2020 Observatory Schedule
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Summer Sky by Dr
The Summer Sky by Dr. Whitney Shane, MIRA’s Charles Hitchcock Adams Fellow Fixed Stars Some years ago this column had occasion to discuss planetary nebulae, using the Ring Nebula in Lyra, everyone’s favorite, as an example. The simple morphology of the Ring Nebula makes it ideal for this purpose. It can be explained as a slightly ellipsoidal expanding shell, where the asym- metry is due to a slight anisotropy in the initial expansion velocity. Very few planetary nebulae have the simple structure of the Ring Nebula. In fact, there is a baffling variety in the shapes of these objects. Most of them, however, show symmetry about a plane, which we might identify with the equator of the central star. The expansion seems to take place mainly in the direction of the poles. This could be caused by the presence of a massive ring of material around the equator, which would direct the expansion toward the poles. This ring might have been left over from the giant phase of the star. This agreeable situa- tion came to an abrupt end when Hubble Space Telescope images of planetary nebulae, starting with the Cat’s Eye Nebula (NGC 6543), showed far more com- plex structures than had been previously sus- pected. This complexity, particularly its fine detail, could not be ex- plained by the model of an equatorial ring direct- ing a general expansion toward the poles. Attempts to explain these structures seem to fall into two categories. The presence of a companion star would provide both the dy- namical perturbations and the symmetry plane (in this case the orbital plane) required by the observa- tions. -
Planetary Nebula
How Far Away Is It – Planetary Nebula Planetary Nebula {Abstract – In this segment of our “How far away is it” video book, we cover Planetary Nebula. We begin by introducing astrophotography and how it adds to what we can see through a telescope with our eyes. We use NGC 2818 to illustrate how this works. This continues into the modern use of Charge-Coupled Devices and how they work. We use the planetary nebula MyCn18 to illustrate the use of color filters to identify elements in the nebula. We then show a clip illustrating the end-of-life explosion that creates objects like the Helix Planetary Nebula (NGC 7293), and show how it would fill the space between our Sun and our nearest star, Proxima Centauri. Then, we use the Cat’s Eye Nebula (NGC 6543) to illustrate expansion parallax. As a fundamental component for calculating expansion parallax, we also illustrate the Doppler Effect and how we measure it via spectral line red and blue shifts. We continue with a tour of the most beautiful planetary nebula photographed by Hubble. These include: the Dumbbell Nebula, NGC 5189, Ring Nebula, Retina Nebula, Red Rectangle, Ant Nebula, Butterfly Nebula, , Kohoutek 4- 55, Eskimo Nebula, NGC 6751, SuWt 2, Starfish, NGC 5315, NGC 5307, Little Ghost Nebula, NGC 2440, IC 4593, Red Spider, Boomerang, Twin Jet, Calabash, Gomez’s Hamburger and others culminating with a dive into the Necklace Nebula. We conclude by noting that this will be the most likely end for our Sun, but not for billions of years to come, and we update the Cosmic Distance Ladder with the new ‘Expansion Parallax’ rung developed in this segment.} Introduction [Music @00:00 Bizet, Georges: Entracte to Act III from “Carman”; Orchestre National de France / Seiji Ozawa, 1984; from the album “The most relaxing classical album in the world…ever!”] Planetary Nebulae represent some of the most beautiful objects in the Milky Way. -
