Near-Infrared Luminosity Relations and Dust Colors L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques)
Dissertation On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques) Nils Nierstenhoefer Wuppertal, 2011 University of Wuppertal Supervisor/First reviewer: Prof. Dr. K.-H. Kampert Second reviewer: Prof. Dr. M. Risse Motivation & Preface It is a long known fact that cosmic rays reach Earth with tremendous energies of even above 1020 eV. Despite of decades of intensive research, it was not possible to finally reveal the origin of these par- ticles. The main obstacle in this field is their rare occurrence. This is due to a very steep energy spectrum. To make this point more clear, one roughly expects to observe less than one particle per km2 in one century exceeding energies larger than 1020 eV. To overcome the limitation of low statis- tics, larger and larger cosmic ray detectors have been deployed. Today’s largest cosmic ray detector is the Pierre Auger observatory (PAO) which was constructed in the Pampa Amarilla in Argentina. It covers an area of 3000 km2 and provides the largest set of observations of ultra-high energy cosmic rays (UHECR) in history. A second difficulty in understanding the origin of UHECR should be pointed out: Galactic and extra- galactic magnetic fields might alter the direction of even the highest energy events in a way that they do not point back to their source. In 2007 and 2008, already before the completion of the full detector, the Auger collaboration pub- lished a set of three important papers [1, 2, 3]. The first paper dealt with the correlation of the arrival directions of the highest energetic events with the distribution of active galactic nuclei (AGN) closer than 75Mpc from a catalog compiled by Veron-Cetty and Veron (VC-V) [4]. -
N6l0-Aistralian Observatory
^^—^^r N6L0-AISTRALIAN OBSERVATORY GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 V.D. Pence and C.P. BlackMn AAO PP 194 * Suonitted to: Mon.Not.R.astr.Soc. Distribution date: February, 1984 P.O. BOX 296. EPPING. N.S.W.. 2121 PHONE 868-1666. TELEX ASTRO 26230 „. *u~ - .*.SÄ._TNW. - Afto-<?(*-- ^M GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 W.D.Pence. Anglo-Australian Observatory. P.O. Box 296. Epplng. NSW. Australia. C.P.Blactanan. Department of Astronomy. Edinburgh University. Received t SUMMAKT - The gas velocity fields in the barred spiral galaxies NGC 7496 and 289 have been measured by means of long-slit spectra obtained with the Anglo-Australian Telescope. Pronounced deviations fro« circular motion of the type predicted by recent theoretical mooels are seen in NGC 74961 the isovelocity contours are distorted into a characteristic S-shaped pattern and there is a large velocity gradient across the bar. The velocity field is virtually identical to that of a previously observed barred spiral, NGC 5383 for which a number of models have been published. The nuclear [OUI] emission lines are very asymmetric with a wing extending to about 1000 km s-1 to the blue of the systemic velocity; this wing is only faintly seen in the Balmer lines. NGC 289 has a much smaller bar *nd consequently the noncircular motions are less pronounced. The most obvious effect is that the Xinematic major and minor axes are not perpendicular which is a signature of oval distortions. Both galaxies have a mass (within the 10 outermost velocity measurement) of 9 x iO M0 and M/Lß » 6. -
X-Ray Study of Extended Emission Around M86 Observed with Suzaku
