Southern Arp - AM # Order
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Near-Infrared Luminosity Relations and Dust Colors L
A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5). -
CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, -
N6l0-Aistralian Observatory
^^—^^r N6L0-AISTRALIAN OBSERVATORY GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 V.D. Pence and C.P. BlackMn AAO PP 194 * Suonitted to: Mon.Not.R.astr.Soc. Distribution date: February, 1984 P.O. BOX 296. EPPING. N.S.W.. 2121 PHONE 868-1666. TELEX ASTRO 26230 „. *u~ - .*.SÄ._TNW. - Afto-<?(*-- ^M GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 W.D.Pence. Anglo-Australian Observatory. P.O. Box 296. Epplng. NSW. Australia. C.P.Blactanan. Department of Astronomy. Edinburgh University. Received t SUMMAKT - The gas velocity fields in the barred spiral galaxies NGC 7496 and 289 have been measured by means of long-slit spectra obtained with the Anglo-Australian Telescope. Pronounced deviations fro« circular motion of the type predicted by recent theoretical mooels are seen in NGC 74961 the isovelocity contours are distorted into a characteristic S-shaped pattern and there is a large velocity gradient across the bar. The velocity field is virtually identical to that of a previously observed barred spiral, NGC 5383 for which a number of models have been published. The nuclear [OUI] emission lines are very asymmetric with a wing extending to about 1000 km s-1 to the blue of the systemic velocity; this wing is only faintly seen in the Balmer lines. NGC 289 has a much smaller bar *nd consequently the noncircular motions are less pronounced. The most obvious effect is that the Xinematic major and minor axes are not perpendicular which is a signature of oval distortions. Both galaxies have a mass (within the 10 outermost velocity measurement) of 9 x iO M0 and M/Lß » 6. -
Spiral Galaxy HI Models, Rotation Curves and Kinematic Classifications
Spiral galaxy HI models, rotation curves and kinematic classifications Theresa B. V. Wiegert A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Physics & Astronomy University of Manitoba Winnipeg, Canada 2010 Copyright (c) 2010 by Theresa B. V. Wiegert Abstract Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolu- tion since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, con- straining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Ex- tensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination > 40 ◦, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC. -
Strong Evidence for the Density-Wave Theory of Spiral Structure from a Multi-Wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Pour-Imani, Hamed, "Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies" (2018). Theses and Dissertations. 2864. http://scholarworks.uark.edu/etd/2864 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Hamed Pour-Imani University of Isfahan Bachelor of Science in Physics, 2004 University of Arkansas Master of Science in Physics, 2016 August 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Daniel Kennefick, Ph.D. Dissertation Director Vincent Chevrier, Ph.D. Claud Lacy, Ph.D. Committee Member Committee Member Julia Kennefick, Ph.D. William Oliver, Ph.D. Committee Member Committee Member ABSTRACT The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C. -
Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS Imaging and STIS Spectroscopy
Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS imaging and STIS Spectroscopy.1 M. A. Hughes1, D. Axon11, J. Atkinson1, A. Alonso-Herrero2, C. Scarlata7, A. Marconi4, D. Batcheldor1, J. Binney6, A. Capetti5, C. M. Carollo7, L. Dressel3, J. Gerssen12, D. Macchetto3, W. Maciejewski4,10, M. Merrifield8, M. Ruiz1, W. Sparks3, M. Stiavelli3, Z. Tsvetanov9, ABSTRACT We investigate the central regions of 23 spiral galaxies using archival NICMOS imag- ing and STIS spectroscopy. The sample is taken from our program to determine the masses of central massive black holes (MBH) in 54 nearby spiral galaxies. Stars are likely to contribute significantly to any dynamical central mass concentration that we find in our MBH program and this paper is part of a