MESSIER 13 RA(2000) : 16H 41M 42S DEC(2000): +36° 27'
MESSIER 13 RA(2000) : 16h 41m 42s DEC(2000): +36° 27’ 41” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Hercules BEST VIEW: Late July DISCOVERY: Edmond Halley, 1714 DISTANCE: 25,100 ly DIAMETER: 145 ly APPARENT MAGNITUDE: +5.8 APPARENT DIMENSIONS: 20’ Starry Night FOV: 1.00 Lyra FOV: 60.00 Libra MESSIER 6 (Butterfly Cluster) RA(2000) : 17Ophiuchus h 40m 20s DEC(2000): -32° 15’ 12” M6 Sagitta Serpens Cauda Vulpecula Scutum Scorpius Aquila M6 FOV: 5.00 Telrad Delphinus Norma Sagittarius Corona Australis Ara Equuleus M6 Triangulum Australe BASIC INFORMATION OBJECT TYPE: Open Cluster Telescopium CONSTELLATION: Scorpius Capricornus BEST VIEW: August DISCOVERY: Giovanni Batista Hodierna, c. 1654 DISTANCE: 1600 ly MicroscopiumDIAMETER: 12 – 25 ly Pavo APPARENT MAGNITUDE: +4.2 APPARENT DIMENSIONS: 25’ – 54’ AGE: 50 – 100 million years Telrad Indus MESSIER 7 (Ptolemy’s Cluster) RA(2000) : 17h 53m 51s DEC(2000): -34° 47’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Scorpius BEST VIEW: August DISCOVERY: Claudius Ptolemy, 130 A.D. DISTANCE: 900 – 1000 ly DIAMETER: 20 – 25 ly APPARENT MAGNITUDE: +3.3 APPARENT DIMENSIONS: 80’ AGE: ~220 million years FOV:Starry 1.00Night FOV: 60.00 Hercules Libra MESSIER 8 (THE LAGOON NEBULA) RA(2000) : 18h 03m 37s DEC(2000): -24° 23’ 12” Lyra M8 Ophiuchus Serpens Cauda Cygnus Scorpius Sagitta M8 FOV: 5.00 Scutum Telrad Vulpecula Aquila Ara Corona Australis Sagittarius Delphinus M8 BASIC INFORMATION Telescopium OBJECT TYPE: Star Forming Region CONSTELLATION: Sagittarius Equuleus BEST -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Investigating the Beehive Cluster with Gaia Blaise Whitesell — Astronomy Capstone 2019
Investigating the Beehive Cluster with Gaia Blaise Whitesell — Astronomy Capstone 2019 In this problem set, we will explore the capabilities of the publicly available data from Gaia DR2, which can be found at http://gea.esac.esa.int/archive/ or queried directly from within Python. We will focus on a single target: the Beehive cluster (M44, also known as Praesepe or NGC 2632). This open cluster is located at a distance of roughly 200 pc in the constellation Cancer with coordinates (α; δ) = (130:1°; 19:67°). We will download Gaia data in the vicinity of the cluster, select only the stars belonging to the cluster, and then characterize the properties of those stars in the cluster. 1. Getting Data For our analysis we need these columns from the Gaia DR2 database gaiadr2.gaia_source: source_id A numeric identifier for the object ra Right ascension (degrees) dec Declination (degrees) parallax Parallax (mas) pmra Proper motion in right ascension (mas/yr) pmdec Proper motion in declination (mas/yr) phot_g_mean_mag Magnitude in Gaia G band (mags) bp_rp Gaia BP–RP color (mags) Select objects within 4 degrees of the cluster center. At the rough distance of the Beehive cluster, how many parsecs does that correspond to? We want to include objects at least that far in front and behind the cluster. Since we don’t know distances as precisely, we should expand the range by a factor of 3 or 4 to avoid missing cluster stars. What parallaxes (in mas) does this distance range correspond to? Use those parallax values as conditions to exclude objects far away from the cluster. -
PUBLIC OBSERVING NIGHTS the William D. Mcdowell Observatory
THE WilliamPUBLIC D. OBSERVING mcDowell NIGHTS Observatory FREE PUBLIC OBSERVING NIGHTS WINTER Schedule 2019 December 2018 (7PM-10PM) 5th Mars, Uranus, Neptune, Almach (double star), Pleiades (M45), Andromeda Galaxy (M31), Oribion Nebula (M42), Beehive Cluster (M44), Double Cluster (NGC 869 & 884) 12th Mars, Uranus, Neptune, Almach (double star), Pleiades (M45), Andromeda Galaxy (M31), Oribion Nebula (M42), Beehive Cluster (M44), Double Cluster (NGC 869 & 884) 19th Moon, Mars, Uranus, Neptune, Almach (double star), Pleiades (M45), Andromeda Galaxy (M31), Oribion Nebula (M42), Beehive Cluster (M44), Double Cluster (NGC 869 & 884) 26th Moon, Mars, Uranus, Neptune, Almach (double star), Pleiades (M45), Andromeda Galaxy (M31), Oribion Nebula (M42), Beehive Cluster (M44), Double Cluster (NGC 869 & 884)? January 2019 (7PM-10PM) 2nd Moon, Mars, Uranus, Neptune, Sirius, Almach (double star), Pleiades (M45), Orion Nebula (M42), Open Cluster (M35) 9th Mars, Uranus, Neptune, Sirius, Almach (double star), Pleiades (M45), Orion Nebula (M42), Open Cluster (M35) 16 Mars, Uranus, Neptune, Sirius, Almach (double star), Pleiades (M45), Orion Nebula (M42), Open Cluster (M35) 23rd, Moon, Mars, Uranus, Neptune, Sirius, Almach (double star), Pleiades (M45), Andromeda Galaxy (M31), Orion Nebula (M42), Beehive Cluster (M44), Double Cluster (NGC 869 & 884) 30th Moon, Mars, Uranus, Neptune, Sirius, Almach (double star), Pleiades (M45), Andromeda Galaxy (M31), Orion Nebula (M42), Beehive Cluster (M44), Double Cluster (NGC 869 & 884) February 2019 (7PM-10PM) 6th -
March 2021 These Pages Are Intended to Help You Find Your Way Around the Sky
WHAT'S UP THIS MONTH – MARCH 2021 THESE PAGES ARE INTENDED TO HELP YOU FIND YOUR WAY AROUND THE SKY The chart above shows the whole night sky as it appears on 15th March at 21:00 (9 o’clock) Greenwich Mean Time (GMT). As the Earth orbits the Sun and we look out into space each night the stars will appear to have moved across the sky by a small amount. Every month Earth moves one twelfth of its circuit around the Sun, this amounts to 30 degrees each month. There are about 30 days in each month so each night the stars appear to move about 1 degree. The sky will therefore appear the same as shown on the chart above at 8 o’clock GMT at the beginning of the month and at 10 o’clock GMT at the end of the month. The stars also appear to move 15º (360º divided by 24) each hour from east to west, due to the Earth rotating once every 24 hours. The centre of the chart will be the position in the sky directly overhead, called the Zenith. First we need to find some familiar objects so we can get our bearings. The Pole Star Polaris can be easily found by first finding the familiar shape of the Great Bear ‘Ursa Major’ that is also sometimes called the Plough or even the Big Dipper by the Americans. Ursa Major is visible throughout the year from Britain and is always quite easy to find. This month it is high in the North East. -
Astronomy 2008 Index
Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs. -
Astronomy Targets: September 2018 Unless Stated Otherwise, All Times Are for Mid-Month, for Birmingham UK and Are GMT+1
Astronomy targets: September 2018 Unless stated otherwise, all times are for mid-month, for Birmingham UK and are GMT+1. Rise & set times are for 20 degrees above horizon. Dark & light times are nautical twilight times (Sun 12 degrees below horizon) and astronomical darkness (Sun 18 degrees below horizon). © Andrew Butler, 2018. Sun and Moon data sourced from US Naval Observatory. Sun times Monday date Sunset Naut Astro Astro Naut Sunrise Moon Moon % Dark Dark Light Light 03/09/18 1951 2110 2158 0416 0504 0623 2353 → 40% 10/09/18 1935 2052 2137 0433 0518 0635 2% 17/09/18 1918 2033 2117 0448 0531 0647 ← 2346 60% 24/09/18 1902 2016 2057 0502 0544 0658 1916 → 100% Calendar 9 Sep New Moon 24 Sep Full Moon Planets Cygnus Sunset-0300, best 2210 Mars (low at Sunset) Emmission nebulae: Jupiter (low at Sunset) NGC6888 Crescent Nebula Saturn (low at Sunset) NGC6960 Veil Nebula Uranus (2230-Sunrise) IC5070 Pelican Nebula Neptune (2130-0330) IC7000 (C20) North American Nebula Planetary nebulae: Ursa Major Sunset-0150 IC5146 (C19) Cocoon Nebula Planetary nebula: M97 Owl Nebula NGC6826 Blinking Nebula Galaxies: NGC7008 Fetus Nebula M81 Bode’s Galaxy & M82 Cigar Galaxy Open clusters: M101 Pinwheel Galaxy M29 M108 M39 M109 NGC6871 Multiple star: Mizar & Alcor ζ-UMa (zeta-UMa) 3 white NGC6883 NGC6910 Rocking Horse Cluster Canes Venatici Sunset-2130 Galaxy: NGC6946 (C12) Fireworks Galaxy Globular cluster: M3 Multiple stars: Galaxies: Albireo β-Cyg (beta-Cyg) gold & blue M51 Whirlpool Galaxy 61-Cyg orange & red M63 Sunflower Galaxy M94 Delphinus Sunset-0240, -
Deep-Sky Objects - Autumn Collection an Addition To: Explore the Universe Observing Certificate Third Edition RASC NW Cons Object Mag
Deep-Sky Objects - Autumn Collection An addition to: Explore the Universe Observing Certificate Third Edition RASC NW Cons Object Mag. PSA Observation Notes: Chart RA Dec Chart 1) Date Time 2 Equipment) 3) Notes # Observing Notes # Sgr M24 The Sagittarias Star Cloud 1. Mag 4.60 RA 18:16.5 Dec -18:50 Distance: 10.0 2. (kly)Star cloud, 95’ x 35’, Small Sagittarius star cloud 3. lies a little over 7 degrees north of teapot lid. Look for 7,8 dark Lanes! Wealth of stars. M24 has dark nebula 67 (interstellar dust – often visible in the infrared (cooler radiation)). Barnard 92 – near the edge northwest – oval in shape. Ref: Celestial Sampler Floating on Cloud 24, p.112 Sgr M18 - 1. RA 18 19.9, Dec -17.08 Distance: 4.9 (kly) 2. Lies less than 1deg above the northern edge of M24. 3 8 Often bypassed by showy neighbours, it is visible as a 67 small hazy patch. Note it's much closer (1/2 the distance) as compared to M24 (10kly) Sgr M17 (Swan Nebula) and M16 – HII region 1. Nebula and Open Clusters 2. 8 67 M17 Wikipedia 3. Ref: Celestial Sampler p. 113 Sct M11 Wild Duck Cluster 5.80 1. 18:51.1 -06:16 Distance: 6.0 (kly) 2. Open cluster, 13’, You can find the “wild duck” cluster, 3. as Admiral Smyth called it, nearly three degrees west of 67 8 Aquila’s beak lying in one of the densest parts of the summer Milky Way: the Scutum Star Cloud. 9 64 10 Vul M27 Dumbbell Nebula 1. -
MESSIER 15 RA(2000) : 21H 29M 58S DEC(2000): +12° 10'