Publ. Astron. Soc. Japan (2017) 00(0), 1–17 1 doi: 10.1093/pasj/xxx000 X-ray study of extended emission around M86 observed with Suzaku Ukyo HISHI, Ryuichi FUJIMOTO, Misato KOTAKE, Hiromasa ITO, Keigo TANAKA, Yu KAI, Yuya KINOSHITA Faculty of Mathematics and Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 ∗E-mail: [email protected], [email protected] Received 2017 January 10; Accepted 2017 February 15 Abstract We analyzed the Suzaku data of M86 and its adjacent regions to study the extended emission around it. The M86 core, the plume, and the tail extending toward the northwest were clearly detected, as well as the extended halo around them. From the position angle ∼ 45◦ to ∼ 275◦, the surface brightness distribution of the core and the extended halo was represented relatively well with a single β-model of β ∼ 0.5 up to 15′–20′. The X-ray spectra of the core was represented with a two-temperature model of kT ∼ 0.9 keV and ∼ 0.6 keV. The temperatures of the core and the halo have a positive gradient in the center, and reach the maximum of kT ∼ 1.0 keV at r ∼ 7′, indicating that the halo gas is located in a larger scale potential structure than that of the galaxy. The temperatures of the plume and the tail were 0.86 ± 0.01 keV and 1.00 ± 0.01 keV. We succeeded in determining the abundances of α-element separately, for the core, the plume, the tail, and the halo for the first time. -
Southern Arp - AM # Order
Southern Arp - AM # Order A B C D E F G H I J 1 AM # Constellation Object Name RA DEC Mag. Size Uranom. Uranom. Millenium 2 1st Ed. 2nd Ed. 3 AM 0003-414 Phoenix ESO 293-G034 00h06m19.9s -41d30m00s 13.7 3.2 x 1.0 386 177 430 Vol I 4 AM 0006-340 Sculptor NGC 10 00h08m34.5s -33d51m30s 13.3 2.4 x 1.2 350 159 410 Vol I 5 AM 0007-251 Sculptor NGC 24 00h09m56.5s -24d57m47s 12.4 5.8 x 1.3 305 141 366 Vol I 6 AM 0011-232 Cetus NGC 45 00h14m04.0s -23d10m55s 11.6 8.5 x 5.9 305 141 366 Vol I 7 AM 0027-333 Sculptor NGC 134 00h30m22.0s -33d14m39s 11.4 8.5 x 2.0 351 159 409 Vol I 8 AM 0029-643 Tucana ESO 079- G003 00h32m02.2s -64d15m12s 12.6 2.7 x 0.4 440 204 409 Vol I 9 AM 0031-280B Sculptor NGC 150 00h34m15.5s -27d48m13s 12 3.9 x 1.9 306 141 387 Vol I 10 AM 0031-320 Sculptor NGC 148 00h34m15.5s -31d47m10s 13.3 2 x 0.8 351 159 387 Vol I 11 AM 0033-253 Sculptor IC 1558 00h35m47.1s -25d22m28s 12.6 3.4 x 2.5 306 141 365 Vol I 12 AM 0041-502 Phoenix NGC 238 00h43m25.7s -50d10m58s 13.1 1.9 x 1.6 417 177 449 Vol I 13 AM 0045-314 Sculptor NGC 254 00h47m27.6s -31d25m18s 12.6 2.5 x 1.5 351 176 386 Vol I 14 AM 0050-312 Sculptor NGC 289 00h52m42.3s -31d12m21s 11.7 5.1 x 3.6 351 176 386 Vol I 15 AM 0052-375 Sculptor NGC 300 00h54m53.5s -37d41m04s 9 22 x 16 351 176 408 Vol I 16 AM 0106-803 Hydrus ESO 013- G012 01h07m02.2s -80d18m28s 13.6 2.8 x 0.9 460 214 509 Vol I 17 AM 0105-471 Phoenix IC 1625 01h07m42.6s -46d54m27s 12.9 1.7 x 1.2 387 191 448 Vol I 18 AM 0108-302 Sculptor NGC 418 01h10m35.6s -30d13m17s 13.1 2 x 1.7 352 176 385 Vol I 19 AM 0110-583 Hydrus NGC -
Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange
Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange Atlas Karte (2000.0) Kulmination um Cambridge 10, 16, Mitternacht: Star Atlas 17 12, 13, Sky Atlas Benachbarte Sternbilder: 20, 21 Ant Cnc Cen Crv Crt Leo Lib 9. Februar Lup Mon Pup Pyx Sex Vir Deklinationsbereic h: -35° ... 7° Fläche am Himmel: 1303° 2 Mythologie und Geschichte: Bei der nördlichen Wasserschlange überlagern sich zwei verschiedene Bilder aus der griechischen Mythologie. Das erste Bild zeugt von der eher harmlosen Wasserschlange aus der Geschichte des Raben : Der Rabe wurde von Apollon ausgesandt, um mit einem goldenen Becher frisches Quellwasser zu holen. Stattdessen tat sich dieser an Feigen gütlich und trug bei seiner Rückkehr die Wasserschlange in seinen Fängen, als angebliche Begründung für seine Verspätung. Um jedermann an diese Untat zu erinnern, wurden der Rabe samt Becher und Wasserschlange am Himmel zur Schau gestellt. Von einem ganz anderen Schlag war die Wasserschlange, mit der Herakles zu tun hatte: In einem Sumpf in der Nähe von Lerna, einem See und einer Stadt an der Küste von Argo, hauste ein unsagbar gefährliches und grässliches Untier. Diese Schlange soll mehrere Köpfe gehabt haben. Fünf sollen es gewesen sein, aber manche sprechen auch von sechs, neun, ja fünfzig oder hundert Köpfen, aber in jedem Falle war der Kopf in der Mitte unverwundbar. Fürchterlich war es, da diesen grässlichen Mäulern - ob die Schlange nun schlief oder wachte - ein fauliger Atem, ein Hauch entwich, dessen Gift tödlich war. Kaum schlug ein todesmutiger Mann dem Untier einen Kopf ab, wuchsen auf der Stelle zwei neue Häupter hervor, die noch furchterregender waren. Eurystheus, der König von Argos, beauftragte Herakles in seiner zweiten Aufgabe diese lernäische Wasserschlange zu töten. -