series to investigate the nuclear properties of these galaxies. We use the Nuker law to fit surface brightness profiles, derived from the NICMOS images, to look for nuclear star clusters and find possible extended sources in 3 of the 23 galaxies studied (13 per cent). The fact that this fraction is lower than that inferred from optical Hubble Space Telescope studies is probably due to the greater spatial resolution of those studies. Using R-H and J-H colors and equiv- alent widths of Hα emission (from the STIS spectra) we investigate the nature of the stellar population with evolutionary models. Under the assumption of hot stars ionizing the gas, as opposed to a weak AGN, we find that there are young stellar populations (∼10–20 Myr) however these data do not allow us to determine what percentage of the 1Centre for Astrophysical Research, STRI, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK. -
Deep Submillimeter Images of NGC 7331; Dust at the Periphery of Spiral Disks
A&A 366, 451–465 (2001) Astronomy DOI: 10.1051/0004-6361:20000405 & c ESO 2001 Astrophysics Deep submillimeter images of NGC 7331; dust at the periphery of spiral disks P. B. Alton1, J. Lequeux2, S. Bianchi3, D. Churches1,J.Davies1, and F. Combes2 1 Department of Physics & Astronomy, University of Wales, PO Box 913, Cardiff CF2 3YB, UK 2 DEMIRM, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France 3 ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching bei Muenchen, Germany Received 11 September 2000 / Accepted 29 November 2000 Abstract. We present deep 450 and 850 µm SCUBA images of the nearby spiral galaxy NGC 7331. Using the submillimeter emissivity inferred from COBE observations of Milky Way dust, we convert our SCUBA images into maps of optical depth. The opacity derived in this way is quite low at the visible limit of NGC 7331 (τB ≤ 0.22 at the R25 radius for the disk seen face-on). In a similar fashion, we exploit SCUBA and ISOPHOT images of a further 10 galaxies and, collectively, these data indicate τB =0.1–0.2attheR25 radius. Our constraints on disk opacity are fed into a simulation of how light emanating from high redshifts is attenuated by foreground spirals. In making this calculation, we consider the possibility that galactic disks may have also contained different dust masses in the past. We estimate that less than 10% of the light emitted by Hubble Deep Field galaxies fails to reach the B-band observer due to intervening spirals. Key words. ISM: dust, extinction – ISM: molecules – galaxies: spiral – galaxies: ISM – infrared: galaxies – galaxies: NGC 7331 1. -
Bright Star Double Variable Globular Open Cluster Planetary Bright Neb Dark Neb Reflection Neb Galaxy Int:Pec Compact Galaxy Gr
bright star double variable globular open cluster planetary bright neb dark neb reflection neb galaxy int:pec compact galaxy group quasar ALL AND ANT APS AQL AQR ARA ARI AUR BOO CAE CAM CAP CAR CAS CEN CEP CET CHA CIR CMA CMI CNC COL COM CRA CRB CRT CRU CRV CVN CYG DEL DOR DRA EQU ERI FOR GEM GRU HER HOR HYA HYI IND LAC LEO LEP LIB LMI LUP LYN LYR MEN MIC MON MUS NOR OCT OPH ORI PAV PEG PER PHE PIC PSA PSC PUP PYX RET SCL SCO SCT SER1 SER2 SEX SGE SGR TAU TEL TRA TRI TUC UMA UMI VEL VIR VOL VUL Object ConRA Dec Mag z AbsMag Type Spect Filter Other names CFHQS J23291-0301 PSC 23h 29 8.3 - 3° 1 59.2 21.6 6.430 -29.5 Q ULAS J1319+0950 VIR 13h 19 11.3 + 9° 50 51.0 22.8 6.127 -24.4 Q I CFHQS J15096-1749 LIB 15h 9 41.8 -17° 49 27.1 23.1 6.120 -24.1 Q I FIRST J14276+3312 BOO 14h 27 38.5 +33° 12 41.0 22.1 6.120 -25.1 Q I SDSS J03035-0019 CET 3h 3 31.4 - 0° 19 12.0 23.9 6.070 -23.3 Q I SDSS J20541-0005 AQR 20h 54 6.4 - 0° 5 13.9 23.3 6.062 -23.9 Q I CFHQS J16413+3755 HER 16h 41 21.7 +37° 55 19.9 23.7 6.040 -23.3 Q I SDSS J11309+1824 LEO 11h 30 56.5 +18° 24 13.0 21.6 5.995 -28.2 Q SDSS J20567-0059 AQR 20h 56 44.5 - 0° 59 3.8 21.7 5.989 -27.9 Q SDSS J14102+1019 CET 14h 10 15.5 +10° 19 27.1 19.9 5.971 -30.6 Q SDSS J12497+0806 VIR 12h 49 42.9 + 8° 6 13.0 19.3 5.959 -31.3 Q SDSS J14111+1217 BOO 14h 11 11.3 +12° 17 37.0 23.8 5.930 -26.1 Q SDSS J13358+3533 CVN 13h 35 50.8 +35° 33 15.8 22.2 5.930 -27.6 Q SDSS J12485+2846 COM 12h 48 33.6 +28° 46 8.0 19.6 5.906 -30.7 Q SDSS J13199+1922 COM 13h 19 57.8 +19° 22 37.9 21.8 5.903 -27.5 Q SDSS J14484+1031 BOO -
