGC 0253, NGC 1068, NGC 2146, M82 two additional conditions to hold.
    [Show full text]
  • As101 Galaxy V2
    Reminder 1. “Runaway Universe” assignment, with an in-class essay next week 2. Final Exam on 05/09 - Mandatory Presence; no make up - Closed online searches - Open book and open notes 3. Misc? This presentation on galaxy deviates from the textbook materials It is built with the next week’s presentation in mind Hubble’s Classification of Galaxies (Tuning Fork) http://en.wikipedia.org/wiki/Galaxy_morphological_classification MWG is SBb - Hubble Classification is improved upon by de Vaucouleurs We will see some examples of each type Let’s begin with our galactic neighbors The Whirlpool Galaxy M51 (M51a) (And companion M51b) Grand-design galaxy Self-sustaining star forming regions along spiral arm M51b: Lencular? (SB0) Amorphous? Irregular? Our Big Neighbors: M33 and M31 (Barred Spirals) http://tehgeektive.com/2012/06/12/what-happens-when-two-galaxies-collide-video/ Our Big Neighbors: M33 and M31 (Barred Spirals) http://apod.nasa.gov/apod/ap121220.html Triangulum Galaxy (Pinwheel) (M33, NGC 598) http://apod.nasa.gov/apod/ap080124.html Andromeda Galaxy (M31, NGC224) M32, a small elliptical dwarf, is above M110, a spheroidal dwarf, is below http:// annesastronomynews.com/annes-picture-of-the-day- the-andromeda-galaxy/ Andromeda - M31 - Barred Spiral http://apod.nasa.gov/apod/ap130202.html/ http://apod.nasa.gov/apod/ap120518.html Herschel Space Observatory (better than Spitzer) GALEX Bar can be seen! Hot Blue stars (O and B stars) Warm dust à will have star formation (now quiescent) Shows some ring structure – collision with M32? All about Andromeda
    [Show full text]
  • Black Hole Mass Scaling Relations for Spiral Galaxies. I. MBH–M*,Sph Benjamin L
    The Astrophysical Journal, 873:85 (26pp), 2019 March 1 https://doi.org/10.3847/1538-4357/aaf3b8 © 2019. The American Astronomical Society. All rights reserved. Black Hole Mass Scaling Relations for Spiral Galaxies. I. MBH–M*,sph Benjamin L. Davis1 , Alister W. Graham1 , and Ewan Cameron2 1 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; [email protected] 2 Oxford Big Data Institute, University of Oxford, Oxford OX3 7LF, UK Received 2018 May 18; revised 2018 October 19; accepted 2018 November 13; published 2019 March 6 Abstract ( )–( ) The supermassive black hole mass, MBH bulge stellar mass, M*,sph relation is, obviously, derived using two quantities. We endeavor to provide accurate values for the latter via detailed multicomponent galaxy decompositions for the current full sample of 43 spiral galaxies having directly measured MBH values; 35 of these galaxies have been alleged to contain pseudobulges, 21 have water maser measurements, and three appear bulgeless. This more than doubles the previous sample size of spiral galaxies with a finessed image analysis. We have analyzed near-infrared images, accounting for not only the bulge, disk (exponential, truncated, or inclined), and bar but also spiral arms and rings and additional central components (active galactic nuclei (AGNs),etc.). A symmetric Bayesian analysis finds = +0.35 / 10 +( ± ) υ log (MMBH ☉) (2.44-0.31) log{M*,sph [u(1.15´ 10 M☉ )]} 7.24 0.12 ,with a stellar mass-to-light ratio term. The level of scatter equals that about the MBH–σ* relation. The nonlinear slope rules out the idea that many mergers, coupled with the central limit theorem, produced this scaling relation, and it corroborates previous observational studies and simulations, which have reported a near-quadratic slope at the low-mass end of the MBH– M ,sph diagram.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Accretion Disk Versus Jet Orientation in H2O Megamaser Galaxies F
    A&A 624, A42 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834600 & c F. Kamali et al. 2019 Astrophysics Accretion disk versus jet orientation in H2O megamaser galaxies F. Kamali1;?, C. Henkel1,2, S. Koyama3,1, C. Y. Kuo4, J. J. Condon5, A. Brunthaler1, M. J. Reid6, J. E. Greene7, K. M. Menten1, C. M. V. Impellizzeri5,8, J. A. Braatz5, E. Litzinger9,10, and M. Kadler9 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected], [email protected] 2 Astron. Dept., King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia 3 Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan 4 Physics Department, National Sun Yat-Sen University, No. 70, Lien-Hai Rd, Kaosiung City 80424, Taiwan 5 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 8 Joint ALMA Office, Alonso de Córdova 3107, Vitacura, Santiago, Chile 9 Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 31, 97074 Würzburg, Germany 10 Dr. Remeis-Observatory, Erlangen Centre for Astroparticle, Physics, University of Erlangen-Nuremberg, Sternwartstr. 7, 96049 Bamberg, Germany Received 7 November 2018 / Accepted 11 February 2019 ABSTRACT Context. An essential part of the paradigm describing active galactic nuclei is the alignment between the radio jet and the associated rotation axis of the sub-pc accretion disks.
    [Show full text]
  • The Stellar Populacons of IC 10 and NGC 1569 Observed with Keck
    The Stellar Populaons of IC 10 and NGC 1569 observed with Keck LGSAO and HST William D. Vacca (USRA‐SOFIA) Chris Sheehy James Graham (UC Berkeley) Nate McCrady (UCLA) Properes of IC 10 • Small irregular starburst (BCD) galaxy on outskirts of Local Group – R ~ 1 kpc 9 – M ~ 1‐2 x 10 M • Low metallicity (Z ~ 0.2‐0.3 Z~ ZSMC) • Brief, galaxy‐wide burst of SF occurred within last 10 Myr – Numerous HII regions – Large Hα and FIR luminosity ‐1 • Highest SFR of any LG dwarf (> 0.7 M yr ) – Large populaon of W‐R stars (NWR > 24; SMC has ~ 8) • Highest surface density of W‐Rs in LG ( ~ 8 kpc‐2; MW ~ 2.5 kpc‐2) • Anomalously high WC/WN rao ( ~ 1‐2) for its Z (10x too large!) • Have WN stars been missed in surveys? • b = −3.3° – Uncertain reddening: AV = 1.2 – 6.0 mag – Uncertain distance: D = 0.5 – 3.0 Mpc • Ideal extragalacc target for NIR observaons with LGSAO – Nearby, relavely large AV (foreground and internal), high ρ★ – Bright p‐lt guide stars available N IC 10 HST/ACS/WFC F435W, F606W, F814W 1” ≈ 4 pc WR Object: [MAC92] 24 • Brightest W‐R candidate in HST/WFPC2 F555W IC10 • Lies within prominent H II region HL 111c • Lies at center of a young stellar cluster (Hunter 2001) • Uncertain spectral type 5’’ – Weak, broad He II 4686 emission (Massey & Holmes 2002) – WN+OB? • Three components (A, B, C) • Cluster itself? Crowther et al. (2003) Observaons • NIR Data: • Opcal Data: – NIRC2/Keck II/LGSAO H and K’ – HST/ACS/WFC F814W – 0.01”pixel‐1 – 0.05”pixel‐1 – Final FOV = 12.2” x 12.2” – texp = 1080 s – texp = 1200 s (H); 1500 s (K’) – FWHM = 0.08” – FWHM = 0.048” (H); 0.051” (K’) – Strehl ~ 18% (H); 32% (K’) ACS WFC / NIRC2 Comparison HST/ACS/WFC F814W Keck II/NIRC2/LGSAO K’ IC 10 IHK’ N E 12.2” x 12.2” 47 pc x 47 pc Vacca, Sheehy, & Graham (2007) CMD of IC 10 [MAC92] 24 Region Opcal Data: • PSF fing (Anderson & King 2006) • 690 stars found in F814W • [F814W]Lim ~ 25.25 • σ < 0.04 mag for [F814W] < 23.0 NIR Data: • MTF‐fing method (Sheehy et al.
    [Show full text]
  • Physical Conditions of the Molecular Gas in Metal-Poor Galaxies? L
    A&A 606, A99 (2017) Astronomy DOI: 10.1051/0004-6361/201731000 & c ESO 2017 Astrophysics Physical conditions of the molecular gas in metal-poor galaxies? L. K. Hunt1, A. Weiß2, C. Henkel2; 3, F. Combes4, S. García-Burillo5, V. Casasola1, P. Caselli6, A. Lundgren9, R. Maiolino7, K. M. Menten2, and L. Testi1; 8 1 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze, Italy e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomy Department, King Abdulaziz University, PO Box 80203, Jeddah, Saudia Arabia 4 Observatoire de Paris, LERMA, Collège de France, CNRS, PSL, Sorbonne University UPMC, 75014 Paris, France 5 Observatorio Astronómico Nacional (OAN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain 6 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany 7 Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE, UK 8 ESO, Karl Schwarzschild str. 2, 85748 Garching bei München, Germany 9 Vittja 64, 74793 Alunda, Sweden Received 18 April 2017 / Accepted 8 August 2017 ABSTRACT Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faint- ness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metal- licities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z=Z ∼ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1–0) and an upper limit for HCN(1–0) are also reported.
    [Show full text]