Why Gravity Cannot Be Quantized Canonically, and What We Can We Do About It

Total Page:16

File Type:pdf, Size:1020Kb

Why Gravity Cannot Be Quantized Canonically, and What We Can We Do About It WHY GRAVITY CANNOT BE QUANTIZED CANONICALLY, AND WHAT WE CAN WE DO ABOUT IT Philip D. Mannheim Department of Physics University of Connecticut Presentation at Miami 2013, Fort Lauderdale December 2013 1 GHOST PROBLEMS, UNITARITY OF FOURTH-ORDER THEORIES AND PT QUANTUM MECHANICS 1. P. D. Mannheim and A. Davidson, Fourth order theories without ghosts, January 2000 (arXiv:0001115 [hep-th]). 2. P. D. Mannheim and A. Davidson, Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Phys. Rev. A 71, 042110 (2005). (0408104 [hep-th]). 3. P. D. Mannheim, Solution to the ghost problem in fourth order derivative theories, Found. Phys. 37, 532 (2007). (arXiv:0608154 [hep-th]). 4. C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100, 110402 (2008). (arXiv:0706.0207 [hep-th]). 5. C. M. Bender and P. D. Mannheim, Giving up the ghost, Jour. Phys. A 41, 304018 (2008). (arXiv:0807.2607 [hep-th]) 6. C. M. Bender and P. D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart, Phys. Rev. D 78, 025022 (2008). (arXiv:0804.4190 [hep-th]) 7. C. M. Bender and P. D. Mannheim, PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues, Phys. Lett. A 374, 1616 (2010). (arXiv:0902.1365 [hep-th]) 8. P. D. Mannheim, PT symmetry as a necessary and sufficient condition for unitary time evolution, Phil. Trans. Roy. Soc. A. 371, 20120060 (2013). (arXiv:0912.2635 [hep-th]) 9. C. M. Bender and P. D. Mannheim, PT symmetry in relativistic quantum mechanics, Phys. Rev. D 84, 105038 (2011). (arXiv:1107.0501 [hep-th]) CONFORMAL GRAVITY AND THE COSMOLOGICAL CONSTANT AND DARK MATTER PROBLEMS 10. P. D. Mannheim, Alternatives to dark matter and dark energy, Prog. Part. Nuc. Phys. 56, 340 (2006). (arXiv:0505266 [astro-ph]). 11. P. D. Mannheim, Why do we believe in dark matter and dark energy { and do we have to?, in "Questions of Modern Cosmology { Galileo's Legacy", M. D'Onofrio and C. Burigana (Eds.), Springer Publishing Company, Heidelberg (2009). 12. P. D. Mannheim, Conformal Gravity Challenges String Theory, Proceedings of the Second Crisis in Cosmology Conference, CCC-2, Astronomical Society of the Pacific Conference Series Vol. 413. (F. Potter, Ed.), San Francisco (2009). (arXiv:0707.2283 [hep-th]) 13. P. D. Mannheim, Dynamical symmetry breaking and the cosmological constant problem, Proceedings of ICHEP08, eConf C080730. (0809.1200 [hep-th]). 14. P. D. Mannheim, Comprehensive solution to the cosmological constant, zero-point energy, and quantum gravity problems, Gen. Rel. Gravit. 43, 703 (2011). (arXiv:0909.0212 [hep-th]) 15. P. D. Mannheim, Intrinsically quantum-mechanical gravity and the cosmological constant problem, Mod. Phys. Lett. A 26, 2375 (2011). (arXiv:1005.5108 [hep-th]). 16. P. D. Mannheim and J. G. O'Brien, Impact of a global quadratic potential on galactic rotation curves, Phys. Rev. Lett. 106, 121101 (2011). (arXiv:1007.0970 [astro-ph.CO]). 17. P. D. Mannheim and J. G. O'Brien, Fitting galactic rotation curves with conformal gravity and a global quadratic potential, Phys. Rev. D 85, 124020(2012). (arXiv:1011.3495 [astro-ph.CO]) 18. P. D. Mannheim, Making the case for conformal gravity, Found. Phys. 42, 388 (2012). (arXiv:1101.2186 [hep-th]). 19. J. G. O'Brien and P. D. Mannheim, Fitting dwarf galaxy rotation curves with conformal gravity. MNRAS 421, 1273 (2012). (arXiv:1107.5229 [astro-ph.CO]) 20. P. D. Mannheim, Cosmological perturbations in conformal gravity, Phys. Rev. D. 85, 124008 (2012). (arXiv:1109.4119 [gr-qc]) 21. P. D.Mannheim Astrophysical Evidence for the Non-Hermitian but PT -symmetric Hamiltonian of Conformal Gravity, Fortschritte der Physik - Progress of Physics 61, 140 (2013). (arXiv:1205.5717 [hep-th]) 22. P. D. Mannheim and J. G. O'Brien, Galactic rotation curves in conformal gravity, Journal of Physics: Conference Series 437, 012002 (2013). (arXiv:1211.0188 [astro-ph.CO]) 2 1 Does gravity actually know about quantum mechanics? 1.1 Experimental considerations Before discussing how one might quantize gravity we need to discuss whether we need to. Macroscopically, there are two established sources of gravity that are intrinsically quantum-mechanical: 3=2 2 (1) Pauli pressure of white dwarf stars, with MCH ∼ (¯hc=G) =mp. 2 4 4 3 3 (2) The energy density ρ = π kBT =15c h¯ and pressure p = ρ/3 of black-body radiation in cosmology. Microscopically, the Colella-Overhauser-Werner (Phys. Rev. Lett. 34, 1472 (1975)) experiment shows that the quantum-mechanical phase of the wave function of a neutron of mass m and velocity v is modified as it traverses 2 the gravitational field g of the earth, viz. ∆φCOW = −mgH =vh¯ where AB = BD = DC = CA = H (see e.g. P. D. Mannheim (Phys. Rev. A 57, 1260 (1998)), yielding an observable fringe shift at D even though H is of the order of centimeters | it is just that mgH2=v is not small on the scale of Planck's constant. C D3 D b C D 1 1 2b D2 z x ¡ A2 A B S 2b b B1 A1 Figure 1 3 1.2 Theoretical considerations and concerns In equations such as the Einstein equations: 0 1 1 µν 1 µν α µν − @R − g R A = T ; (1) 8πG 2 α M if the Einstein tensor is equal to the matter field energy-momentum tensor, then either both sides are classical c-numbers or both sides are quantum-mechanical q-numbers. Otherwise, if the gravity side were to be classical µν while the matter side were to be quantum mechanical, then the quantum TM would have to be equal to a c-number in every single field configuration imaginable. (This is actually not impossible for a specific field configuration since a quantum-mechanical quantity such as the equal time field commutator [φ(t; x¯); π(t; y¯)] = ihZδ¯ 3(x¯ − y¯) is a c-number - it is just impossible if it has to be true for every field configuration.) However, from gravitational experiments described above we know that the source of gravity is quantum-mechanical, and we know that gravity knows it. Hence gravity must be quantized. However, since these gravitational experiments do not involve quantum gravity effects themselves (graviton loops), for phenomenological purposes it is conventional to use a hybrid in which we keep gravity classical but take c-number matrix elements of its source, to give 0 1 1 µν 1 µν α µν − @R − g R A = hT i: (2) 8πG 2 α M µν But hTM i involves products of fields at the same point, so it is not finite. Thus we additionally subtract off the µν µν µν infinite zero-point part and take the source to be the normal-ordered hTM iFIN = hTM i − hTM iDIV instead, to thereby yield: 4 0 1 1 µν 1 µν α µν − @R − g R A = hT i : (3) 8πG 2 α M FIN It is in this subtracted form that the standard applications of gravity are made. Thus in Σ(aya + 1=2)¯h! we keep the Σayah!¯ term but ignore the Σ(1=2)¯h! zero-point energy density term 00 in hTM i. ij Also ignore the zero-point pressure in the spatial hTM i. As of today there is no known justification for doing this, with this subtracted hybrid not having been derived from a fundamental theory or having been shown to be able to survive quantum gravitational corrections. There is no apparent reason why the zero point energy density of the matter sector should not gravitate. While one only needs to consider energy differences in flat space physics, in gravity one has to consider energy itself, with the hallmark of Einstein gravity being that gravity couple to everything. Hence for gravity one cannot ignore zero-point contributions. 5 Moreover, even if one does start with the subtracted hybrid, then the order G contribution to gravity is given µν µν by the flat spacetime hΩjTM jΩiFIN, with Lorentz invariance allowing a finite flat spacetime hΩjTM jΩiFIN to be of the generic form −Λgµν. Thus even if one ignores the matter sector zero-point energy contributions one still has a vacuum energy problem; with the standard strong, electromagnetic, and weak interactions typically then generating a huge such Λ. We thus recognize two types of vacuum problem, zero-point and cosmological constant problems. Moreover, if we take gravity to be quantum-mechanical (as we must), it too will have zero-point contributions. As I have shown in my papers and discussed at Miami 2011, it is the interplay of the gravity and matter field zero-point contributions that leads to a solution to the cosmological constant µν problem, with the problem having arisen entirely due to ignoring how hTM iFIN got to be finite in the first µν µν α µν place, and then using R − (1=2)g R α = −8πGhTM iFIN as the starting point. However, in order to be able to discuss gravitational zero-point contributions, we need to to quantize gravity. As we now show, such quantization cannot be done canonically, with gravity actually being quantized by the source that it is coupled to, rather than by being quantized on its own. 6 2 Canonical quantization of matter fields 2.1 Massless fermions R 4 ¯ µ ¯ µ For massless flat space fermion fields with IM = d xih¯ γ @µ , stationary fields obey δIM/δ = ihγ¯ @µ = 0. We introduce creation and annihilation operators according to 3 Z d k (x; t) = X b(k; s)u(k; s)e−ik·x + dy(k; s)v(k; s)eik·x ; s (2π)3=2 3 Z d k y(x; t) = X by(k; s)uy(k; s)eik·x + d(k; s)vy(k; s)eik·x : (4) s (2π)3=2 y 0 3 0 Quantizing the fermion field according to f α(x; t); β(x ; t)g = δ (x − x )δα,β then requires that its creation and annihilation operators obey y 0 0 3 0 y 0 0 3 0 fb(k; s); b (k ; s )g = δ (k − k )δs;s0; fd(k; s); d (k ; s )g = δ (k − k )δs;s0: (5) In the Fock space vacuum the vacuum matrix element of the energy-momentum tensor is given by 2 3 3 −1=2 δIM M 2¯h Z d k 4 5 ¯ hΩj 2g µν jΩi = hΩjTµνjΩi = hΩj ihγ¯ µ@ν jΩi = − 3 kµkν: (6) δg (2π) k0 and we can identify zero point energy density and pressure terms of the form 3 2 M 2¯h Z 3 M M M 2¯h Z d k k ρM ρM = hΩjT00 jΩi = − 3 d k!k; pM = hΩjT11 jΩi = hΩjT22 jΩi = hΩjT33 jΩi = − 3 = : (2π) (2π) !k 3 3 (7) M M R 3 M Thus even though hΩjT0i jΩi and the total matter vacuum momentum Pi = d xhΩjT0i jΩi are both zero, M M M hΩjT11 jΩi = hΩjT22 jΩi = hΩjT33 jΩi are not, to thus yield a vacuum pressure.
Recommended publications
  • Big Halpha Kinematical Sample of Barred Spiral Galaxies - I
    BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle To cite this version: O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle. BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2005, 360 Issue 4, pp.1201. 10.1111/j.1365-2966.2005.09125.x. hal-00014446 HAL Id: hal-00014446 https://hal.archives-ouvertes.fr/hal-00014446 Submitted on 26 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mon. Not. R. Astron. Soc. 360, 1201–1230 (2005) doi:10.1111/j.1365-2966.2005.09125.x BHαBAR: big Hα kinematical sample of barred spiral galaxies – I. Fabry–Perot observations of 21 galaxies O. Hernandez,1,2 † C. Carignan,1 P. Amram,2 L. Chemin1 and O. Daigle1 1Observatoire du mont Megantic,´ LAE, Universitede´ Montreal,´ CP 6128 succ. centre ville, Montreal,´ Quebec,´ Canada H3C 3J7 2Observatoire Astronomique de Marseille Provence et LAM, 2 pl.
    [Show full text]
  • The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
    Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Spiral Galaxy HI Models, Rotation Curves and Kinematic Classifications
    Spiral galaxy HI models, rotation curves and kinematic classifications Theresa B. V. Wiegert A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Physics & Astronomy University of Manitoba Winnipeg, Canada 2010 Copyright (c) 2010 by Theresa B. V. Wiegert Abstract Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolu- tion since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, con- straining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Ex- tensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination > 40 ◦, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC.
    [Show full text]
  • Icecube Searches for Neutrinos from Dark Matter Annihilations in the Sun and Cosmic Accelerators
    UNIVERSITE´ DE GENEVE` FACULTE´ DES SCIENCES Section de physique Professeur Teresa Montaruli D´epartement de physique nucl´eaireet corpusculaire IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators. THESE` pr´esent´ee`ala Facult´edes sciences de l'Universit´ede Gen`eve pour obtenir le grade de Docteur `essciences, mention physique par M. Rameez de Kozhikode, Kerala (India) Th`eseN◦ 4923 GENEVE` 2016 i Declaration of Authorship I, Mohamed Rameez, declare that this thesis titled, 'IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualifica- tion at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: 27 April 2016 ii UNIVERSITE´ DE GENEVE` Abstract Section de Physique D´epartement de physique nucl´eaireet corpusculaire Doctor of Philosophy IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.
    [Show full text]
  • Estudio Estadístico De La Dirección De Rotación En Galaxias Espirales Statistical Study of the Rotation Direction in Spiral Galaxies
    Estudio estadístico de la dirección de rotación en galaxias espirales Statistical study of the rotation direction in spiral galaxies Adrián Pérez Martín GRADO EN FÍSICA FACULTAD DE CIENCIAS UNIVERSIDAD DE LA LAGUNA Tutores: Laura Sánchez Menguiano, Tomás Ruiz Lara. Estudio estadístico de la dirección de rotación en galaxias espirales Summary By studying the night sky, humanity has observed a wide variety of objects. When provided the required tools, these objects were classified according to their different characteristics. This is what Hub- ble did by classifying galaxies (systems composed mainly of stars, dust, gas, and dark matter) based on their shape, noticing there was a particular type of object with a central bulge and arms emerging from it: the spiral galaxy. After years of research, astronomers discovered spiral galaxies rotate, and that they can do it in the direction their arms seem to be pointing at (in this case we talk about leading arms), or in the opposite one (trailing arms). Different studies on this topic have been carried out since then, showing that the majority of galaxies present trailing arms. This fact reflects the stability of trailing over leading arms, the latter usually associated to merging events. Despite the advances in the topic, no statistical study has been performed since the last century, even though today there are new databases that in principle would allow us to improve the statistics. In order to study the incidence of both leading and trailing arms in galaxies, in this work we make use of spectroscopic and photometric data from the CALIFA and DESI surveys, respectively.
    [Show full text]
  • Rotation Curves of High-Resolution LSB and SPARC Galaxies with Fuzzy and Multistate (Ultralight Boson) Scalar field Dark Matter
    MNRAS 475, 1447–1468 (2018) doi:10.1093/mnras/stx3208 Advance Access publication 2017 December 12 Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter T. Bernal,1‹† L. M. Fernandez-Hern´ andez,´ 1 T. Matos2‡ andM.A.Rodr´ıguez-Meza1‡ 1Departamento de F´ısica, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, Ciudad de Mexico´ 11801, Mexico 2Departamento de F´ısica, Centro de Investigacion´ y de Estudios Avanzados del IPN, AP 14-740, Ciudad de Mexico´ 07000, Mexico Accepted 2017 December 8. Received 2017 December 8; in original form 2017 January 4 ABSTRACT Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose–Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high- resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein–Klein–Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo.
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Searches for Leptophilic Dark Matter with Astrophysical Experiments
    . Searches for leptophilic dark matter with astrophysical experiments . Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von M. Sc. Leila Ali Cavasonza aus Finale Ligure, Savona, Italien Berichter: Universit¨atsprofessorDr. rer. nat. Michael Kr¨amer Universit¨atsprofessorDr. rer. nat. Stefan Schael Tag der m¨undlichen Pr¨ufung: 13.05.16 Diese Dissertation ist auf den Internetseiten der Universit¨atsbibliothekonline verf¨ugbar RWTH Aachen University Leila Ali Cavasonza Institut f¨urTheoretische Teilchenphysik und Kosmologie Searches for leptophilic dark matter with astrophysical experiments PhD Thesis February 2016 Supervisors: Prof. Dr. Michael Kr¨amer Prof. Dr. Stefan Schael Zusammenfassung Suche nach leptophilischer dunkler Materie mit astrophysikalischen Experimenten Die Natur der dunklen Materie (DM) zu verstehen ist eines der wichtigsten Ziele der Teilchen- und Astroteilchenphysik. Große experimentelle Anstrengungen werden un- ternommen, um die dunkle Materie nachzuweisen, in der Annahme, dass sie neben der Gravitationswechselwirkung eine weitere Wechselwirkung mit gew¨ohnlicher Materie hat. Die dunkle Materie in unserer Galaxie k¨onnte gew¨ohnliche Teilchen durch An- nihilationsprozesse erzeugen und der kosmischen Strahlung einen zus¨atzlichen Beitrag hinzuf¨ugen.Deswegen sind pr¨aziseMessungen der Fl¨ussekosmischer Strahlung ¨außerst wichtig. Das AMS-02 Experiment misst die
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • Analysis of Repulsive Central Universal Force Field on Solar and Galactic
    Open Phys. 2019; 17:364–372 Research Article Kamal Barghout* Analysis of repulsive central universal force field on solar and galactic dynamics https://doi.org/10.1515/phys-2019-0041 otic matter-energy to the matter side of Einstein field equa- Received Jun 30, 2018; accepted Apr 02, 2019 tions, dubbed “dark matter” and “dark energy”; see [5] and references therein. Abstract: Recent astrophysical observations hint toward The existence of dark matter is mostly inferred from the need for an extended theory of gravity to explain puz- gravitational effects on visible matter and is thought toac- zles presented by the standard cosmological model such count for approximately 85% of the matter in the universe as the need for dark matter and dark energy to understand while dark energy is inferred from the accelerated expan- the dynamics of the cosmos. This paper investigates the ef- sion of the universe and along with dark matter constitutes fect of a repulsive central universal force field on the be- about 95% of the total mass-energy content in the universe. havior of celestial objects. Negative tidal effect on the solar The origin of dark matter is a mystery and a wide range and galactic orbits, like that experienced by Pioneer space- of theories speculate its type, its particle’s mass, its self- crafts, was derived from the central force and was shown to interaction and its interaction with normal matter. Also, manifest itself as dark matter and dark energy. Vertical os- experiments to directly detect dark matter particles in the cillation of the sun about the galactic plane was modeled lab have failed to produce positive results which presents a as simple harmonic motion driven by the repulsive force.
    [Show full text]