Arxiv:Astro-Ph/0305472 V1 23 May 2003
Astronomy & Astrophysics manuscript no. (will be inserted by hand later) An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge–on spiral galaxies ? II. The Hα survey atlas and catalog J. Rossa ??1,2 and R.–J. Dettmar1 1 Astronomisches Institut, Ruhr–Universit¨at Bochum, D–44780 Bochum, Germany e-mail: [email protected], [email protected] 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, U.S.A. (present address) Received 14 February 2003 / Accepted 6 May 2003 Abstract. In this second paper on the investigation of extraplanar diffuse ionized gas in nearby edge–on spiral galaxies we present the actual results of the individual galaxies of our Hα imaging survey. A grand total of 74 galaxies have been studied, including the 9 galaxies of a recently studied sub–sample (Rossa & Dettmar 2000). 40.5% of all studied galaxies reveal extraplanar diffuse ionized gas, whereas in 59.5% of the survey galaxies no extraplanar diffuse ionized gas could be detected. The average distances of this extended emission above the galactic midplane range from 1–2 kpc, while individual filaments in a few galaxies reach distances of up to |z| ∼ 6 kpc. In several cases a pervasive layer of ionized gas was detected, similar to the Reynolds layer in our Milky Way, while other galaxies reveal only extended emission locally. The morphology of the diffuse ionized gas is discussed for each galaxy and is compared with observations of other important ISM constituents in the context of the disk–halo connection, in those cases where published results were available. -
Understanding the H2/HI Ratio in Galaxies 3
Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization. -
The Giant That Turned out to Be a Dwarf 7 March 2007
The giant that turned out to be a dwarf 7 March 2007 New data obtained on the apparent celestial have very different redshifts, with NGC 5011C couple, NGC 5011 B and C, taken with the 3.6-m moving away from us five times slower than its ESO telescope, reveal that the two galaxies are companion on the sky. "This indicates they are at not at the same distance, as was believed for the different distances and not at all associated", says past 23 years. The observations show that NGC Jerjen. "Clearly, NGC 5011C belongs to the close 5011C is not a giant but a dwarf galaxy, an group of galaxies centred around Centaurus A, overlooked member of a group of galaxies in the while NGC 5011B is part of the much farther vicinity of the Milky Way. Centaurus cluster." The galaxy NGC 5011C is located towards the The astronomers also established that the two Centaurus constellation, in the direction of the galaxies have very different intrinsic properties. Centaurus A group of galaxies and the Centaurus NGC 5011B contains for example more heavy cluster of galaxies. The former is about 13 million chemical elements than NGC 5011C, and the latter light-years from our Milky Way, while the latter is seems to contain only about 10 million times the about 12 times farther away. mass of the Sun in stars and is therefore a true dwarf galaxy. For comparison, our Milky Way The appearance of NGC 5011C, with its low contains thousands of times more stars. density of stars and absence of distinctive features, would normally lead astronomers to "Our new observations with the 3.6-m ESO classify it as a nearby dwarf elliptical galaxy. -
The Low-Metallicity Picture A
Linking dust emission to fundamental properties in galaxies: the low-metallicity picture A. Rémy-Ruyer, S. C. Madden, F. Galliano, V. Lebouteiller, M. Baes, G. J. Bendo, A. Boselli, L. Ciesla, D. Cormier, A. Cooray, et al. To cite this version: A. Rémy-Ruyer, S. C. Madden, F. Galliano, V. Lebouteiller, M. Baes, et al.. Linking dust emission to fundamental properties in galaxies: the low-metallicity picture. Astronomy and Astrophysics - A&A, EDP Sciences, 2015, 582, pp.A121. 10.1051/0004-6361/201526067. cea-01383748 HAL Id: cea-01383748 https://hal-cea.archives-ouvertes.fr/cea-01383748 Submitted on 19 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât.