MASARYKOVA UNIVERZITA

PŘÍRODOVĚDECKÁ FAKULTA

Ústav experimentální biologie

Oddělení mikrobiologie a molekulární biotechnologie

Zoonotické viry u volně žijících endotermních obratlovců

Dizertační práce

Brno 2017 Petra Straková

MASARYKOVA UNIVERZITA

PŘÍRODOVĚDECKÁ FAKULTA

Ústav experimentální biologie

Oddělení mikrobiologie a molekulární biotechnologie

Zoonotické viry u volně žijících endotermních obratlovců

Dizertační práce

Petra Straková

Školitel: prof. RNDr. Zdeněk Hubálek, DrSc. Brno 2017

Bibliografický záznam

Autor: Mgr. Petra Straková Ústav biologie obratlovců AV ČR v.v.i., Brno - detašované pracoviště Valtice a Ústav experimentální biologie, PřF MU, Brno

Název práce: Zoonotické viry u volně žijících endotermních obratlovců

Studijní program: Biologie

Studijní obor: Mikrobiologie

Školitel: prof. RNDr. Zdeněk Hubálek, DrSc. Ústav biologie obratlovců AV ČR v.v.i., Brno - detašované pracoviště Valtice a Ústav experimentální biologie, PřF MU, Brno Valtice

Akademický rok: 2016/2017

Počet stran: 155 + publikace

Klíčová slova: emergentní zoonózy, hantaviry, flaviviry, západonilské horečky, virus Usutu, virus hepatitidy E, Česká republika, Evropa

Bibliographic entry

Author: Mgr. Petra Straková Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno – laboratory Valtice, and Department of Experimental Biology, Faculty of Science, Masaryk University, Brno

Title of Dissertation: Zoonotic associated with free-living endotherm vertebrates

Degree Programme: Biology

Field of Study: Microbiology

Supervisor: prof. RNDr. Zdeněk Hubálek, DrSc. Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno - laboratory Valtice, and Department of Experimental Biology, Faculty of Science, Masaryk University, Brno

Academic Year: 2016/2017

Number of Pages: 155 + scientific articles

Keywords: emerging zoonoses, hantaviruses, flaviviruses, , , hepatitis E virus, Czech Republic, Europe

© Petra Straková, Masarykova univerzita, 2017

Abstrakt

Předložená dizertační práce je koncipovaná jako soubor komentovaných publikací zabývajících se zoonotickými viry u volně žijících endotermních obratlovců. Z velkého výčtu zoonotických virů vyskytujících se v Evropě byly vybrány ty, které jsou v Evropě dobře popsané, mohou způsobovat onemocnění u lidí se širokou škálou symptomů, a které byly detekované v České republice.

Tato práce se věnuje konkrétně detekcí hantavirů u volně žijících hlodavců, flavivirů u volně žijícího vodního ptactva a viru hepatitidy E u divokých prasat a další lovné zvěře.

Na tyto viry se stále pohlíží jako na tzv. emergentní (tj. nově se objevující) viry a v některých zemích jsou dlouhodobě monitorovány. Hlavní důvody pro tento monitoring jsou narůstající počet klinických případů u lidí i jejich rostoucí veterinární význam.

Jedním z důležitých výsledků této dizertační práce byl popis prvního hantaviru detekovaného u netopýra pestrého (Nyctalus noctula) v Evropě. Dále byla provedena vůbec první studie zabývající se prevalencí hantavirů u hlodavců v Litvě, monitoring Dobrava-Belgrade hantaviru v Německu a screening hlodavců na hantaviry z České republiky. U flavivirů a viru hepatitidy E jsme sledovali přítomnost specifických protilátek u volně žijících ptáků a lovné zvěře.

Z výsledků vyplývá, že studované viry cirkulují v určitých oblastech ve volné přírodě a představují možné riziko pro zdraví obyvatel.

Abstract

This Ph.D. thesis is compiled as a collection of commented scientific articles focusing on zoonotic viruses in free-living endotherm vertebrates. From a large number of zoonotic viruses presented in Europe, we selected those that are well described in Europe, can cause diseases in humans with a scale of different symptoms and were also detected in the Czech Republic.

This thesis aimed at the detection of hantaviruses in the free-living rodents, flaviviruses in the free-living waterfowl and hepatitis E virus in wild boars and other game animals.

These viruses belong to the so-called emerging viruses, and in some countries, they are monitored over a long period. The reasons for these monitoring studies are mainly increasing numbers of clinical cases and their rising veterinary importance.

During our research, we detected all selected viruses in free-living animals in the Czech Republic. The most important result was the discovery of the first bat-borne hantavirus in Europe. We carried out the first prevalence study of hantaviruses in the local rodent population in Lithuania, in Germany we monitored the presence of Dobrava-Belgrade virus and we also did a screening for hantaviruses in the rodents from the Czech Republic. In flaviviruses and hepatitis E virus we focused on the detection of specific antibodies in free living waterfowl and game animals and we confirmed their presence in our ecosystem.

Presented results indicate that the studied viruses circulate in nature in selected areas and they represent a possible health threat to the human population.

Poděkování

Na tomto místě bych ráda poděkovala mému školiteli prof. RNDr. Zdeňku Hubálkovi, DrSc. a RNDr. Ivo Rudolfovi, Ph.D. za možnost zpracovat svou dizertační práci na detašovaném pracovišti Ústavu biologie obratlovců AV ČR, v.v.i. ve Valticích a za pomoc a pevné nervy při vzniku této práce. Mé díky patří dále Mgr. Hance Blažejové, která mi byla největší oporou ke konci mého studia, Ing. Lence Betášové, Mgr. Kristýně Venclíkové, Ph.D., Juraji Peškovi a Ladislavě Ševčíkové za výborné pracovní podmínky a příjemně strávené chvilky v kuchyňce při kávě.

Za poskytnutí odchycených hlodavců a informací ohledně jejich ekologie bych chtěla poděkovat doc. RNDr. Martě Heroldové, Ph.D. z Ústavu biologie obratlovců AV ČR, v.v.i. v Brně.

Dále mé poděkování patří doc. RNDr. Danielu Růžkovi, Ph.D. a MVDr. Lucii Dufkové, Ph.D. z Výzkumného ústavu veterinárního lékařství, v. v. i. v Brně za to, že jsem se mohla stát členem jejich týmu a věnovat se tématu virových infekcí netopýrů.

Největší dík poputuje do Německa do týmu Dr. Rainera G. Ulricha (Institute of Novel and Emerging Infectious Diseases (INNT) ve Friedrich-Loeffler Institutu), kde jsem strávila 11 měsíců na pracovní stáži ERASMUS+. Začátky nebyly jednoduché, ale jsem velmi vděčná za příležitost a získané zkušenosti díky práci ve světově uznávaném pracovišti, kde spojení „že něco nejde,“ prostě neexistuje. Děkuji všem svým kolegům za jejich pomoc a rady, jmenovitě Stephanu Drewesovi, Stefanu Fisherovi, René Ryllovi, Maysaa Dafalla, Dörte Kaufmann a Anke Mandelkow. Za možnost provést a analyzovat data z NGS testování děkuji Dr. Dirku Höpperovi a Florianu Pfaffovi. Za to, že jsem se v Německu cítila jako doma, děkuji především Dr. Nilsu Kleyovi a jeho rodině a mým přátelům Miriam Andrada Sas, Mahmoud Naguib a Rebece König.

V neposlední řadě patří velký dík mé rodině a přátelům za nekončící podporu a pochopení, a především mému příteli Kubovi za to, že mi byl po celou dobu doktorského studia oporou, se vším mi pomáhal a kriticky hodnotil všechny moje nápady.

Prohlašuji, že jsem tuto dizertační práci vypracovala samostatně s využitím informačních zdrojů, které jsou v práci citovány.

V Brně ………………… ……………………………

Petra Straková

Seznam použitých zkratek

AI avian influenza (ptačí chřipka)

BioEdit Biological sequence alignment Editor

BLAST Basic Local Alignment Search Tool (vyhledávací nástroj sekvenčního přiložení)

BSL-3 biosafety level 3 (úroveň zabezpečení)

BRNV Brno virus

CDC Centers for Disease Control and Prevention (Centrum pro kontrolu a prevenci nemocí), U.S.A. cDNA complementary cDNA (komplementární DNA)

DEPC diethyl pyrokarbonát

DNA deoxyribonucleic acid (deoxyribonukleová kyselina)

DOBV Dobrava-Belgrade hantavirus

ECDC European Centre for Disease Prevention and Control (Evropské centrum pro prevenci a kontrolu nemocí), Stockholm

EFSA European Food Safety Authority (Evropský úřad pro bezpečnost potravin)

ELISA Enzyme-Linked ImmunoSorbent Assay (enzymová imunoanalýza)

EPIDAT databáze epidemiologických dat ČR, Státní zdravotní ústav

FLI Friedrich-Loeffler-Institut

GenBank ® genetická sekvenční databáze

HFRS Hemorrhagic Fever with Renal Syndrome (hemoragická horečka s renálním syndromem)

HPS Hantavirus Pulmonary Syndrome (hantavirový plicní syndrom)

HTNV Hantaan virus

ICTV International Committee on Taxonomy of Viruses (Mezinárodní komise pro taxonomii virů) MEGA7 Molecular Evolutionary Genetics Analysis software

MERS Middle East repiratory syndrome (Blízkovýchodní respirační syndrom)

MERS-CoV MERS coronavirus (MERS koronavirus)

NCBI National Center for Biotechnology Information (Národní centrum pro biotechnologické informace), U.S.A.

NE nephropathia epidemica

NGS Next Generation Sequencing (sekvenování nové generace)

PCR Polymerase Chain Reaction (polymerázová řetězová reakce)

PRNT Plaque reduction neutralization test (plak redukční neutralizační test)

PROMED Program for Monitoring Emerging Diseases (program pro monitorování emergentních nákaz)

PUUV Puumala virus real-time RT-qPCR kvantitativní reverzně transkripční polymerázová řetězová reakce v reálném čase

RNA ribonucleic acid (ribonukleová kyselina)

RT-PCR reverse transcription polymerase chain reaction (reverzně transkripční polymerázová řetězová reakce)

SARS Severe Acute Respiratory Syndrome (těžký akutní respirační syndrom)

SARS-CoV SARS coronavirus (koronavirus SARS)

SEOV Seoul virus

SNV Sin Nombre virus ssRNA single stranded ribonucleic acid (jednovláknová ribonukleová kyselina)

TBEV tick-borne encephalitis virus (virus klíšťové encefalitidy)

TMB tetramethylbenzidin

TULV Tula virus

UN United Nations (Spojené národy)

USUV Usutu virus

VERO buněčná linie z ledvin kočkodana zeleného

VHE hepatitis E virus (virus hepatitidy E)

VTEC verotoxigenic E.coli (verotoxigenní E. coli)

VÚVEL Výzkumný ústav veterinárního lékařství

WHO World Health Organization (Světová zdravotnická organizace)

WNV West Nile virus (virus západonilské horečky)

Obsah

1 Úvod ...... 1

2 Literární přehled řešené problematiky ...... 3

2.1 Zoonózy ...... 3

2.1.1 Definice zoonóz ...... 3

2.1.2 Historický vhled do problematiky zoonóz ...... 3

2.1.3 Migrace lidí, zvířat a jejich přeprava ...... 4

2.1.4 Přirozená migrace zvířat ...... 5

2.1.5 Změny klimatu ...... 6

2.1.6 Surveillance ...... 7

2.2 Virové zoonózy ...... 8

2.2.1 Emergence virových zoonóz ...... 8

2.2.2 Způsoby přenosu virových zoonóz ...... 9

2.2.3 Současný stav vědění ...... 13

2.2.4 Zoonózy v Evropě a v České republice ...... 15

3 Cíle dizertační práce ...... 17

4 Komentovaný soubor prací ...... 19

4.1 Hantaviry ...... 19

4.1.1 Soubor komentovaných prací týkajících se hantavirů ...... 23

4.1.2 Autorčin podíl na daném výzkumu ...... 79

4.2 Flaviviry - virus západonilské horečky a virus Usutu ...... 81

4.2.1 Soubor komentovaných prací týkajících se flavivirů ...... 85

4.2.3 Autorčin podíl na daném výzkumu ...... 95

4.3 Virus hepatitidy E ...... 97

4.3.1 Komentovaná práce týkající se viru hepatitidy E ...... 101

4.3.2 Autorčin podíl na daném výzkumu ...... 109

5 Závěr ...... 111

6 Literatura ...... 113

7 Příloha – tabulky ...... 135

7.1 Hantaviry ...... 135 7.2 Flaviviry ...... 151

7.3 Virus hepatitidy E ...... 153

8 Příloha – publikace ...... 155

1 Úvod

Předložená dizertační práce je koncipovaná jako soubor komentovaných publikací týkajících se zoonotických virů u volně žijících endotermních obratlovců a je rozdělená na několik kapitol:

Kapitola „Literární přehled řešené problematiky“ podává ucelený přehled o problematice zoonóz od historie jejich objevu až po současné trendy výzkumu. Vyzdvihuje důležitost lidského a ekologického faktoru při šíření těchto onemocnění do nových oblastí. Na závěr je uvedeno několik důležitých zoonóz vyskytujících se v Evropě a v České republice.

V kapitole „Cíle dizertační práce“ jsou v bodech vypsány hlavní cíle této práce rozdělené do částí dle vybraných zoonotických virů.

Po této úvodní části následuje stěžejní část této dizertační práce a to kapitola nazvaná „Komentovaný soubor publikací“. Je opět rozdělena do tří částí a po obecném popisu vybraných virů následuje rozbor publikací a podíl autorky na výzkumu.

Z velkého výčtu zoonotických virů byly vybrány následující – hantaviry, flaviviry západonilské horečky a Usutu a virus hepatitidy E. Hantaviry jsou v Evropě známé již velmi dlouho, jsou původci v některých případech velmi závažného hemoragického syndromu s renálním selháním. Hostitelé patogenních druhů hantavirů jsou hlodavci. V současné době dochází k popisu nových hantavirů u hmyzožravců a netopýrů. Patogenní potenciál těchto nových hantavirů není ještě určen. Virus západonilské horečky je přenášen komáry a jedná se o výborný příklad tzv. nákazy s přírodní ohniskovostí. Tento virus ve volné přírodě koluje mezi ornitofilními komáry a vodním ptactvem. Člověk se může nakazit při vstupu do tohoto ohniska a ve vzácných případech může dojít k rozvoji meningitidy či encefalitidy. Virus Usutu a virus hepatitidy E patří mezi nově se vyskytující viry v Evropě. Virus Usutu patří také do flavivirů a jeho ekologie je podobná viru západonilské horečky. Virus hepatitidy E je původcem lidské hepatitidy E získané pozřením nedostatečně tepelně zpracovaného masa. Tento přenos je typický hlavně pro vyspělé státy, v rozvojových státech se tento virus přenáší fekálně-orální cestou. Publikace, které v době přípravy této dizertační práce byly vydány, jsou součástí kapitoly „Přílohy“.

V poslední části, kapitole „Závěr“, jsou shrnuty výsledky této dizertační práce.

1

2 Literární přehled řešené problematiky

2.1 Zoonózy

2.1.1 Definice zoonóz

Jako zoonotická onemocnění (zoonózy) se označují onemocnění přenosná ze zvířat na člověka. Jejich původci mohou být priony, viry, bakterie, houby, prvoci či parazitičtí červi (Hubálek a Rudolf 2007, 2011). Největší počet zoonóz je hlášen z oblastí s velkou druhovou diverzitou živočichů a zároveň vysokou hustotou zalidnění např. z jihovýchodní Asie, Střední Ameriky, subsaharské Afriky a Mediteránu (Obr. 1) (Han a kol. 2016). V těchto oblastech je šance kontaktu člověka se zoonotickým agens vysoká. Taylor a kol. (2001) udávají, že z 1 415 známých infekčních chorob je 60% zoonotických, z nich je 75% virového původu a pocházejí z volné přírody. Podle informací CDC je u 3 ze 4 tzv. emergentních (tj. nově se objevujících) infekčních chorob zdrojem infekce zvíře (CDC 2016).

Obr. 1: Mapa zeměpisného rozšíření zoonóz se savčím rezervoárem. Ty se vyskytují celosvětově, se 4 hlavními oblastmi – