<<

1987ApJ. . .320. .2383 10 California InstituteofTechnology. emitters, todeterminethespacedensitiesofthesegalaxies,and far- emissiondominatesthetotalluminosityinasig- infrared emissioningalaxies.Inthispaperwedescribea sta- of extragalacticobjects. to compareinfraredbrightgalaxieswithotherknownclasses necessary tomakeacensusofthegalaxiesthatareinfrared nificant componentofthelocaluniverse.Toestablishthis,itis demonstration thattheinfraredluminousgalaxiesformasig- nificant fractionofgalaxies.Another,asdiscussedhere,isthe galactic sources.Oneresultofthesurveyisdiscoverythat al. (1986,hereafterPaperI),andadetaileddescriptionof the luminosity functionforL>10wasreportedbySoifer et galactic sources.Apreliminarydescriptionoftheresults the samplewiththoseofothermajorclassesextra- infrared galaxiesdiscoveredintheIRASsurveywith goal sufficient sensitivitytodetectasignificantnumberofextra- axies, andcomparethespacedensitiesofIRASbright studies, derivethefar-infraredluminosityfunctionofthese gal- tistically completesampleof324objectsselectedforthese of understandingthephysicalprocessesresponsiblefor the The AstrophysicalJournal,320:238-257,1987September1 © 1987.TheAmericanAstronomicalSociety.AUrightsreserved.PrintedinU.S.A. 0 4 2 5 3 1 PalomarObservatoryandDivision ofGeologyandPlanetaryScience, KillamFellow,CanadaCouncil1986-1988. IPAC,CaliforniaInstituteofTechnology. AlsoattheDavidDunlapObservatory, UniversityofToronto. The IRASsurveywasthefirstinfraredall-skywith PalomarObservatory,CaliforniaInstitute ofTechnology. We havebegunastudyofthepropertiesbrightest 18 1 10 810 10 event. (L >10L)isanonrecurringeventofdurationlessthanyringalaxyevolution,thenmore most numerousobjectsinthelocaluniverseatluminositiesL>10,andproducingaluminositydensity interstellar mediuminmostgalaxies. far-infrared luminosity.Themassofinterstellardustrequiredtoproducetheradiationcorre- luminosity component.Aspreviouslyfound,acorrelationexistsbetween60/¿m/100/¿mfluxdensityratioand luminosities ofthesamplegalaxiesappeartobeindependentopticalluminosities,suggestingaseparate luminosity vL(60/mi)is~2x10L.Thisinfraredselectedsamplemuchmore“infraredactive”than ed fromtheIRAScatalogs.OnlyoneoftheseobjectscanbeclassifiedmorphologicallyasaSeyfertnucleus; Subject headings::general—infrared:sourcesstars:formation the othersareallgalaxies.Themediandistanceofgalaxiesinsampleis~30Mpc,and osity ofthelocaluniverseislikelyattributedtorecentorongoingstarformation.Ifinfraredactivephase of thattheobservedstarlightinnormalgalaxies.Approximately60%-80%far-infraredlumin- sponds toamassofgas10-10Mfornormaldustratios.Thisiscomparablethe optically selectedgalaxysamples. fir0 0 v0 ~ 10%,andperhapsallofthegalaxieswithblueluminositiesgreaterthan10Lmustundergosuchan 0 0 812 © American Astronomical Society • Provided by the NASA Astrophysics Data System The infraredluminousgalaxiesarefoundtobeanimportantcomponentofextraglacticobjects,beingthe The rangeinfar-infraredluminositiesofthegalaxiessampleis10L-2xL©. A completesampleof324extragalacticobjectswith60/mifluxdensitiesgreaterthan5.4Jyhasbeenselect- Q THE IRÁSBRIGHTGALAXYSAMPLE.II.SAMPLEANDLUMINOSITYFUNCTION 1,234 B. T.Soifer,D.Sanders,F.Madore,G.Neugebauer,E.Danielson, I. INTRODUCTION 15 J. H.Elias,CarolLonsdale,andW.L.Rice Received 1986December1;accepted1987February13 ABSTRACT 238 for 14-24hr.Thedeclinationboundariesindicateareaswhere clearly extendedonthePOSS. Theoneexceptiontothisisan counterpart onthePalomarSky Survey(POSS),allbutoneof for inclusioninthesampleother thanthattherebeanoptical be extragalactic.Althoughno morphologicalcriteriawereset loged extragalacticobjector to havearedshiftindicatingit galactic objectsobservedbyIRASwith60/¿mfluxdensities identifications shouldbemadewithaslittleambiguity pos- emitting objects;(3)theobjectsinsampleshouldbeacces- infrared-emitting extragalacticobjects;(2)thesizeof lowing criteria:(1)itshouldbeacompletesampleoffar- the objectsultimatelyselected forinclusioninthesampleare sample itisnecessaryforeithertobeidentifiedwithacata- under way(Elias,privatecommunication). galaxy surveytotherestofskycoveredbyIRAS at informationiscomplete.Anextensionofthebright S >-30°for0-12hr,<5-15°12-14andÔ-20° greater than5.4Jy,galacticlatitude|h>30°,anddeclination sible. Thefinalbrightgalaxysamplecomprisedallextra- sible fromnorthernhemispheretelescopes;and(4)theoptical significant statementsregardingthespacedensitiesofinfrared- sample shouldbelargeenoughtoablemakestatistically I h>30°andawayfromtheMagallenicCloudsiscurrently in thissamplewillbereportedelsewhere(Sandersetal1987a). optical spectraandmorphologiesofthemostluminousobjects The sampleselectedforstudywasdesignedtomeetthefol- For anobjecttobeincludedintheIRASbrightgalaxy II. THEIRASBRIGHTGALAXYSAMPLE 1987ApJ. . .320. .2383 have comparativelybrightcounterparts onthePOSS. (private communication).There arenosourcesbrighterthan the SSSCthatcanbeidentified asextragalacticanddonot the 5.4Jylimitofbright galaxy sampleandselectedfrom 2 such reproduciblesignatureshasbeenconfirmedby Low al 1984).Theexistenceofbright60pm“cirrus”thatproduces attributed tohighGalacticlatitude“infraredcirrus”(Low et axies norvisiblecounterpartsonthePOSS,andaretherefore candidate sourcesfromtheSSSCwithoutcounterpartsin the diameters greaterthan8'.This catalogshowsonlyoneobject associations withpreviouslycatalogedbrightgalaxies. The be aGalacticsource. PSC haveneitherassociationswithpreviouslycataloged gal- SSSC, allthosewithgalaxycounterpartsonthePOSShave though itwasassumedfromitsinfraredenergydistribution to position. Noopticalspectrumwasobtainedforthisobject, there isaveryfaintstellarobjectwithin~20"oftheIRAS IRAS 1345+08,hasnoobviousopticalcounterpart,although LI642andcanbeidentifiedwiththatsource.Theother, parts. Oneoftheselattertwoisinthedirectiondark communication), andtwohavenoobviousopticalcounter- greater than60pmfluxdensities,andalloftheseareassoci- galactic object,IRAS0937+12,whichismorphologically similar totheEggNebula(Neyetal1975;Kleinman,private positionally coincidentwithbrightSAOstars,oneisapeculiar 60 pmfluxdensityconstraints,98have25densities sources. Ofthe405sourcesinPSCmeetingarealand the remaining11sources,sixareplanetarynebulae,two with NGC253,and287representotherindividualgalaxies.Of the LGC,and27wereselectedfromSSSC. sources areassociatedwiththelocalgroupgalaxyM33,two ated withGalacticsources.Oftheremaining307objects,seven PSC, eightwereselectedbasedontheir60pmfluxdensityin objects inthebrightgalaxysample,289wereselectedfrom an entryinthePSC.Severalofbrightergalaxiesfrom PSC arealsolistedintheSSSCorLGC.Oftotalof324 qualified forinclusioninthebrightgalaxysampleindeedhave requirement thatanobjectappearinthePSC,allobjects Catalog ofIRASObservationsLargeGalaxies(Riceetal the SSSC)forobjectswithsizesinrange2-8',and less than2',theSmall-ScaleStructureCatalog(1986,hereafter each samplingdifferentspatialstructures:theIRASPoint bright galaxysample. Source Catalog(1985,hereafterthePSC)forobjectswithsizes qualified, withsufficientskycoverage,forinclusioninthe NGC 4258and4151,weredetectedthatwouldhave the IRASbrightgalaxysample,atleasttwoobjects, insignificant gapintheall-skysurveyandcoverageof close totheNorthGalacticPole.Whilethisisastatistically plement (1985).Themajoromissioninarealcoverageisagap 1987, hereafterLGC)forlargerobjects.Whilethereisno described intheIRASCatalogsandAtlasesExplanatorySup- coverage wasinsufficientforthedetectedsourcesinthisareato be includedintheIRAScatalogs.Theareasomittedare areas oftheskyarenotincludedbecausethe^IRAS'survey et al1987a). object withastarlikeSeyfertnucleus,IRAS0518—25(Sanders ~ 14,500deg.Withintheboundariesdescribedabove,small The LGCrepresentsallgalaxies knowntohaveoptical Of theobjectsincludedinbrightgalaxysamplefrom Few oftheobjectsselectedfromPSCareGalactic Candidate sourcesweregeneratedfromthreeIRAScatalogs The totalareacoveredbythebrightgalaxysurveyis © American Astronomical Society • Provided by the NASA Astrophysics Data System IRAS BRIGHTGALAXIES -1 1- x -1- the centerofVirgocluster wereassumedtobemembersof and theinfallvelocitytoward Virgois350kms(i.e.,H= model thedistanceswerescaled assumingVirgoisat17.6Mpc 75 kms“Mpcatlargedistances). Allgalaxieswithin6°of taken fromtheFisher-Tully relation ortheVirgocentricflow Aaronson etal.(1982h).For all galaxieswheredistanceswere tance toeachgalaxywasderivedusingtheVirgocenricflow of cussed indetailbySandersetaï.(1987h). at Palomar,thegalaxyhadstrongemissionlinesofHa,[N n], a galaxyredshiftwasdeterminedfromobservationsobtained tainty intheradialvelocityis+300kms~.Inallcaseswhere [O m],andHß.Theopticalspectraofthesegalaxiesare dis- using thedoublespectrograph(OkeandGunn1982)on the literature, observationsoftheopticalspectrumweremade 5 mHaletelescopeofthePalomarObservatory.Forthese observations, theresolutionwas12ÂatHa,anduncer- Huchra etal1983;Rood,privatecommunication),wereused literature (Palumbo,Tanzella-Nitta,andVettolani,1983; in combinationwithaHubbleconstantof75kmsMpc fied forthedistanceadoptedVirgocluster(seebelow), (Aaronson etal1982a;AaronsonandMould1983)modi- IRAS ExplanatorySupplement1985). of theseareavailable,heliocentricradialvelocities,fromthe have beenadoptedwhereavailable.Forgalaxiesneither (Sandage andTammann1981)ortheTully-Fisherrelation corrections are30%-10%at60pmand<2%100pm.The 0 uncertainty inthecorrectiontermofroughly+5%(see uncertainty intheintrinsicspectrumofsourceleadstoan plied byanemissivityproportionaltofrequency.Typicallythe assuming theintrinsicspectrumtobeaPlanckcurvemulti- for thelargebandwidthsofIRAS60pmand100filters, calibration uncertainties,andshouldbelessthan15%. reported fluxdensitiesarealldominatedbysystematicand co-addition oftheIRASsurveydatabysubtractingacontribu- sample areallcomparativelybright,theuncertaintiesin uted aboutthepositionofM51.Becausegalaxiesinthis tion fromM51thatwasassumedtobesymmetricallydistrib- of NGC5195,becauseitsproximitytoM51,the60pmand 60 pmfluxdensitieswereobtainedfromtheSSSC.Incase sample have60pmfluxdensitiestakenfromtheLGC;53 has beenused.Twenty-ninegalaxiesinthebrightgalaxy included. the estimateoflargesttotalfluxdensityforagivengalaxy decreasing orderofpriority)fromtheLGC,SSSC,and from thiscatalogprobablyimpliesthatallobjectsmeetingthe Corwin 1976),thepositionsforgalaxiesarefromPSC. where thepositionsaretakenfromSecondReferenceCata- areal constraintswithinfraredsizesgreaterthan8'are less thantheinfrareddiameter,sothatinclusionofobjects PSC. Thisorderofselectiontotalfluxdensityensuresthat 100 pmfluxdensitieswereestimatedfromone-dimensional logue ofBrightGalaxies(deVaucouleurs,deand sample aregiveninTable1.Exceptforthelargegalaxies, out of~90(NGC6822)thatpossiblyhasanopticaldiameter Where distancesweredeterminedfromredshifts,thedis- For thosegalaxieswherenoradialvelocitywasfoundinthe Distances establishedfromprimarydistanceindicators The fluxdensitiesreportedinTable1havebeencorrected The total60pmand100fluxdensitiesaretaken(in The observationaldataforthegalaxiesinbrightgalaxy III. THEDATA 239 1987ApJ. . .320. .2383 1 pleteness ofthePSCiswell understood (Chester1986;IRAS bright galaxysampleshould behighlycomplete.Thecom- for thebrightgalaxysampleis giveninTable1. be clustermembers.Alldistanceandredshiftinformation used velocity iswithin400kms“ofthatVirgo,areassumed to tances arenotderivedfromanothersource,andwhoseradial tion thegalaxieswithin20°ofcenterVirgo,whose dis- the cluster,andtheirdistancesaretakenas17.6Mpc.Inaddi- 240 ~0.5 Jy(IRASExplanatory Supplement1985)theIRAS Because thecompletenesslimit ofthePSCat60/unis © American Astronomical Society • Provided by the NASA Astrophysics Data System IV. COMPLETENESSOFTHESAMPLE NAME NGC NGC NGC NGC NGC 34 NGC 23. NGC NGC NGC 253 NGC 247 NGC 174 NGC 157 NGC 150 MCG—02-01-051 NGC 232 UGC UGC IRAS UGC NGC 1068 NGC 1055 NGC 1022 NGC 992 NGC 337 NGC 958 NGC 922 NGC 908 NGC 578 NGC 470 MCG—03-04-014 UGC 556 NGC 877 NGC 873 NGC 835 NGC 628 NGC 613 NGC 598 NGC 520 MCG+02-04-025 NGC 772 NGC 701 NGC 695 NGC 693 NGC 660 IC 1623 UGC 1720 IRAS 0136-10 UGC 903 UGC 1451 UGC 1351 III Zw035 2403 2369 0243+21 2238 1187 1143/4 1134 1087 1084 1083 0 32 0 0 0 833.4 Oh 7m«4 1 3624.0 1 3159.0 1 3103.0 1 2803.7 1 2159.5 1 196.5 1 1722.8 1 5634.6 1 5541.5 1 5018.7 1 4835.0 1 4828.1 1 4754.2 1 4148.0 1 4021.6 1 341.0 19 52 38.6 51 15.6 50 57.1 43 51.8 43 49.2 43 33.4 53 23.0 43 32.4 43 18.7 40 7.2 44 40.0 39 11.8 36 4.6 34 35.8 52 45 40 17.5 34 31.4 31 47.3 28 11.8 22 49.4 20 46.6 57 19.9 16 18.0 15 15.1 14 5.3 11 28.3 RA 0 23.8 6 56.6 42.0 13.9 18.0 7.7 5.0 9.6 (1950) + 25°38'46" - 65331 + 0 + 1446 + 124843 - 3 -25 -23 + 212244 + 125310 - 023 - 04225 + 01352 - 74713 -15 345 - 01330 + 20536 + 285826 -10 3914 -12 2310 + 141836 + 153136 + 171952 + 3 -23 50 -29 45 - 84023 -28 444 -21 2736 + 45628 + 184552 + 2575 + 122743 + 222010 + 553 + 16517 + 132342 + 33152 + 14 -17 4637 - 75053 -25 3347 -21 20 -11 3455 -10 2223 -10 4225 -29 4034 -22 5540 -17 - 9570 +30 2354 DEC 29 28 3 43 7 5 53 8 53 9 32 0 54 IRAS BrightGalaxySample 11 6 2 1 1 SOIFER ETAL. -1 1245.0 TABLE 1 475.0 188.9 60/zm 100/imkms 27.4 21.7 21.0 24.2 22.6 76.1 22.8 33.5 10.3 18.6 10.1 17.6 10.5 10.7 12.1 10.7 14.4 11.4 12.4 13.8 6.1 7.8 7.7 7.1 9.6 5.6 9.6 9.6 6.2 8.0 7.7 8.8 5.5 7.0 6.7 5.5 6.2 7.1 7.9 5.4 8.6 5.6 6.2 6.6 6.5 8.4 8.1 8.6 F„ (Jy) -3/2 the brightgalaxysamplehave beenselectedonthebasisof sample of60/miextragalactic sources.Notethattheobjectsin lowest fluxbin.Ittherefore appears thatthebrightgalaxy flux densityofthesourcesin brightgalaxysampleinFigure sample is,toagoodapproximation, acompleteandunbiased Explanatory Supplement1985).TheSSSCisestimatedto be to besignificantsincethedifferential numbercountswiththe could besomeincompletenessinsourcesselectedfrom the investigated indetail(SSSCIntroduction,1986).Thusthere complete above10Jyat60/un,althoughthishasnotbeen SSSC forinclusioninthebrightgalaxysample.Thisisunlikely 1 showsanacceptablefitto AT»/distributiontothe v 2345.0 1724.0 238.7 107.1 23.4 29.6 55.1 37.8 60.8 26.7 28.9 30.2 44.7 65.2 49.1 47.6 24.3 11.3 11.4 11.9 17.5 21.0 15.7 14.1 17.5 17.1 16.0 18.7 19.2 16.6 15.2 12.0 17.2 12.1 14.4 12.1 10.7 12.3 11.0 13.3 12.9 13.6 13.2 6.5 9.1 9.9 9.5 9.7 9.9 6.2 8.2 10040 14250 5450 9354 7513 3595 6810 6250 4536 8550 5040 6250 5931 4119 5750 5550 4567 3471 3086 2261 2320 9337 2374 1394 3866 3450 3448 4066 1503 4916 4597 9769 1402 1651 1593 1125 1005 1498 8215 1651 1508 1487 1696 1593 655 862 Mpc 33.1 18.9 3.6 0.8 3.6 D Log Lfir 10.93 11.28 10.72 11.44 10.10 11.00 11.16 10.34 10.89 10.93 10.90 10.08 10.18 10.74 11.23 10.71 10.35 11.16 11.34 10.85 11.02 10.28 10.19 11.45 11.38 10.00 10.60 10.23 10.91 10.47 10.39 11.71 10.31 10.79 10.29 11.55 10.60 10.47 11.54 10.38 10.88 10.78 11.52 9.90 4; 9.96 9.87 9.11 9.81 8.67 9.80 9.86 1 mag 11.0 14.9 13.2 14.6 13.2 11.5 15.2 12.0 14.0 12.5 11.5 13.0 12.5 13.5 11.5 12.5 12.5 15.3 14.0 14.0 12.5 11.0 12.5 13.0 14.4 10.5 11.0 11.5 12.4 14.5 12.4 15.0 15.5 13.5 11.3 14.3 12.8 14.7 14.0 13.0 13.5 13.5 15.8 9.7 7.5 9.8 6.5 UGC 2388/9 UGC 2365 UGC 2245 UGC 2173 UGC 2103 UGC 1768 VV114A/B UGC 1315 UGC 1304 UGC 1201 UGC 858 Mrk 1027 UGC 966 UGC 89 Mrk 938 IC 1743 Arp 318 Arp 78 Name Other M77 M74 M33 Vol. 320 1987ApJ. . .320. .2383 No. 1,1987 significant withrespecttothe sizeoftheuniverse.Atotal31 Thus theIRASbrightgalaxy sampleextendswellbeyondthe galaxies inthesample,excluding Virgogalaxies,is32Mpc. from 0.6MpcforM33togreaterthan300themost in thebrightgalaxysample.Thesegalaxiesrangedistances sample galaxiesareidentified asassociatedwiththeVirgo distant galaxiesinthesample. Themediandistanceforthe Local ,butisnot samplingobjectsatdistances 60 /un. and allstatementsregardingcompletenessapplyonly at 60 ¡imfluxdensity,nottotalfar-infraredorinfrared flux, Figure 2showsthedistributionofdistancestogalaxies V. BASICPROPERTIESOFTHEBRIGHTGALAXYSAMPLE © American Astronomical Society • Provided by the NASA Astrophysics Data System -1 a (1950)60/zm100/¿mkmsMpcL^magName NGC 2785 NGC 2681 NGC 2683 NGC 2633 NGC 2623 NGC 2903 NGC 2856 NGC 2798 NGC 2782 NGC 2748 NGC 1667 NGC 3110 NGC 3094 NGC 3079 NGC 3067 NGC 3034 NGC 2985 NGC 2990 NGC 2976 NGC 2964 NGC 2967 MCG+08-18-012 NGC 2820 IRAS 0857+39 NGC 1637 MCG—04-12-003 NGC 1614 MCG—03-12-002 NGC 3077 NGC 3031 NGC 3044 NGC 2966 UGC 4881 IRAS 0833+65 IRAS 0518-25 NGC 1421 IC 563/4 UGC 5101 IRAS 0433-25 NGC 1482 NGC 1415 NGC 1385 UGC 2982 IRAS 0335+15 NGC 1377 NGC 1309 NGC 1232 IC 1953 NGC 1266 NGC 1222 NGC 1204 NAME RADECF„(Jy)czDLogLfirmOther z 10 132.2-6 9 122.9+41 5 1858.6-25 9 4554.0+72 9 2919.9+21 9 2053.3+49 9 1411.0+42 9 1239.6+44 9 1054.0+40 9 81.0+76 4 469.8-6 4 371.0-24 9 5842.0+16 9 5835.0+55 9 5526.2+32 9 5142.5+69 9 5129.0+69 9 516.2+1 9 4344.2+3 9 436.2+68 9 3955.7+32 9 3934.1+4 9 3929.3+0 9 3318.5+48 9 324.6+61 9 1743.2+64 8 5713.0+39 8 500.7+51 8 4935.0+33 8 4232.9+74 8 3525.2+25 8 3355.4+65 4 3857.1-2 4 3335.0-25 4 196.5-18 9 5917.0+68 9 4340.6+5 4 3135.8-8 4 943.2+5 3 5225.9-20 3 408.9-13 3 3845.6-22 3 3557.1+15 3 3519.7-24 3 3425.7-21 3 3129.5-21 3 1946.1-15 3 1328.6-2 3 728.3-20 3 624.2- 3 216.8-12 30 47.5 43 2359.5 40 527.2 36 3010.3 55 4825.6 IRAS BRIGHTGALAXIES 41 536.2 27 505.9 28 145.5 32 206.3 58 3715.6 55 1645.9 36 329.6 54 581198.4 48 549.8 30 435.8 56 205.4 54 75.7 33 585.4 34 3712.8 24 4013.8 24 296.1 25 128.9 57 115.9 55 485.8 23 65.9 40 5534.0 19 128.8 15 407.2 16 5916.9 17 496.2 38 5333.1 38 4912.1 12 2923.8 43 305.6 39 4716.8 18 449.0 17 266.6 38 429.1 45 4910.9 14 211.6 16 526.3 34 5.7 36 4311.7 14 65.6 32 68.1 7 349.2 0 4311.3 9 2210.7 4 3712.4 3 587.1 8 4913.2 TABLE 1—Continued 1129.9 estimated fromtherelationbetween mandsuggestedby given inTable1.Theblue flux,/ =v/(0.43fim),hasbeen vL(0.43 gm)andisderivedfrom theZwicky(blue)magnitudes q wasassumedtobezero.The blueluminosityisthequantity cluster. ThustheVirgoclusterpresentsa10%contribution to B, 1985).Forluminositycalculations thedecelerationconstant using thefar-infraredflux,/,whichisderivedbyfitting the the brightgalaxysample. Planck functionmultipliedbyanemissivityeocv(Cataloged 60 fimand100/unfluxdensitiestoasingletemperature total far-infraredluminosityLforthegalaxyiscalculated 154.9 554 Galaxies andQuasarsObserved intheIRASSurvey,Appendix objects inthebrightgalaxysampleareplottedFigure3. The 177.7 bz bv v 0 FIR FIR 26.5 2157 27.3 5538 34.5 284 21.5 4840 28.4 1755 24.6 20.0 1318 29.6 23.7 1319 31.1 4745 45.6 1655 21.7 2099 89.4 35.4 1488 16.3 2737 11.0 720 11.0 12706 11.2 4422 13.4 2552 19.3 1489 14.5 4600 13.5 726 40.9 1720 13.8 2388 19.4 1277 15.0 1887 19.6 12000 18.9 1506 10.4 6100 16.0 5321 12.1 1617 11.1 1995 14.0 2138 16.6 2035 15.3 2600 10.4 4282 4.2 17480 6.5 5608 9.9 11957 9.6 4843 9.1 9477 9.5 1686 9.4 3155 8.1 7790 8.8 2638 7.0 10600 8.0 2048 5.5 1474 Histograms ofthefar-infraredandblueluminosities 19.2 10.63 3.4 8.60 3.4 10.45 3.4 9.39 3.4 8.62 10.65 11.47 11.89 10.59 11.59 10.57 10.46 10.20 11.99 10.88 10.80 10.68 11.10 10.48 10.10 10.17 11.19 11.90 10.32 10.02 10.70 11.41 11.30 11.02 10.20 10.06 11.01 10.42 10.20 10.06 10.44 10.29 11.38 10.15 10.03 10.06 10.31 10.22 10.46 10.70 9.48 9.93 9.13 8.76 9.76 9.66 1 1 12.5 UGC4574 14.5 Arp243 15.4 14.9 UGC4876 12.3 Arp215 15.0 10.4 UGC4645 14.0 13.5 15.0 13.9 Arp285 13.1 UGC4961 12.9 UGC4905 14.9 Arp55 11.7 UGC4825 11.5 15.5 10.7 UGC5398 13.5 UGC5390 11.2 UGC5387 12.7 UGC5351 12.4 UGC5311 11.1 UGC5253 14.1 Arp303 10.9 UGC5221 12.0 Mrk404 14.0 UGC5181 12.2 UGC5180 15.5 15.0 Mrk617 15.5 12.0 12.5 UGC5229 14.0 12.0 12.5 14.0 12.5 12.5 14.0 11.1 Arp41 15.0 9.7 9.2 M82 9.8 UGC5079 8.1 M81 241 198 7ApJ. ..320. .2383 10 812 (adjusted tothesameHubble constant)wasfoundbyLaw- 242 rence etal.1986.Allthesources inthebrightgalaxysample known radio-loudobjectswhere theinfraredemissioncouldbe inclination orinternalreddening. for thebrightgalaxysamplewashighgalacticlatitude,extinc- attributed directlytoastellar population,whilenoneare have far-infraredfluxdensities muchgreaterthancanbe tion inthebluehasbeenneglected,ashavecorrections for m systemhasbeenapplied.Sinceoneoftheselectioncriteria that followwhereabluefluxisrequired,thisconversionto the bration ofthebluemagnitudegivenbyAllen(1973).Inallplots Kirschner, Oemler,andSchechter(1978)theabsolute cali- tribution occurringat~2x 10L.Asimilardistribution b ~10 Ltogreaterthan10,withthemodeof dis- ö q0 The rangeofobservedfar-infraredluminositiesextendsfrom © American Astronomical Society • Provided by the NASA Astrophysics Data System NGC NGC NAME NGC NGC NGC NGC NGC NGC NGC 3672 NGC 3655 MCG+00-29-023 NGC 3631 NGC 3628 NGC 3627 NGC 3597 NGC 3593 NGC 3583 NGC 3556 NGC 3521 NGC 3511 NGC 3508 NGC 3504 NGC NGC 3675 NGC 3486 NGC 3471 NGC 3448 NGC 3437 NGC NGC NGC NGC NGC NGC A1101+41 IRAS 1056+24 NGC NGC NGC NGC IRAS NGC 3735 NGC 3726 NGC 3690 NGC 3683 UGC 6436 NGC 3877 NGC 3810 NGC 3885 3166 3198 3184 3177 3147 3169 3294 3227 3221 3432 3424 3395/6 3368 3367 3359 3353 3351 3344 3310 1017+08 10 1139.6 10 1111.8 11 2017.5 11 1838.6 11 1812.0 11 1741.8 11 1739.6 11 1214.4 11 59.8 11 23.0 11 10 2046.6 10 1722.1 10 1652.0 10 1516.4 10 1348.5 10 1238.4 11 2325.4 11 239.8 11 2230.0 11 11 0 11 028.6 10 5740.0 10 5635.5 10 562.2 10 5138.4 10 41 10 40 10 35 10 3323.5 10 1933.4 11 2442.7 10 4952.8 10 49 10 48 10 47 10 44 10 43 10 43 10 42 11 4329.5 11 3823.8 11 330.5 11 3037.3 11 2542.0 11 4416.6 RA 0 56.2 3 14.2 8 35.3 1 5.8 30.7 44.2 21.1 46.4 39.6 59.8 54.7 15.1 19.0 7.7 4.3 (1950) - 24236 + 135140 + 131536 + 483517 + 34012 + 435132 + 145653 + 165150 + 532638 + 135 + 555646 + 0146 + 4178 + 2814 + 291444 + 244843 + 61 + 373459 + 214934 + 82841 + 454800 + 414028 + 212223 + 73390 + 34250 + 585017 + 5797 -23 27 + 5434 + 2312 + 365326 + 339 + 3315 + 12 + 14 + 632904 + 561330 + 1158 + 2511 + 534550 + 474616 + 114453 + 704850 + 471816 - 93112 -22 4858 -16 1 -27 3853 »-20 DEC 47 53 7 4 59 0 58 28 07 18 19 12 4 8 1 TABLE 1—Continued SOIFER ETAL. 108.9 60/im 100/zmkms 54.0 62.5 20.4 35.3 50.0 20.0 34.8 12.0 13.8 18.3 12.5 12.7 12.2 11.6 14.7 13.0 11.9 7.0 7.3 7.4 7.8 5.9 7.9 7.3 7.5 7.0 7.1 6.1 9.6 6.9 6.9 9.3 5.7 6.5 9.3 5.9 9.5 6.1 5.4 6.3 7.5 9.6 6.7 8.9 8.0 8.9 8.2 8.3 F„(Jy) 10 9 6 dispersion intheblueluminosities isabouthalfthatin far-infrared luminositiesof^2xl0Landtypical dust the far-infraredluminosities. Forthe312galaxieswithblue galaxies. and Lee1984).Thiscorrespondstoatotalgasmassof~ 10 thin dustemissionandnormalparameters(e.g.,Draine the observedluminosityis~4x10Massumingoptically extent at60/un.Thus,weassumethatthefar-infraredpeak in expected tobeanextensionoftheradiononthermalemission. significantly lowerthanthefar-infrared luminosity,whilethe M, quitetypicalfortheinterstellar mediumoflargespiral temperatures of~35K,themassdustrequiredtoproduce the energydistributionisduetothermalemissionbydust. For Furthermore, manyoftheobjectsinsampleshowspatial 127.8 151.3 130.5 108.6 o 0 0 28.0 24.7 22.7 25.0 35.5 21.1 20.1 40.7 29.3 32.4 20.3 27.4 35.1 21.3 35.6 83.8 31.4 19.2 17.8 19.8 13.3 16.8 17.7 10.9 17.1 17.3 18.7 10.0 18.9 10.4 13.9 13.5 13.8 11.8 12.4 17.1 16.6 12.8 13.8 18.9 17.8 14.8 5.4 6.4 8.9 As canbeseenfromFigure 3 themeanblueluminosityis 14390 10216 10350 12501 7230 2820 2254 3300 2135 3971 3580 3040 2696 3159 1205 1381 1303 1855 1481 1161 1226 1549 1380 1291 1592 1110 1656 1494 1630 1948 720 776 665 589 771 621 697 940 585 970 804 899 Mpc 10.9 19.4 16.7 17.4 17.7 D 9.9 9.9 Log Lfo 10.74 10.37 11.10 10.21 10.18 10.25 10.77 10.42 10.30 10.39 10.89 11.68 10.10 10.49 11.48 11.50 10.66 10.55 11.87 10.23 10.22 10.53 10.39 10.21 10.58 11.72 10.31 10.30 10.07 9.98 9.93 9.85 9.16 9.94 9.95 9.52 9.43 9.86 9.94 9.06 9.96 9.32 9.45 9.83 9.57 9.42 9.87 9.85 8.98 mag 11.3 11.9 11.2 12.0 11.6 15.0 11.0 11.5 13.0 11.8 11.6 10.9 10.1 15.0 11.5 11.5 13.0 12.2 12.0 14.3 10.7 10.3 12.8 12.7 10.4 15.4 14.0 11.1 12.6 11.6 13.2 12.1 12.0 12.0 11.0 12.9 10.7 11.8 11.0 11.5 11.4 12.6 11.1 11.8 13.0 11.8 m‘ z 8.9 UGC 5525 UGC 5516 UGC 6396 UGC 6272 UGC 5557 UGC 6439 UGC 6150 UGC 6079 UGC 5873 UGC 5620 UGC 6537 UGC 6350 UGC 6263 UGC 5601 UGC 5544 UGC 5532 UGC 6745 UGC 6458 UGC 6118 UGC 5995 UGC 5972 UGC 5880 UGC 5753 UGC 6644 UGC 6567 Mrk 158 Mrk 171 IC 2810 Arp 205 Arp 206 Arp 270 Arp 217 Mrk 35 Arp 27 Name M108 Other M66 M96 M95 V32 Vol. 320 198 7ApJ 320. .2383 No. 1,1987 median valueis~—0.2.Note thattheUGCgalaxieswithout magnitudes giveninTable1cr[log(L)]=0.43,while IRAS detectionswillhavelog (fi/f)<0.Sinceonlyhalfof ed sampleis—1.5to2.1.The medianvalueoflog(f/f)for brighter than14.5magintheUGCcatalog(Nilson1973;Rice, in Figure4,wherehistogramsoffar-infraredtobluefluxratios limited sampledetectedintheIRASsurvey.Thisisillustrated more “infraredactive”thanthoseinanopticalmagnitude the IRASgalaxiesis~0.4, while fortheopticalsample range from—0.9to2.1,while therangeforopticallyselect- private communication)thathave/RASdetections. are plottedforthebrightgalaxysampleandgalaxies (r[log (L)]=0.70forall324galaxiesinthesample. b FRb FlRb fir The objectsinthebrightgalaxysampleare,notsurprisingly, For theinfrared-selectedsample thevaluesoflog(f/f) F1Rb © American Astronomical Society • Provided by the NASA Astrophysics Data System -1 a (1950)60/zm100/zmkmsMpcL<¿magName NAME RADECF^Jy)czDLogUrmOther NGC 389311 NGC 388711 NGC 393811 NGC 395511 NGC 395311 NGC 394911 NGC 401311 NGC 398211 NGC 399411 NGC 398111 NGC 403011 NGC 402711 NGC 4038/911 NGC 408812 NGC 408512 NGC 405112 NGC 404512 NGC 404111 NGC 410012 NGC 409612 NGC 415712 NGC 412312 NGC 410212 NGC 441412 NGC 438812 NGC 452612 NGC 449012 NGC 443812 NGC 443312 NGC 441912 NGC 441812 NGC 440212 NGC 439512 NGC 438312 NGC 436912 NGC 433212 NGC 432112 NGC 430312 NGC 429812 NGC 427312 NGC 425412 NGC 421412 NGC 421212 NGC 419412 NGC 419212 NGC 417412 NGC 452712 NGC 450112 z IRAS 1222-0612 IRAS 1211+0312 44 31.9-16 46 0.0+48 51 5.0+48 50 12.8+44 53 35.5-19 51 24.2-22 51 11.8+52 55 55.9+44 53 51.8+55 55 5.7+32 56 56.9-18 59 19.4-18 57 49.4-0 59 38.9+62 24 24.5+15 24 22.1-0 23 57.8+31 23 35.3+13 23 20.0+33 23 14.4+12 22 53.0+16 22 29.0-6 31 30.7+7 29 28.1+14 28 8.2+41 25 14.0+13 25 4.6-8 22 8.2+39 20 27.1+66 20 24.7+16 31 35.0+2 19 24.0+4 19 3.6+14 17 22.3+5 16 17.3+14 13 9.4+36 13 2.6+14 11 41.3+54 11 16.1+15 11 12.2+3 2 49.2+50 0 36.0+44 0 7.9+2 3 28.5+47 3 1.7+50 9 58.8+29 5 37.4+3 3 50.9+52 3 36.2+49 8 34.6+50 23 589.0 59 2014.5 34 267.7 53 108.4 36 257.1 24 117.2 37 236.6 34 119.8 24 5414.5 49 1617.5 59 1310.8 48 3611.2 35 5341.6 51 409.0 45 267.8 37 595.8 29 5627.6 23 246.0 49 305.7 56 2411.1 44 539.1 24 146.4 26 465.7 45 4019.1 59 2049.9 55 4827.3 58 266.2 41 2816.7 55 2342.5 36 1443.7 39 326.3 44 5335.2 52 446.7 37 1610.4 41 3835.2 36 416.5 48 1123.4 15 227.1 13 348.4 17 065.5 19 268.1 11 107.0 10 348.8 49 525.1 8 1311.2 7 128.0 9 256.2 5 4623.4 5 208.8 0 1414.1 IRAS BRIGHTGALAXIES TABLE 1—Continued 25.0 804 21.5 792 34.9 977 36.4 21.6 835 21.1 3250 76.0 1563 27.9 1677 46.4 1463 15.4 1130 20.8 710 31.3 1234 20.7 1076 51.9 763 78.1 577 43.7 771 67.3 863 18.8 1717 17.4 1345 25.6 2978 68.6 73.2 2447 15.8 1110 63.7 1737 56.2 32.0 2045 58.1 1576 61.8 1568 21.5 2375 29.2 288 25.0 2528 26.4 13.6 1995 19.7 14.5 751 10.8 17.4 242 13.4 294 15.8 447 15.5 259 17.7 37 17.4 12.0 1695 11.3 1052 14.0 2843 19.1 1116 11.0 4061 16.4 2125 10 7.5 7495 9.5 21703 L isduetoincreasinginfrared emissioninthemorelumin- are basicallyindependent,and thecorrelationofwith results isthatthefar-infrared andblueluminositycomponents ratios requirelargerL.The simplestexplanationofthese in thebrightgalaxysamplehave adispersionof~1magabout a meanof~10L{M« —20mag)sothatlarger///¡, is nocorrelationbetween///andL,asshowninFigure 5b. luminosity thandoestheopticallyselectedsample. with infraredmeasurementsforallsourcesmustbe still As seeninFigures3and5btheblueluminositiesofgalaxies sample consistsofgalaxieswithmuchgreateraverageinfrared smaller. FromFigure4itisclearthattheinfraredflux-limited the medianvalueoflog(/fir//*,)foranopticallyselectedsample the UGCgalaxieswithm<14.5magaredetectedbyIRAS, fir FIR 0b FIR FIRfcb b Figure 5ashowsthat/i//correlateswithL,whilethere FR&FIR 17.5 10.32 20.2 10.24 11.1 9.49 18.0 9.68 13.0 10.14 18.8 9.94 12.4 9.68 10.22 10.22 10.01 10.82 10.40 10.34 10.81 10.26 10.19 10.28 10.11 10.52 10.08 10.87 10.82 11.00 11.14 10.57 10.33 10.85 10.60 10.47 10.87 12.19 10.71 9.80 9.71 9.89 9.84 9.98 9.61 9.53 9.81 9.80 9.80 9.77 9.84 9.77 9.88 9.85 9.79 8.29 8.70 1 11.6 10.9 UGC6869 11.0 UGC6856 10.6 UGC6778 12.5 Arp289 12.0 10.8 UGC6870 12.4 12.8 UGC6944 11.6 Arp22 12.4 11.6 UGC7014 10.5 Arp244 12.4 UGC6993 12.8 UGC7075 11.2 13.5 UGC7021 11.8 UGC7096 11.7 UGC7095 11.6 11.2 Arp18 10.6 UGC7718 10.6 M88 10.1 UGC7651 12.0 13.0 11.6 UGC7551 14.2 UGC7545 10.9 UGC7539 13.6 UGC7528 11.7 12.2 UGC7520 12.3 UGC7507 13.2 UGC7453 11.9 UGC7183 13.1 UGC7116 12.4 UGC7721 12.3 Mrk439 10.6 M100 10.9 M61 12.1 UGC7412 12.3 UGC7380 10.2 M99 10.3 11.0 M98 16.9 14.2 UGC7211 11.9 UGC7275 13.0 243 1987ApJ. . .320. .2383 9 10 Thus theidentificationsfrom thissubsetofthebrightgalaxy contained inthePSCforover 80%ofthevolumesurveyed. irregular galaxies(Gallagher andHunter1984),bepoint would, iftheirsizesweresimilar totheopticalsizeofdwarf sources atdistancesgreaterthan 6Mpc,sothattheywouldbe brightness andhencenotbevisible onthePOSS.Suchgalaxies common. EvenatL«10L©,galaxieswouldbedetected to ~10Mpc.Suchgalaxiesmighthaveverylowvisiblesurface large enoughvolumetodetectsuchgalaxiesiftheywere bright galaxysampleincludesgalaxiesto30Mpc,certainly a This lackcannotbeaselectioneffect.AtL»10 the infrared luminositiesandwithfi/fratiosgreaterthan 10. ation. ous galaxies,ratherthanduetoextinctionofthevisibleradi- FIR FIR0 FRb 244 The brightgalaxysamplecontainsnogalaxieswithlowfar- © American Astronomical Society • Provided by the NASA Astrophysics Data System NGC NGC NGC NGC UGC UGC NGC NGC NGC NGC NGC 5104 NGC 5073 NGC 5055 NGC 5033 NGC 5020 NGC 5005 MCG+01-33-036 NGC 4922 NGC 4900 NGC 4845 NGC 4826 NGC 4818 NGC 4783 NGC 4781 NGC 4736 MCG+08-23-097 NGC 4710 NGC 4691 NGC 4666 NGC 4656 NGC 4654 NGC 4651 NGC 4631 NGC 4618 NGC 4605 NGC 4594 NGC 4579 NGC 4569 NGC 4568 NGC 4565 NGC 4559 UGC 8387 UGC 8335 IC 860 NGC 4808 NGC 4536 NGC 4535 NGC 4532 IC 3908 UGC 8058 NAME 5331 5257/8 5256 8739 8696 5248 5218 5195 5194 5145 13 4941.3 13 471.7 13 4251.6 13 3722.1 13 3614.2 13 352.6 13 3026.4 13 2752.8 13 2745.4 13 233.8 13 1849.2 13 1819.0 13 1642.5 13 41.3 13 34.8 13 1240.1 13 119.8 13 1012.5 13 837.9 12 5917.8 12 59 12 58 12 5527.8 12 5146.3 12 48 12 47 12 45 12 42 12 41 12 41 12 41 12 39 12 39 12 3748.7 12 3723.0 12 3511.6 12 5417.5 12 5412.7 12 54 12 54 12 53 12 5215.8 12 48 12 3418.0 12 342.4 12 3352.1 12 3329.0 12 3152.6 12 3148.2 12 3146.3 RA 31.7 21.4 32.0 25.2 40.8 38.6 34.6 15.8 13.0 5.8 7.8 4.8 4.1 9.1 1.0 (1950) + 2217 + 353014 + 56813 + 1513 + 483152 + 9 + 63 + 473130 + 472725 + 433126 + 03614 + 342349 + 421731 + 622317 + 2452 + 365125 + 125140 + 371926 + 436 + 293459 + 24612 -14 356 + 15042 + 2157 + 434 + 291236 + 412335 + 481218 +15 2613 + 322630 + 13247 + 163958 + 32495 + 412516 + 6152 + 132620 + 57 -11 2100 + 12537 + 113054 + 261532 - 815 - 7 -10 1550 - 336 - 01120 + 28142 + 22758 + 82816 + 64438 DEC 17 24 8 28 1 26 8 38 18 7 SOIFER ETAL. TABLE 1—Continued _ 121.0 60/im lOO^mkms 24.5 70.0 11.0 45.3 34.8 90.0 18.6 30.2 20.9 20.9 17.0 33.9 32.0 16.0 11.5 18.4 15.8 13.7 12.9 19.5 19.6 12.1 10.6 11.6 11.1 6.0 6.4 7.7 7.6 6.7 7.5 9.5 7.2 7.1 6.4 5.5 6.0 6.6 5.4 5.6 6.7 5.8 9.9 5.4 5.6 8.3 8.8 9.3 9.5 F,(Jy) 10 the entiresample.Thus infraredpropertiesoftheblue blue lightis2.5;allofthese values areclosetothemedianof galaxies is1.8x10L©,and theirmeanratioofinfraredto M =—19.9mag.Themean far-infraredluminosityofthese The averageabsolutebluemagnitude ofthesesevengalaxiesis the bluecompactgalaxysample ofThuanandMartin(1981). associated withHnregionsinthesegalaxies. fraction ofknowndwarfgalaxieshavedetectable60¡umemis- sion, andthisisatacomparativelylowlevelusually also arguesagainstsuchaclassofgalaxiesbeingpresentin the preclude asignificantcontributionofdwarfgalaxies.The lack 299.0 SSSC. TheworkofHelou(1986a)hasshownthataverysmall of anyvisible,faintgalaxycounterpartstoextendedsources sample, whereonlyoneobjectisnotaccountedfor(seeabove), 207.8 b 161.0 138.7 21.2 43.9 20.0 10.2 14.3 23.8 77.9 18.3 11.9 53.0 78.7 27.8 21.1 35.2 23.8 14.2 59.9 23.5 25.9 29.5 30.3 28.4 47.8 48.7 28.4 44.1 12.0 12.5 24.3 14.8 10.2 17.9 18.0 13.1 15.4 12.1 15.0 12.3 11.2 17.4 15.9 15.3 7.4 7.8 9.9 6.7 Seven galaxiesinthebrightgalaxysamplearecontained in 11400 10852 12556 9950 5130 6820 2860 8285 5585 6870 2715 9356 3862 7357 2515 1156 3354 2253 8833 1225 1125 1265 1645 1128 1805 1050 1052 1824 497 950 645 613 414 307 558 877 140 Mpc 23.8 21.2 20.5 17.7 16.1 16.2 17.4 11.5 13.0 13.0 16.1 9.3 9.3 D Log Lfir 11.43 11.00 12.10 11.37 11.37 10.22 10.57 10.49 11.04 11.52 10.54 11.60 10.01 11.10 10.40 10.52 10.50 11.42 10.75 10.10 11.26 10.09 11.14 12.32 10.28 10.93 10.07 10.12 10.26 10.01 10.83 9.47 9.99 9.69 9.94 9.70 9.52 9.73 9.93 9.24 9.67 9.36 9.83 9.67 8.95 8.93 8.80 9.79 9.90 9.97 Lg 14.3 14.7 15.0 13.7 14.1 11.4 13.1 10.6 13.6 14.5 14.8 mag 13.0 14.4 14.8 10.9 13.4 10.6 15.5 12.0 16.0 12.0 10.6 14.2 12.8 12.9 12.0 12.5 12.3 11.6 12.0 11.8 11.3 11.5 10.8 11.5 14.1 14.0 11.8 12.5 10.6 10.6 11.2 11.1 12.3 8.8 9.7 9.8 9.0 8.7 8.9 UGC 8641/5 VII Zw506 UGC 8632 UGC 8616 UGC 8494 UGC 8439 UGC 8391 UGC 8307 UGC 8289 UGC 8256 UGC 8054 UGC 8033 UGC 7980 UGC 7926 UGC 7902 UGC 7853 UGC 8135 UGC 8116 UGC 8078 UGC 7831 UGC 7776 UGC 7727 UGC 7726 Mrk 273 Mrk 231 Aip 193 Arp 189 Arp 281 VV253 Arp 76 M104 Name M51 Other M63 M64 M94 M58 Vol. 320 1987ApJ. . .320. .2383 viously byMiley,Neugebauer, andSoifer(1985)Rieke the blueluminosity.Sucha correlation hasbeenfoundpre- no correlationbetweenthefar-infrared colortemperatureand higher 60/¿m/100/¿mcolortemperatures, whilethereisclearly luminosity inthesensethathigher luminositiescorrespondto density ratioisplottedversusblueluminosity.Therea cor- infrared luminosity,whileinFigure6bthe60/¿m/100/mi flux monotonie withcolortemperature,isplottedversus far- meet ThuanandMartin’sdefinitionofbeingdwarfs, i.e., Lebofsky (1986). relation betweenthecolortemperature andthefar-infrared compact galaxiesinthesampleareindistinguishablefrom the having M>—18mag. properties ofthesampleasawhole.Nonethesegalaxies No. 1,1987 B In Figure6athe60/mi/100/unfluxdensityratio,which is © American Astronomical Society • Provided by the NASA Astrophysics Data System NGC NGC NGC 5728 NGC NGC NGC NGC NGC NGC NGC Zw 247.020 NGC 5600 NGC 5506 NGC 5457 NGC 5427 NGC 5775 NGC 5757 IRAS NGC 5793 NGC 5792 NGC 5433 NGC 5430 NGC 5394 NGC 5383 Zw 049.057 NGC 5861 NGC 5866 UGC 9618 NGC 5371 NAME NGC 5953 NGC 5937 NGC 5936 NGC 5929 NGC 5915 NGC 5907 NGC 5900 UGC 9668 NGC 5962 IRAS 1525+36 I Zw107 NGC 6181 MCG+01-42-088 NGC 6090 NGC 6070 NGC 6052 NGC 6015 NGC 5990 UGC 9913 IRAS 1533-05 5676 5663 5653 5597 5719 5713 5690 5678 5595 1434-14 14 3037.4 14 3939.4 14 3822.6 14 3737.2 14 358.4 14 3452.3 14 311.2 14 2957.4 14 280.2 14 2141.0 14 2127.1 14 2125.7 14 5447.8 14 5126.9 14 4457.8 14 1753.8 14 1038.9 14 14 14 15 14 5639.6 14 5546.6 13 598.4 13 5625.2 13 550.2 15 1045.6 15 15 13 5332.5 15 27 15 24 15 16 15 14 15 13 15 32 15 32 15 28 15 25 15 18 16 28 16 15 50 15 43 15 34 15 33 16 30 16 10 16 RA 0 0 5 0 6 1 55.7 48.3 24.0 33.1 33.8 20.6 47.5 40.8 46.3 39.4 27.4 24.0 26.0 44.6 32.4 39.3 17.0 13.4 19.0 13.9 10.1 7.2 9.8 3.1 2.6 (1950) + 8 + 23025 + 494037 + 58 + 3126 + 145154 + 244858 + 34438 -14 4724 -16 32 + 492754 + 543322 + 5557 + 8343 -17 2 - 0 - 0 -16 2953 + 3245 + 5934 + 3741 + 425 + 4042 + 72443 -16 2953 - 05324 -18 52 - 25826 - 5 + 13 + 36 + 415056 + 425541 + 562935 + 422335 + 23408 +15 2143 -11 7 + 195548 + 41124 + 5235 + 0050 + 204034 + 6227 + 23412 + 1646 - 23936 -12 5450 - 51359 DEC 47 25 18 0 IRAS BRIGHTGALAXIES 6 4 8 17 9 32 9 0 42 34 38 20 59 17 19 18 10 12 14 16 13 19 0 6 TABLE 1—Continued 110.1 60¿¿m 100/¿mkms~ 20.9 24.2 96.7 23.1 10.8 11.5 10.9 10.1 10.9 11.3 11.2 11.0 10.5 10.3 7.1 6.8 6.9 9.1 7.2 6.4 8.9 5.9 6.5 9.1 9.5 6.8 8.9 5.5 6.8 8.8 8.7 8.8 5.7 5.4 5.4 7.5 7.4 7.4 9.3 9.8 9.7 7.4 9.0 5.7 8.2 9.3 6.8 6.2 F„(Jy) 257.4 115.1 12 10 36.9 30.6 25.3 20.8 45.3 27.1 20.2 20.6 30.6 16.1 12.8 15.1 21.0 50.2 13.0 14.9 17.1 15.8 11.4 20.1 11.1 11.9 12.9 20.3 21.8 19.1 15.3 14.0 17.0 16.0 15.6 16.4 13.3 11.5 12.9 10.4 15.4 indicates asignificantdecrease inthespacedensityofgalaxies at highluminositiesandcold color temperatures.Furthermore, galaxies cannotbesimplya color selectioneffect,butrather same luminosity.Thereforethe lackofdetectionanysuch 7.2 of thosegalaxieswithmedian coloratL«10the volume searchedforgalaxieshavingthemedian60 /¿m/ with luminosityanddoesnotappeartobeableaccount for effect doesnotaccountforthechangeincolortemperature the observedlackofcoldgalaxiesathighluminosity. The which theycanbedetectedat60/¿missmaller.Thisselection 9.3 galaxies ofagivenfar-infraredluminositywillhaveweaker 60 /¿mfluxesthandowarmgalaxies,sothevolumewithin bright galaxysampleisprobablynotaselectioneffect.Cold 7.6 9.9 8.1 100 /¿mcolorofthosegalaxies withL«10is~fthat 9.8 5.4 9.6 9.7 9.6 FIR0 FIR0 The absenceofhigh-luminosity,coldgalaxiesfromthe 24332 10100 12043 16009 2104 2266 3514 2677 2691 7800 2771 2813 2349 2565 4278 2819 3404 2282 2565 3917 3521 2551 3528 1900 1750 1929 7800 2488 2600 2338 1670 1480 1809 7075 5452 4029 2379 4762 3809 1930 1867 8733 1983 1963 672 666 Mpc 29.6 16.5 8.1 D Log Lfir 10.18 10.69 10.24 12.19 10.67 10.52 10.35 10.90 10.53 10.69 10.46 10.55 10.53 10.33 11.21 10.20 10.38 10.32 10.70 10.81 10.72 10.74 10.35 10.59 10.58 10.40 11.59 10.46 11.12 10.16 10.54 10.61 10.89 11.89 10.55 10.48 11.72 11.20 12.12 10.46 10.57 11.21 11.35 10.19 10.87 10.84 10.45 Le 9.66 9.60 1 1 1 mag 13.8 11.7 13.1 16.7 11.7 12.3 12.6 12.7 13.0 12.5 13.0 12.5 12.5 11.9 15.4 13.6 14.3 12.0 14.0 13.1 11.1 13.8 14.0 13.5 13.9 12.5 11.5 15.5 12.0 14.9 11.4 15.0 13.1 13.0 16.2 13.0 12.5 12.7 12.2 16.8 14.4 13.3 14.9 14.0 13.0 14.1 11.6 13.1 m‘ 8.7 z UGC 10267 UGC 10230 UGC 10024 UGC 9352 UGC 9462 UGC 9451 UGC 9366 UGC 9318 UGC 9220 UGC 9579 UGC 8954 UGC 8875 UGC 9723 UGC 9631 UGC 8846 UGC 9801 UGC 9790 UGC 9867 UGC 9852 UGC 9926 Mrk 1490 Mrk 839 Mrk 848 Arp 302 Arp 220 Arp 209 Arp 91 VV75 M101 Name Other 245 1987ApJ. . .320. .2383 i/2 3/2 and isanacceptablefittodata. while fractionalerrorineachbinisN~ , whereNisnumberofsourcesinbin.Lineshownbest-fitdata toNoc/~power-lawnumbercountdistribution, v Fig. 1.—Differentialnumbercounts ofsourcesplottedvs.fluxdensityforinthebrightgalaxysample. Eachbinincludesarangeof1.67influxdensity, © American Astronomical Society • Provided by theNASA Astrophysics Data System Sanders etal1987a. a Zw 475.056 Zw 453.062 NGC 7673 NGC 7625 NGC 7591 NGC 7771 NGC 7714 NGC 7679 NGC 7678 NGC 7674 NGC 7592 NGC 7541 NGC 7479 NGC 7469 NGC 7465 NGC 7448 MCG—03-57-017 Mrk 331 NGC 6503 NGC 6285/6 NGC 6217 NAME IRAS 1713+53 UGC 12915/4 IRAS 2249-18 MagnitudetakenfromZwickycatalogs(Zwickyetal1961-1968).Note(1)indicatesmagnitudeisbluemagnitude, co o CD "O CT> O à 2.5 0.5 2.0 1.5 1.0 0 0 0.51.01.52.02.5 3.03.5 23 2524.7 23 2512.0 23 1759.5 23 1547.5 23 1331.2 23 4852.1 23 3339.8 23 2613.9 23 2556.6 23 1543.9 23 1211.5 23 228.1 23 226.6 23 044.6 22 5734.8 23 59 23 4852.8 22 5931.9 22 499.6 22 2842.7 17 1314.2 16 354.8 17 4957.8 16 5744.9 RA 7.7 +23 (1950) + 31413 + 83014 + 251648 + 15234 + 22831 + 231854 + 16574 +6 1847 + 41540 + 123 + 836 + 1541 + 154247 + 531352 + 201822 + 194955 - 44120 + 70925 + 59040 -18 820 -19 1731 +78 184 hl9 DEC 16 55 12 58 55 11 18 TABLE 1—Continued LOG Jy] ! 60/zm 100/imkms~Mpc 27.8 19.1 11.3 10.1 19.5 12.4 17.6 12.4 10.2 11.0 7.7 7.5 9.6 5.7 5.5 6.1 8.4 6.8 5.6 6.6 5.8 8.1 8.0 8.2 246 F,(Jy) 24.8 20.3 39.9 34.4 20.9 38.7 25.4 23.5 18.7 10.8 14.8 10.4 13.1 12.1 10.7 10.3 14.1 17.9 9.5 6.7 7.6 4.3 8.2 6.5 i 22807 15212 7314 7373 7263 2805 5152 3491 3407 4964 2665 2382 4963 2192 5385 4346 8669 8215 5600 4590 1653 1959 1359 51 Log Lfir 10.12 10.51 10.87 10.64 11.22 10.39 11.21 11.41 11.23 10.55 11.40 10.82 11.27 11.25 10.92 10.83 10.03 10.33 11.13 11.77 10.22 12.06 11.28 8.97 1 1 mag 13.6 12.8 13.1 13.2 12.7 12.7 14.0 13.8 15.0 12.7 15.2 11.7 12.0 13.2 14.9 13.1 13.0 13.3 16.5 14.5 10.9 16.1 14.2 12.1 m z UGC 12699 UGC 12618 UGC 12608 UGC 12529 UGC 12614 UGC 12486 UGC 12447 UGC 12343 UGC 12332 UGC 11012 III Zw125 Mrk 325 Arp 293 Arp 185 Aip 13 Name Other 1987ApJ. . .320. .2383 Virgo cluster,whilehistogramabovethislineincludesclustergalaxies. compared tofar-infrared luminosity. luminosity effectively from40-400/mi(seetext).Inplot andintextluminositiesaregiven solar(bolometric)luminosities.Note muchnarrowerdistributionofblue Fig. 2.—Histogramofdistancestogalaxiesinbrightgalaxysample,determinedasdescribedtext.Lowerenveloperepresentsnot associated with Fig. 3.—Histograms ofluminositiesgalaxiesinbright galaxysample.Blueluminosity(dotted line)isvL(0.43jum),whilefar-infrared luminosity(solidline)isthe v © American Astronomical Society • Provided by the NASA Astrophysics Data System 247 1987ApJ. . .320. .2383 8910 248 sample, whiledashedlineisdistributionforgalaxiesinUGCcatalogwithm<14.5detectedIRASsurvey(Bothun,Lonsdale,andRice1987). Nondetectionsin object fromUGCgalaxiesatlogf/f=-1.55fellbelowlimitsofplot. UGC cataloghave\ogf/f<0.Histogramforgalaxieshasbeennormalizedtopeakofbrightgalaxysample,butcontains-10timesmore galaxies.One (assuming MJM=200)of10,andMareshown is increasingwithluminosity. luminosity, coldobjectsthatwerenotcontainedinthebright medium ofnormalspiralgalaxies (Sandersetal.1986).Since in Figure6a.Theyshowthattheamountofmaterial that theminimumradiationfieldseenbyradiatingmaterial tive maximum.Theincreaseofthelowerbound60/an/ radiation fieldheatingtheradiatingmaterialreachesaneffec- galaxy sample. a searchofthePSCat100fimwithb>50°showednohigh- enough interstellarmatterto producesuchhighluminosities color temperaturesmayreflect theabsenceofgalaxieshaving cold galaxiesneedmorematerial toproduceagivenlumin- parable totheamountofmass expectedintheinterstellar have moreradiatingmaterial. Thisrangeofmassisquitecom- this range,withatendencyforthehigherluminositysources to galaxies inthebrightgalaxysamplehavemassesofdustwithin generally increaseswithincreasingluminosity.Nearlyall the ble totheamountofinterstellarmatterinnormalgalaxies, and responsible forthefar-infraredradiationisroughlycompara- thin dustemission)correspondingtototalgasmasses Figure 6a,independentofL,impliesthattheintensity osity, theabsenceofgalaxies withhighluminositiesandlow 100 /anfluxdensityratiowithincreasingluminosityindicates z FlRb FlKb d0 FIR Fig. 4.—Histogramsofratiofar-infraredfluxtobluefortwosamplesgalaxiesdetectedinIRASsurvey.Solidlineisinfraredlimited brightgalaxy The apparentmaximum60/an/100/anfluxdensityratioin Lines ofconstantmassradiatingdust(assumingoptically © American Astronomical Society • Provided by the NASA Astrophysics Data System SOIFER ETAL. L0G[f¡/f] rb 12 10 /(100 /mi)relationisconsistentwiththeresultsfrom opti- derived usingtheexpressions v vL(60 /mi),andtheuncertainty inthespacedensitywere cally selectedsample. lated withincreasingcolortemperature.Atagiven60 /un/ (1984), whereincreasingratioofinfraredtobluelightiscorre- without havingagenerallywarmerinterstellarmedium. shown previouslybydeJongetal.(1984)andSoifer al. galaxy sample.Thisplotshowsthesamegeneralcorrelation ratio /fir//*,plottedversus/(60/mi)//(100/un)forthebright those foundinnormalgalaxies. Another statementofthisisthataluminosity10L al, whilethelowerenvelopeof///versus/(60/mi)/ sample thanintheopticallyselectedofdeJong et M ofgasanddusttotemperaturessignificantlygreaterthan sufficient toheatthedustcorrespondingmorethan10 100 /imratio,thespreadinf/fisgreaterbrightgalaxy v v 0 FIR&v 0 FlRb The spacedensityofgalaxies intermsof60/¿mluminosity, Figure 7combinestheprevioustwofigures,showing VI. SPACEDENSITYOFIRASGALAXIES a) The60/miLuminosityFunction correlation between thesequantities. closely linearlyproportionaltofar-infrared luminosity,(b)Plotofratiofar-infraredtobluefluxvs.luminosity forbrightgalaxysample.Thereisnoapparent 1987ApJ. . .320. .2383 Fig. 5.—(a)Plotofratiofar-infrared tobluefluxvs.far-infraredluminosityforbrightgalaxysample.Increase inaverageratiooffar-infraredtobluefluxis © American Astronomical Society • Provided by the NASA Astrophysics Data System Fig. 5b 8910 luminosity forbright galaxysample.Nocorrelationisapparent betweenthesequantities. given byrighthand temperaturescale,and100pmdust opacityistakenfromDraineand Lee(1984).(b)Plotofratio60 pm/100pmfluxdensitiesvs.blue having emissivityeocvLinesofgas mass of10,andMaredrawn,whereMJM=200hasbeen assumed.Dustisassumedtoradiatewithtemperature

0d 1987ApJ. . .320 . .2383 Fig 6—(a)Plotofratio60um/100 ¿imfluxdensitiesvs.far-infraredluminositybrightgalaxysample.Ordinate isalsoshownasgramtemperatureforgrains © American Astronomical Society • Provided by the NASA Astrophysics Data System LOG [L¡(L)] fr0 LOG [L(L®)] b Fig. 6a Fig. 6b 1987ApJ. . .320. .2383 is thecasehere.HereVwasindividuallyestimatedforeach the aboveexpressionforauniformfluxlimitsurvey,as osity bin(Schmidt1968). survey, andthesummationisoverallgalaxiesinagivenlumin- volume towhichtheobjectcouldhavebeendetectedin where Qisthesolidangleofsurvey,andVmaximum associated withhigher60/im/100/¿mratios. m and m The moresophisticatedestimatorofFelton(1976)reducesto Fig. 7.Plotofratiofar-infraredtobluefluxvs.60//m/100/zmdensityforbrightgalaxysample.Thereisatendencyhighervalues oîf/ftobe FlKb © American Astronomical Society • Provided by the NASA Astrophysics Data System 8 7 6 5 -4 4 -3 -3 3 3 -3 2 -2 12.2 44.3±2.2x 10“ 0.29+0.15...i.” 11.8 93.1±l.lxl0" 0.46+0.09 11.4 254.0±0.8x 10~ 0.47+0.06 11.0 291.5±0.3x 10“ 0.58+0.05 10.6 531.1±0.2x 10 0.45+0.04 10-2 786.6+0.8x 10" 0.42+0.03756.3±0.8x10“0.43 a 9.8 622.1+0.3x100.44±0.0352 1.8 +0.3xl00.470.04 9-4 414.4±0.7x10“0.590.0523 2.6 ±0.6xl0“0.55+0.07 9.0 115.6±1.8x100.45±0.08 8.6 81.6±0.6x10“0.36+0.09... 8.2 43.2+1.7x100.50±0.13 A L(60pm)=vL(60pm). v -31 3_1 log LNpV/V p V/V m m (¿o) (Mpcmag)(Mpc" mag) All GalaxiesGalaxies:VirgoExcluded LOG fz/(eO^mJ/f^dOO/xm) Luminosity Functionat60Microns IRAS BRIGHTGALAXIES TABLE 2 with theVirgocluster.Theluminosityfunctionthatexcludes both includingandexcludinggalaxiesdeemedtobeassociated for thatbinalongwithitsuncertainty.Thequantitiesaregiven bin, theuncertaintyinspacedensity,andaverageVIV Table 2,alongwiththenumberofgalaxiesineachluminosity slope between25¡imand60/undoes. power lawdefinesthespectrumnear60fimbetterthan calculating V.Sinceallredshiftsarecomparativelysmall,this 60 jimand100¿mifluxdensities,wastakenintoaccountin power-law slope(Sandage1975)definedbytheobserved galaxy inthesample.TheKcorrection,determinedusinga m m The spacedensitiesasafunctionofluminosityaregivenin 251 1987ApJ. . .320. .2383 L =1.6xvL(60/mi)wasadoptedbasedonthedistribution L(60 /mi).FortheRiekeandLebofskysample,relation z =0.1.FortheSmithetalresultsonlyconversionsneces- largest redshiftsinthebrightgalaxysamplearelessthan conversion necessarywasfordifferentHubbleconstants.No sary werefortheHubbleconstantandadifferentmultiplierof attempt wasmadetoaccountfordifferingvalueofq,sincethe adopted here.InthecaseofLawrenceetalresults,only All theluminosityfunctionshavebeenconvertedtounits luminosity functionforthebrightgalaxysampleinFigure9. been excluded,opencirclesrepresent allgalaxiesinthoseluminositybins.OnlywithinclusionofVirgo areanystatisticallysignificantdeviationsfromvalue these 60/miluminosityfunctionsarecomparedwiththe et al1986;RiekeandLebofskySmith1987).Allof of 0.5expectedforgalaxiesuniformly distributedinvolume. on differentsamplestakenfromtheIRASdata(e.g.,Lawrence Virgo clustergalaxiesmakesV/Vdiffersignificantlyfrom0.5. at log[vL(60/mi)]=9.4,9.8,and10.2theinclusionof different from0.5.TheeffectoftheVirgoclustercanalsobe log [vL(60/un)]=10.2withF/Fof0.43,a2.5result.For maximum deviationfromtheuniformcasebeingforbin seen inthepointswherethesegalaxiesareincluded.Inbins the entiresample,VIV=0.47±0.02,againnotsignificantly 252 sample thathomogeneouslyfillsthevolume,with Virgo galaxiesincludedandexcludedareshown.Thereno significant deviationsfromthevalueof0.5expectedfora from thesample;thisvolumeislessthan8%oftotal osity isplotted.Whereappropriate,thedatawith surveyed volumeinallbins. the Virgoclustertakesnoaccountofvolumeexcluded v v 0 m v vm m Fig. 8.—MeanV/Vforthegalaxies inbrightgalaxysampleplottedvs.luminosityofappropriatebin.Crosses representbinswhereVirgoclustergalaxieshave Other 60/miluminosityfunctionshavebeenderivedbased In Figure8thequantityV!Vasafunctionof60/milumin- m m © American Astronomical Society • Provided by the NASA Astrophysics Data System LOG [z/Lz/(60yL¿m)] [l_©] SOIFER ETAL. -0,8 20 while atthehigh-luminosityendslopeissteeperthanthat power lawgivesaslopep~L,whileathighluminosities slope forthisregionof—0.8derivedbyLawrenceetal(1986), the best-fitpowerlawslopeof—2.1estimatedbyRiekeand tion arealsoshowninFigure9.Atlowluminositiesthebest-fit Two powerlawsfittedtotheobserved60/umluminosityfunc- (1976) typeluminosityfunctionfallsbelowtheobservedlumin- Lebofsky. Theslopeatlowluminosityagreeswellwiththe the best-fitslopeisp~LT-,againingoodagreementwith osity functionathighluminosity.ThisisalsoseeninFigure9. axies. point forfainter,moredistantsamplesofinfraredselectedgal- samples, andthebrightgalaxysamplecanbeusedasafiducial appears thattherearenosubstantialdifferencesbetweenthese on colorcriteriafromthebrightgalaxysample.Thusit Davis samplesincludeobjectsthatwouldbeexcludedbased Yahil, Walker,andRowan-RobinsonnortheMeiksin criteria forinclusioninbothofthesesamples,whileneither Yahil, Walker,andRowan-Robinson1986;MeiksinDavis is interestingtoconsiderwhetherthissamplediffersfrom studies ofthespatialdistributioninfraredgalaxies(e.g., galaxy sampleschosenbasedoninfraredcolorcriteriafor were basedon60/mifluxdensityandopticalidentification,it derived fromdifferentsamplesisexcellent. Figure 9,theagreementbetweenluminosityfunctions of fluxratiospresentedintheirwork.Ascanbeseenfrom 1986). Alloftheobjectsinbrightgalaxysamplemeet Rieke andLebofsky(1986)haveshownthattheSchechter While thecriteriausedtodefinebrightgalaxysample Vol. 320 1987ApJ. . .320. .2383 10 -1 3 two infrared“loud”objectshave beenfoundintheluminosity are alreadyknowntoexistin theIRASsurvey(e.g.,3C48and significance, whileahandful of fainter,moreluminousobjects luminosities placingthemin thenextgreaterluminositybin. Mrk 1014;Neugebauer,Soifer, andMiley1985).Furthermore, Clearly theabsenceofany such exampleshasnostatistical should havebeendiscoveredinthebrightgalaxysample with osity functionderivedabove,approximatelythreeobjects to higherluminositiesisquiteuncertain.Basedonthelumin- luminosity seeninthisflux-limitedsample. the twopowerlawsis1.7x10L;thismostfrequent the highestluminosities.Theluminosityofbreakbetween space densitiesinthesampleofLawrenceetalbeinghigher at discrepancy athighluminosityendoffunction.Dashedlinerepresents bestfitoftwopowerlawstobrightgalaxyluminosityfunction. of —1.7fromLawrenceetal,consistentwiththeobserved intervalinluminosity.Otherwisenoadjustmentshavebeenmadetodifferentluminosityfunctions.Brightgalaxyfunctionis shownexcluding Virgo (crosses),andthreebins,includinggalaxies(opendiamonds).OtherluminosityfunctionsshownarefromLawrenceetal.1986 circles), Riekeand Lebofsky 1986(filledcircles),andSmithetal.1987(plussigns).Solidlinerepresents a“byeye”fitofSchechterfunctiontoallluminosityfunctions.Notesubstantial adjusted tosameHubbleconstant(H=75kmsMpc),definitionofluminosity(vL[60/¿m]),andbinsrepresentspacedensityingalaxies perMpc 0 0v No. 1,1987 Whether the60/miluminosityfunctioncanbeextrapolated Fig. 9.—The60¿anluminosityfunctionsfromdifferentsamples,comparedtothatderivedhereforbrightgalaxysample.Luminosity havebeen © American Astronomical Society • Provided by the NASA Astrophysics Data System IRAS BRIGHTGALAXIES 13 red galaxiesinthepast.Formally, theincreaseindensityof way iftherewereanincreased densityofhigh-luminosityinfra- suggestion oftheluminosityfunction changingintheexpected pleteness limitwas0.85Jy,and byselectingthehighestpos- sible luminositybinforcomparison. Figure9showsa function withthatofLawrence etal(1986),wherethecom- distance isachievedbycomparingthebrightgalaxyluminosity search forpotentialevolutionaryeffects.Thelargestrange in cient numbersofIRASgalaxies. osity functiontosuchluminositiesmustawaitasurveyofsuffi- unrealistic. However,theextensionoffar-infraredlumin- existence oftheseobjectssuggeststhatanextrapolation the observed luminosityfunctionbyanorderofmagnitudeis not range 10L(KleinmannandKeel1987;Vader1986). The 0 It istemptingtousethedifferentluminosityfunctions to 253 1987ApJ. . .320. .2383 254 bolometric luminosityaredescribedinappendix.Straightlinesrepresentbest fitoftwopowerlawstobrightgalaxyluminosityfunctionexcludingVirgogalaxies. functions (Felton,1977);crossesrepresenttheopticallyselectedstarburst galaxies,andplussignsrepresenttheopticallyselectedSeyfertbothtakenfrom cluster respectively.Solidcurverepresentsanalyticalfittonormalgalaxy luminosity functiontakenfromSchechter(1976)thatagreeswithmanyobserved (1987). Huchra (1977).Opendiamondsrepresentopticallyselectedquasarstaken fromSchmidtandGreen(1983).Correctionsappliedtoconvertblueluminosity of bolometricluminosity.Filledandopencirclesrepresentfar-infrared luminosity functionderivedforbrightgalaxysample,includingandexcludingtheVirgo lengths byverydifferentclasses ofobjects.InFigure10,the cance offar-infraredemission inthelocaluniverse.This redshift isconsistentwiththeanalysisofcounts60 /¿m galaxies intherangelog[vL(60/mi)]=12.0-12.4isafactor requires comparingtheluminosities emittedatdifferentwave- sources atthe50mJylevelbyHacking,Condon,andHouck of ~3.Thishighlyuncertainincreaseinspacedensity with v 1- A Fig. 10.—Luminosityfunctionsofavarietyclassesextraglacticsources, normalizedtosameHubbleconstant{H=75kms~Mpc)andplottedinunits One goalofthepresentstudy istounderstandthesignifi- 0 b) ComparisonwithOtherClasses ofObjects © American Astronomical Society • Provided by the NASA Astrophysics Data System SOIFER ETAL. lations weredoneasforthe 60pmspacedensities;theonly difference wasthebinning by totalfar-infraredluminosity, wavelengths. luminosities calculatedinthis wayare~50%greaterthanthe described abovehasbeenadoptedasthebolometriclumin- bolometric luminosityfunctionsofavarietydifferentclasses 60 pmluminosities.Thisignores anadditionalcontributionof osity fortheIRASbrightgalaxysample.Thetotalfar-infrared of extragalacticobjectsareplotted.Thefar-infraredluminosity ~25% tothetotalluminosity fromtheemissionatshorter Table 3givesthefar-infrared luminosity function.Thecalcu- Vol. 320 1987ApJ. . .320. .2383 from infraredbrightgalaxies representsasignificantcom- ponent ofluminosityinthe local universe.Theinfraredgal- calculation oftheluminosity, butthisisonly10%-15%ofthe total luminosityoftheseobjects. mate ofthefar-infraredluminosity hasbeenincludedinthe far-infrared luminosityemittedbysuchgalaxies(abovethat in in theAppendixfortheseclassesofgalaxiesdonotinclude the the stellarphotospheres).ForSeyfertsandquasars,an esti- mated inasimilarway.Thebolometriccorrectionsdescribed wavelengths. Forexample,thestarburstgalaxiescomprise a subset ofthe“normal”galaxies,andtheirluminosityis esti- sources ofluminositythatemergepredominantlyatshorter density ofsourcesfar-infraredluminositywiththat of necessarily evaluatedatthesameluminosityineachcategory. classified inmorethanonecategoryofobject,andare not Figure 10shouldthusbeviewedasacomparisonofthespace luminosity functions,thatsomegalaxiescansimultaneously be but thedetailsarerepeatedinAppendixforcompleteness. derive thesebolometriccorrectionsweredescribedinPaperI, correction foreachoftheclassesobjects.Thestepstakento blue luminosity,soitwasnecessarytoestimateabolometric luminosity functionsaregivenintermsofM,i.e.,absolute 8 -7 6 5 3 axies, andquasarsareincludedinFigure10.Thepublished ature for“normalgalaxies,”starburstSeyfertgal- the far-infrared. -4 sample representsalegitimateofthelocaluniversein within agivenvolume.Weconcludethatthebrightgalaxy than 25%ofthegalaxiesatagivenfar-infraredluminosity cold andwarmgalaxieswerefound,basedontheadditional searches ofthePSCsuchobjectsarelikelytocompriseless if objectscolderorwarmerthanthoseselectedheremightbe numerous comparedtothebrightgalaxysample.Whileboth bright galaxysample.ThePSCwassearchedusing60/¿m/ are extremelynumerousbutwouldnotbeincludedinthe length range.Thustherecouldbecoldorwarmobjectsthat and notinabolometricsenseovertheentirefar-infraredwave- ent luminositycomponentsingalaxies. b below tocompare“bolometricluminosityfunctions”ofdiffer- rather than60/¿mluminosities.ThedatainTable3areused 100 /miand25/¿m/60/¿mcolorcriteriaintendedtodetermine 3 3 2 -2 2 No. 1,1987 12.2 67.9±3.4x10" 11.8 115.7+1.8x10 11.4.. .359.2+1.7x10~ 11.0. .445.6±0.9x10“ 10.2 791.8±0.3xHT701.50.210’ 10.6 683.5+0.5x10673.4lO“ a a 9.8 524.2+0.6x10“312.3±0.510’ 9.4 144.3+1.3x10“ 9.0 91.2+0.4x10~ 8.6 52.3+1.1x10 8.2.. 11.5+x10~ One canimmediatelyseefrom Figure10thattheemission It isimportanttoremember,whencomparingthedifferent log LNp For comparison,luminosityfunctionstakenfromtheliter- The brightgalaxysampleisonlystrictlycompleteat60/mi, FIR Lisdefinedinthetext. -31 fir (L) (Mpcmag 0 © American Astronomical Society • Provided by the NASA Astrophysics Data System Far-Infrared LuminosityFunction All GalaxiesGalaxies:VirgoExcluded TABLE 3 IRAS BRIGHTGALAXIES 1 10 -3 10 -310 1-53 -1 10 7-3 7-3 8 gested inFigure9,thenthefraction ofgalaxiesundergoingthis t^he far-infraredluminosityfunction remainsconstant,assug- 0.003 xt/t.Iftheoverallnormalization oftheopticallumin- osity functionisreducedbya factorof2.3(Felton1977)while galaxies thathaveundergone suchaninfraredactivephaseis 8-3 and theopticalphasehasa lifetimetthenthefractionof Lfir >10L.Iftheinfrared brightphasehasalifetimei, density ofnormalgalaxieswithL>10is3.4x greater than10L.FromChristensen(1975),thespace Mpc, or~0.3%ofthegalaxieswithL>10have 1 shows that85%ofthesegalaxieshaveblueluminosities 1 osities greaterthan10Lis~1.2xMpc.Figure 5a in thelocaluniverse. 10 between 60%and80%ofthefar-infraredluminositygenerated Thus, directlyorindirectly,starformationaccounts for blK radiation notdirectlyassociatedwithstar-formationregions. far-infrared luminosityinlessactivegalaxiesisrecycledstellar b ö R Brink 1987)havesuggestedthatasignificantfractionof the luminosities. Severalauthors(PerssonandHelou1986; red brightgalaxies(Becklin1987),atleastuntiltheveryhighest formation isthedominantformofenergygenerationininfra- 0 ed samplescontributestothemoreuniformdensity. 0 b0 absence ofellipticalanddwarfgalaxiesfromtheinfraredselect- distance changesfrom~30Mpcto~100Mpc.Perhapsthe 0 1986h; Rowan-RobinsonandCrawford1987;deJong remains constantinnormalizationwhenthemediangalaxy rence etal(1986)suggeststhatthe60/¿mluminosityfunction osity functionsofthebrightgalaxysampleandthatLaw- luminosity function.Indeed,theagreementbetwenlumin- dence thatthissamefactorshouldbeappliedtotheinfrared counts atfaintmagnitudes(seeAppendix).Thereisnoevi- luminosity functiontothatdeterminedfromthenumber galxies byreducingtheabsolutescalefactorforlocal and Tammannestimatetheluminositydensityofnormal for normalgalaxies.Thusthefar-infraredluminosityis~25% normal galaxiesproduceabolometricluminositydensityof of thestellarluminositygalaxies.FeltonandYahil,Sandage, Tammann (1980),correctedtoH=75kmsMpc,has infrared luminositiesgreaterthan10L.Bycomparison,the been correctedbythesamebolometriccorrectionasadopted density takenfromFelton(1977)andYahil,Sandage, 4 x10LMpcbeinggeneratedingalaxieswithfar- produce ~9x10LMpcinfar-infraredemission,with red galaxieswithfar-infraredluminositiesgreaterthan10L far-infrared luminosityfunctionthecontributiontolumin- osity densityofthelocaluniversecanbeestimated.Theinfra- dominate thespacedensitiesinlocaluniverse.From aration (Sandersetal1987a). morphological propertiesofthegalaxiesinthishighestrange ~4 x10LMpc,wheretheintegratedblueluminosity of infraredluminositiesthebrightgalaxysampleisinprep- luminosities. Adetaileddiscussionofthespectroscopicand 0 0 significantly greaterspacedensitythanquasarsatthehigher q densities astheSeyfertsatlowerendofthisrange,anda 0 luminous galaxiesappeartobethedominantsourceoflumin- osity inthelocaluniverse,havingvirtuallysamespace parable. Forluminositiesabove~2x10Linfrared 0 L—10 ?thedensitiesoftwoclassesobjectsarecom- starburst galaxiesatL<10.Intherange axies aremorenumerousbyafactorof~3thanMarkarian 0 0 0 10 FIR0 1 The totalspacedensityofgalaxieswithfar-infraredlumin- At luminositiesgreaterthan~10Litislikelythatstar 0 For luminositiesbelow~2x10L©,normalgalaxies 255 1987ApJ. . .320. .2383 a12 145 156 1 9 8 10 10 8 was derivedbyassumingathree-steppower-lawfluxdistribution, wheretheslope(/äv)wastakenas—1for3x10- to within30%. et al1986;O’Dell,Scott,andStein1986).Acomparisonof thisapproximationwiththeintegratedenergydistributionsofavariety bolometric correctionforbothoftheseclassesobjectswas assumedtobethesameandwasestimatedas9xvL(0.43/mi).This was takenfromHuchra(1977),whiletheluminosityfunctionforquasarsSchmidtandGreen (1983).The includes contributionsforthephotospheresoflate-typeandhotstarsinthesegalaxies. of AGNSfrom0.1to100¡um(EdelsonandMalkan1986)indicates thatitrepresentsthetotalbolometricluminosityoftheseobjects and Weedman1978)theluminosityfunctionforthesegalaxieswastakenfromworkofHuchra(1977).Amean B—Vcolor bolometric correctionisconsistentwiththeF—Xcolorsoftypicalgalaxies(Aaronson1977;Johnson1966). normal galaxyluminosityfunction,noadjustmenthasbeenmadeinthenormalizationof function.An luminosity function.SincetheIRASbrightgalaxyfunctionhasbeenderivedoverroughlysamedistances asthe 3 x10Hz,-0.5for-3and-1.5 3x10-3Hz(MalkanandSargent1982;Malkan1983;Elvis of 0.5magandabolometriccorrection1.2areadoptedforthesegalaxies(Huchra1977;Balzano1983).This correction average B—Vcolorforthenormalgalaxieswastakenas0.8mag,andabolometriccorrectionof0.9mag adopted. This by afactorof~2.3whencomparingthenumbercountsgalaxiesatfaintermagnitudeswiththosepredicted from thelocal luminosity functionofthenormalgalaxies.Feltonhassuggestedthatlocalforgalaxies istoohigh agree. TheanalyticformofthisfunctionformulatedbySchechter(1976)isagoodfittothesedata,andadoptedhere astheoptical the variousluminosityfunctions. and blueluminosityisnotapplicabletotheinfraredluminousgalaxies,bolometrichasbeenselectedfor comparison of the far-infraredluminousgalaxieswithotherclassesofextragalacticobjectsrequiresmeasuringincomparableunits ofluminosity, infrared luminousgalaxiesarethedominantpopulationof axies, andmorenumerousthanquasarsathigherluminosities. objects intheuniverse,beingasnumerousSeyfertgal- ponent inthelocaluniverse,representing25%oflumin- ing: osity emittedbystarsinthesamevolume.Above10L Allen, C.W.1973,AstrophysicalQuantities3ded.;(London:Athlone). Aaronson, M.,andMould,J.1983,Ap.J.,265,1. Aaronson, M.,Huchra,J.,Mould,Schechter,P.L.,andTully,R.B.1982h, Aaronson, M.etal.1982a,Ap.J.SuppL,50,241. Aaronson, M.1977,Ph.D.thesis,HarvardUniversity. 60 /unintheIRASall-skysurvey,wehavefoundfollow- such aphase. Bohuski, P.J.,Fairall,A.P.,andWeedman, D.W.1978,Ap.J.,221,776. Becklin, E.1987,inStarFormation Galaxies,ed.C.J.Persson(Washington, Balzano, V.1983,Ap.J.,268,602. an infraredactiveperiod.Iftisassmall10yrandf Weedman 1983),thenasignificantfraction,perhapsmorethan phase withí<10yr(Riekeetal1980;Gerhz,Sramek,and phase become0.007xt/t.AsnotedinPaperI,if~10 256 Bothun, G.,Lonsdale,C.J.,andRice, W.L.1987,inpreparation. yr andtheinfraredbrightphaseisanonrecurringstarburst Cataloged GalaxiesandQuasarsObserved intheIRASSurvey.1985,prepared v 50%, ofgalaxieswithL>10musthaveundergonesuch v 0 ~ 10yr,thenalmost10%ofsuchgalaxiescouldundergo bIR IR blR b0 by C.J.Lonsdale,G.Helou, Good, andW.L.Rice(Pasadena:Jet DC: USGovernmentPrintingOffice). Ap. 7.,258,64. Propulsion LaboratoryD-1932). The luminosityfunctionforSeyfertgalaxies,assumedtobecharacterizedbytheMarkarian Seyferts, The non-SeyfertMarkariangalaxiesrepresentthemostcompletesampleofopticallyselectedstarburst(Bohuski, Fairall, Nearly alloftheluminosityfunctionsderivedforclassesextragalacticobjectsaregiveninunitsM.Sincecomparison of Felton (1977)hasdiscussednineopticalluminosityfunctionsderivedfornearbygalaxies,andconcludedthat allbutone 2. Theinfraredluminosityappearstobeindependentofthe From acompletesampleofthebrightestgalaxiesdetectedat 1. Far-infraredemissionisasignificantluminositycom- B © American Astronomical Society • Provided by the NASA Astrophysics Data System CONVERSION OFLUMINOSITYFUNCTIONSTOBOLOMETRICLUMINOSITIES VII. SUMMARY SOIFER ETAL. APPENDIX REFERENCES NAS5-25451. B.F.M.issupportedinpartbytheNatural NASA throughtheIRASExtendedMissionprogram,andin tribution No.4427oftheDivisionGeologicalandPlanetary the CanadaCouncilthroughaKillamFellowship.Thisiscon- part bytheNSF.G.E.D.issupportedNASAcontract nating conversations.Thisresearchwassupportedinpartby .1977,ÆJ.,82,861. Sciences. George Helou,PaulSchechter,andJeremyMouldforillumi- assistance inassemblingIRASdata,ournightassistantsat of thelocaluniversecanbeattributed,directlyorindirectly,to be contributingtotheobservedinfraredluminosity. Sciences andEngineeringResearchCouncilofCanadaby obtaining theopticalspectraandphotometry, recent orongoingstarformation. appear torequiremuch,ifnotall,oftheirinterstellarmatter Palomar, JuanCarascoandSkipStaples,forassistancein optical luminosityofgalaxies.Mostinfraredbrightgalaxies Draine, B.T.,andLee,H.M.1984,Ap. J.,258,111. de Vaucouleurs,G., A.,andCorwin,H.1976,SecondRefer- de Jong.,etal.1984,Ap.J.{Letters),278,L67. de Jong,T.,andBrink,K.1987,inStarFormationGalaxies,ed.C.J.Persson Felten, J.E.1976,Ap.J.,207,700. Elvis, M.,Green,R.F.,Bechtold,J.,Schmidt, M.,Neugebauer,G.,Soifer,B.T., Edelson, R.,andMalkan,M.1986,Ap. J.,308,59. Christensen, C.G.1975,A.J.,80,282. Chester, T.J.1986,inLightonDarkMatter,ed.F.Israel(Dordrecht:Reidel), (Washington, DC:USGovernmentPrintingOffice),inpress. ence CatalogueofBrightGalaxies(Austin :UniversityofTexasPress). p. 3. Matthews, K.,andFabbiano,G.1986, Ap.J.,310,291. It isapleasuretothankmembersoftheIPACstafffor 3. Approximately60%-80%ofthefar-infraredluminosity Vol. 320 1987ApJ. . .320. .2383 J. Elias,B.F.Madore,G.Neugebauer,D.Sanders,andT.Sofier:CaliforniaInstituteofTechnology,Downs 320-47, Ney, E.P.,etal.1975,Ap.J.(Letters),198,L129. Pasadena, CA91125 O’Dell, S.L.,Scott,H.A.,andStein,W.A.1986,preprint. Nilson, P.1973,UppsalaGeneralCatalogofGalaxies,Vol.1,(Uppsala: Neugebauer, G.,Soifer,B.T.,andMiley,G.1985,Ap.J.(Letters),295,L27. G. E.Danielson:PalomarObservatoryandDivisionofGeologyPlanetaryScience,CaliforniaInstituteTechnology, Mudd Carol J.Lonsdale,andW.L.Rice:IPAC,MailCode100-22,CaliforniaInstituteofTechnology,Pasadena,CA91125 Miley, G.,Neugebauer,andSoifer,B.T.1985,Ap.J.(Letters),293,LI1. Meiksin, A.,andDavis,M.1986,A.J.,91,191. Malkan, M.,andSargent,W.L.1982,Ap.J.,25,22. Malkan, M.1983,Ap.J.,268,582. Low, F.J.,etal.1984,Ap.278,L19. Lawrence, A.,Walker,D.,Rowan-Robinson,M.,Leech,K.J.,andPension, Kleinmann, S.,andKeel,W.1987,inStarFormationGalaxies,ed.C.J. Johnson, H.L.1966,Ann.Rev.Astr.Ap.,4,193. Kirschner, R.P.,Oemler,A.,andSchechter,P.L.1978,A.J.,83,1549. 170-25, Pasadena,CA91125 IRAS CatalogsandAtlases:IntroductiontotheSmallScaleStructureCatalog. IRAS CatalogsandAtlases:SmallScaleStructureCatalog.1986,preparedby IRAS CatalogsandAtlases:PointSourceCatalog.1985(Washington,DC:US IRAS CatalogsandAtlasesExplanatorySupplement.1985,ed.C.A.Beichman, .1986h,Ap.J.(Letters),311,L33. Huchra, J.,Davis,M.,Latham,D.,andTonry,J.1983,Ap.Suppl,52,89. Huchra, J.1977,Ap.Suppl,35,171. Helou, G.1986a,inWorkshoponStar-FormingDwarfGalaxies,ed.D.Knuth, Hacking, P.,Condon,J.,andHouck,J.R.1987,Ap.submitted. Gehrz, R.D.,Sramek,A.,andWeedman,D.W.1983,Ap.J.,267,551. Gallagher, J.S.,andHunter,D.A.1984,Ann.Rev.Astr.Ap.,22,37. No. 1,1987 Uppsala OffsetCenter). M. V.1986,M.N.R.A.S.,219,687. Persson, (Washington,DC:USGovernmentPrintingOffice),inpress. Office). G. HelouandD.Walker(Washington,DC:USGovernmentPrinting Government PrintingOffice). DC: USGovernmentPrintingOffice). G. Neugebauer,H.J.Habing,P.E.Clegg,andT.Chester,(Washington, 1986, ed.G.Helou,(Washington,DC:USGovernmentPrintingOffice). p. 1. T. X.Thuan,andJ.TransThanhVan,(GifsurYvette:EditionsFrontiers), © American Astronomical Society IRAS BRIGHTGALAXIES Provided bythe NASA Astrophysics Data System Zwicky, F.etal.1961-1968,CatalogofGalaxiesandClusters Yahil, A.,Sandage,A.R.,andTammann,G.1980,Ap.J.,242,448. Yahil, A.,Walker,D.,andRowan-Robinson,M.1986,Ap.J.(Letters),301,LI. Vader, J.P.1986,1AUCire.No.4265. Thuan, T.X.,andMartin,G.E.1981,Ap.J.,1A1,823. .19876,inpreparation. Soifer, B.T.,Sanders,D.B.,Neugebauer,G.,Danielson,G.E.,Lonsdale,C.J., Soifer, B.T.,etal.1984,Ap.J.(Letters),278,L71. Smith, B.J.,Kleinmann,S.G.,Huchra,J.P.,andLow,F.1987,inStar Schmidt, M.,andGreen,R.1983,Ap.J.,269,352. Schmidt, M.1968,Ap.J.,151,393. Schechter, P.1976,Ap.J.,203,297. Sanders, D.B.,etal.1987a,inpreparation. Sanders, D.B.,Scoville,N.Z.,Young,J.S.,Soifer,B.T.,Schloerb,F.P.,Rice, Sandage, A.,andTammann,G.A.1981,ARevisedShapely-AmesCatalogof Sandage, A.1975,inGalaxiesandtheUniverse,ed.M. Rowan-Robinson, M.,andCrawford,J.1987,inStarFormationGalaxies, Rieke, G.H.,Lebofsky,M.J.,Thompson,R.L,Low,F.andTokunaga,A.T. Rieke, G.H.,andLebofsky,M.1986,Ap.J.,304,326. Rice, W.L.,Lonsdale,C.J.,Soifer,B.T.,Neugebauer,G.,andKopan,E.L. Persson, C.J.,andHelou,G.1986,Ap.314,513. Palumbo, G.C,Tanzella-Nitta,G.,andVettolani,1983,Catalogof Oke, J.B.,andGunn,E.1982,Pub.A.S.P.,94,586. (Pasadena: CaliforniaInstituteofTechnology). Madore, B.F.,andPersson,S.E.1986,Ap.J.(Letters),303,L41(PaperI). Formation inGalaxies,ed.C.J.Persson,(Washington,DC:USGovernment Printing Office),inpress. W. L.,andDanielson,G.E.1986,Ap.J.,(Letters),305,L45. Bright Galaxies(Washington,DC:CarnegieInstitute). and J.Kristian(Chicago:UniversityofChicagoPress),p.761. press. ed. C.J.Persson(Washington,DC:USGovernmentPrintingOffice),in Radial VelocitiesofGalaxies(NewYork:Gordon&Breach). 1980, Ap.J.,238,24. 1987, Ap.J.Suppl.,inpreparation. 257