MESSIER 15 RA(2000) : 21h 29m 58s DEC(2000): +12° 10’ 01” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Pegasus BEST VIEW: Late October DISCOVERY: Jean-Dominique Maraldi, 1746 DISTANCE: 33,600 ly DIAMETER: 175 ly APPARENT MAGNITUDE: +6.2 APPARENT DIMENSIONS: 18’ FOV:Starry 1.00Night FOV: 60.00 Vulpecula Sagitta Pegasus NGC 7009 (THE SATURN NEBULA) Delphinus NGC 7009 RA(2000) : 21h 04m 10.8s DEC(2000): -11° 21’ 48.6” Equuleus Pisces Aquila NGC 7009 FOV: 5.00 Aquarius Telrad Capricornus Sagittarius Cetus Piscis Austrinus NGC 7009 Microscopium BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Aquarius Sculptor BEST VIEW: Early November DISCOVERY: William Herschel, 1782 DISTANCE: 2000 - 4000 ly DIAMETER: 0.4 - 0.8 ly Grus APPARENT MAGNITUDE: +8.0 APPARENT DIMENSIONS: 41” x 35” Telescopium Telrad Indus NGC 7662 (THE BLUE SNOWBALL) RA(2000) : 23h 25m 53.6s DEC(2000): +42° 32’ 06” BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Andromeda BEST VIEW: Late November DISCOVERY: William Herschel, 1784 DISTANCE: 1800 – 6400 ly DIAMETER: 0.3 – 1.1 ly APPARENT MAGNITUDE: +8.6 APPARENT DIMENSIONS: 37” MESSIER 52 RA(2000) : 23h 24m 48s DEC(2000): +61° 35’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Cassiopeia BEST VIEW: December DISCOVERY: Charles Messier, 1774 DISTANCE: ~5000 ly DIAMETER: 19 ly APPARENT MAGNITUDE: +7.3 APPARENT DIMENSIONS: 13’ AGE: 50 million years FOV:Starry 1.00Night FOV: 60.00 Auriga Cepheus Andromeda MESSIER 31 (THE ANDROMEDA GALAXY) M 31 RA(2000) : 00h 42m 44.3Cassiopeias DEC(2000): +41° 16’ 07.5” Perseus Lacerta AndromedaM 31 FOV: 5.00 Telrad Triangulum Taurus Orion Aries Andromeda M 31 Pegasus Pisces BASIC INFORMATION OBJECT TYPE: Galaxy CONSTELLATION: Andromeda Telrad BEST VIEW: December DISCOVERY: Abd al-Rahman al-Sufi, 964 Eridanus CetusDISTANCE: 2.5 million ly DIAMETER: ~250,000 ly* APPARENT MAGNITUDE: +3.4 APPARENT DIMENSIONS: 178’ x 63’ (3° x 1°) *This value represents the total diameter of the disk, based on multi-wavelength measurements. -
Carbon Fiber 600 Mm Telescope W/ AZ Mount Instruction Manual
+ AGES 10 CF600 Carbon Fiber 600 mm Telescope w/ AZ Mount Instruction Manual ! WARNING: ! WARNING: CHOKING HAZARD — Small parts. SUN HAZARD — Never look directly Not for children under 3 years. at the sun with this device. 1 WARNING: Never attempt to observe the sun with this telescope. Make sure children do not attempt to observe the sun with the telescope. Observing the sun directly, even for a short time, may cause blindness. Packing materials, like plastic bags, should be kept out of the reach of children. Risk to your child! Tips on cleaning Never look through this device directly at or near the sun. There Clean the lens (objective and eyepiece) only with a soft, is a risk of BLINDING YOURSELF! lint-free cloth, like a microfiber cloth. Do not use excessive pressure - this may scratch the lens. To clean a very dirty lens, dampen the cleaning cloth with Children should only use this device under supervision. Keep eyeglass cleaning solution, and wipe the lens gently. packaging materials, like plastic bags and rubber bands, out of the reach of children, as they pose a choking hazard. Protect the device against dirt and dust. Leave it to dry properly after use at room temperature. Then put the dust caps on and Fire and burn risk! store the device in a suitable location. Never subject the device, especially the lenses, to direct sunlight. Light ray concentration can cause fires and/or burns. Respect privacy! This device is meant for private use. Respect others‘ privacy. Risk of material damage! Do not use the device to look into other people‘s homes, or Never take the device apart.