Downloading Rectification Matrices the first Step Will Be Downloading the Correct Rectification Matrix for Your Data Off of the OSIRIS Website
UNDERGRADUATE HONORS THESIS ADAPTIVE-OPTICS INTEGRAL-FIELD SPECTROSCOPY OF NGC 4388 Defended October 28, 2016 Skylar Shaver Thesis Advisor: Dr. Julie Comerford, Astronomy Honor Council Representative: Dr. Erica Ellingson, Astronomy Committee Members: Dr. Francisco Müller-Sánchez, Astrophysics Petger Schaberg, Writing Abstract Nature’s most powerful objects are well-fed supermassive black holes at the centers of galaxies known as active galactic nuclei (AGN). Weighing up to billions of times the mass of our sun, they are the most luminous sources in the Universe. The discovery of a number of black hole-galaxy relations has shown that the growth of supermassive black holes is closely related to the evolution of galaxies. This evidence has opened a new debate in which the fundamental questions concern the interactions between the central black hole and the interstellar medium within the host galaxy and can be addressed by studying two crucial processes: feeding and feedback. Due to the nature of AGN, high spatial resolution observations are needed to study their properties in detail. We have acquired near infrared Keck/OSIRIS adaptive optics-assisted integral field spectroscopy data on 40 nearby AGN as part of a large program aimed at studying the relevant physical processes associated with AGN phenomenon. This program is called the Keck/OSIRIS nearby AGN survey (KONA). We present here the analysis of the spatial distribution and two-dimensional kinematics of the molecular and ionized gas in NGC 4388. This nearly edge-on galaxy harbors an active nucleus and exhibits signs of the feeding and feedback processes. NGC 4388 is located in the heart of the Virgo cluster and thus is subject to possible interactions with the intra-cluster medium and other galaxies. -
Cinemática Estelar, Modelos Dinâmicos E Determinaç˜Ao De
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE POS´ GRADUA¸CAO~ EM F´ISICA Cinem´atica Estelar, Modelos Din^amicos e Determina¸c~ao de Massas de Buracos Negros Supermassivos Daniel Alf Drehmer Tese realizada sob orienta¸c~aoda Professora Dra. Thaisa Storchi Bergmann e apresen- tada ao Programa de P´os-Gradua¸c~aoem F´ısica do Instituto de F´ısica da UFRGS em preenchimento parcial dos requisitos para a obten¸c~aodo t´ıtulo de Doutor em Ci^encias. Porto Alegre Mar¸co, 2015 Agradecimentos Gostaria de agradecer a todas as pessoas que de alguma forma contribu´ıram para a realiza¸c~ao deste trabalho e em especial agrade¸co: • A` Profa. Dra. Thaisa Storchi-Bergmann pela competente orienta¸c~ao. • Aos professores Dr. Fabr´ıcio Ferrari da Universidade Federal do Rio Grande, Dr. Rogemar Riffel da Universidade Federal de Santa Maria e ao Dr. Michele Cappellari da Universidade de Oxford cujas colabora¸c~oes foram fundamentais para a realiza¸c~ao deste trabalho. • A todos os professores do Departamento de Astronomia do Instituto de F´ısica da Universidade Federal do Rio Grande do Sul que contribu´ıram para minha forma¸c~ao. • Ao CNPq pelo financiamento desse trabalho. • Aos meus pais Ingon e Selia e meus irm~aos Neimar e Carla pelo apoio. Daniel Alf Drehmer Universidade Federal do Rio Grande do Sul Mar¸co2015 i Resumo O foco deste trabalho ´eestudar a influ^encia de buracos negros supermassivos (BNSs) nucleares na din^amica e na cinem´atica estelar da regi~ao central das gal´axias e determinar a massa destes BNSs. -
The Relationship Between Gas Content and Star Formation Rate in Spiral Galaxies
A&A 490, 571–581 (2008) Astronomy DOI: 10.1051/0004-6361:200810604 & c ESO 2008 Astrophysics The relationship between gas content and star formation rate in spiral galaxies. Comparing the local field with the Virgo cluster M. Fumagalli1,2 and G. Gavazzi1 1 Istituto di Fisica G. Occhialini, Universita’ di Milano-Bicocca, Piazza della scienza 3, Milano, Italy e-mail: [email protected] 2 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA e-mail: [email protected] Received 15 July 2008 / Accepted 1 August 2008 ABSTRACT Context. Despite many studies of star formation in spiral galaxies, a complete and coherent understanding of the physical processes that regulate the birth of stars has not yet been achieved, nor has unanymous consensus been reached, despite the many attempts, on the effects of the environment on the star formation in galaxy members of rich clusters. Aims. We focus on the local and global Schmidt law and we investigate how cluster galaxies have their star formation activity perturbed. Methods. We collect multifrequency imaging for a sample of spiral galaxies, members of the Virgo cluster and of the local field; we compute the surface density profiles for the young and for the bulk of the stellar components, for the molecular and for the atomic gas. Results. Our analysis shows that the bulk of the star formation correlates with the molecular gas, but the atomic gas is important or even crucial in supporting the star formation activity in the outer part of the disks. Moreover, we show that cluster members that suffer from a moderate HI removal have their molecular component and their SFR quenched, while highly perturbed galaxies show an additional truncation in their star forming disks. -
The Herschel Virgo Cluster Survey. XI. Environmental Effects On
Astronomy & Astrophysics manuscript no. Pappalardo˙v3 c ESO 2018 October 29, 2018 The Herschel? Virgo Cluster Survey XI. Environmental effects on molecular gas and dust in spiral disks?? Ciro Pappalardo1, Simone Bianchi1, Edvige Corbelli1, Carlo Giovanardi1, Leslie Hunt1, George J. Bendo6, Alessandro Boselli4, Luca Cortese5, Laura Magrini1, Stefano Zibetti1, Sperello di Serego Alighieri1, Jonathan Davies2, Maarten Baes3, Laure Ciesla4, Marcel Clemens7, Ilse De Looze3, Jacopo Fritz3, Marco Grossi8, Michael Pohlen2, Matthew W. L. Smith2, Joris Verstappen3, Catherine Vlahakis9 1 Osservatorio Astrofisico di Arcetri - INAF, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [email protected] 2 Department of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium 4 Laboratoire dAstrophysique de Marseille - LAM, Universite´ d’Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 5 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen, Germany 6 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL 7 Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 8 CAAUL, Observatorio Astronomico de Lisboa, Universidade de Lisboa, Tapada de Ajuda, 1349-018, Lisboa, Portugal 9 Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago, Chile / European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile ABSTRACT Aims. We investigate the dust-to-gas mass ratio and the environmental effects on the various components of the interstellar medium for a spatially resolved sample of Virgo spirals. -
Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS Imaging and STIS Spectroscopy
Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS imaging and STIS Spectroscopy.1 M. A. Hughes1, D. Axon11, J. Atkinson1, A. Alonso-Herrero2, C. Scarlata7, A. Marconi4, D. Batcheldor1, J. Binney6, A. Capetti5, C. M. Carollo7, L. Dressel3, J. Gerssen12, D. Macchetto3, W. Maciejewski4,10, M. Merrifield8, M. Ruiz1, W. Sparks3, M. Stiavelli3, Z. Tsvetanov9, ABSTRACT We investigate the central regions of 23 spiral galaxies using archival NICMOS imag- ing and STIS spectroscopy. The sample is taken from our program to determine the masses of central massive black holes (MBH) in 54 nearby spiral galaxies. Stars are likely to contribute significantly to any dynamical central mass concentration that we find in our MBH program and this paper is part of a series to investigate the nuclear properties of these galaxies. We use the Nuker law to fit surface brightness profiles, derived from the NICMOS images, to look for nuclear star clusters and find possible extended sources in 3 of the 23 galaxies studied (13 per cent). The fact that this fraction is lower than that inferred from optical Hubble Space Telescope studies is probably due to the greater spatial resolution of those studies. Using R-H and J-H colors and equiv- alent widths of Hα emission (from the STIS spectra) we investigate the nature of the stellar population with evolutionary models. Under the assumption of hot stars ionizing the gas, as opposed to a weak AGN, we find that there are young stellar populations (∼10–20 Myr) however these data do not allow us to determine what percentage of the 1Centre for Astrophysical Research, STRI, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK. -
A Disturbed Galactic Duo 20 April 2011
A disturbed galactic duo 20 April 2011 neighbours. This galactic grouping, found about 70 million light- years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's This image from the Wide Field Imager on the arms, shining bright with big, young, blue stars, MPG/ESO 2.2-meter telescope at the La Silla have been teased apart, and lots of luminous gas Observatory in Chile captures the pair of galaxies NGC has been drawn out from its disc. In NGC 3166's 3169 (left) and NGC 3166 (right). These adjacent case, the dust lanes that also usually outline spiral galaxies display some curious features, demonstrating arms are in disarray. Unlike its bluer counterpart, that each member of the duo is close enough to feel the NGC 3166 is not forming many new stars. distorting gravitational influence of the other. -
May 2013 BRAS Newsletter
www.brastro.org May 2013 What's in this issue: PRESIDENT'S MESSAGE .............................................................................................................................. 2 NOTES FROM THE VICE PRESIDENT ........................................................................................................... 3 MESSAGE FROM THE HRPO ...................................................................................................................... 4 OBSERVING NOTES ..................................................................................................................................... 5 DEEP SKY OBJECTS ................................................................................................................................... 6 MAY ASTRONOMICAL EVENTS .................................................................................................................... 7 TREASURER’S NOTES ................................................................................................................................. 8 PREVIOUS MEETING MINUTES .................................................................................................................... 9 IMPORTANT NOTE: This month's meeting will be held on Saturday, May 18th at LIGO. PRESIDENT'S MESSAGE Hi Everyone, April was quite a busy month and the busiest day was International Astronomy Day. As you may have heard, we had the highest attendance at our Astronomy Day festivities at the HRPO ever. Approximately 770 people attended this year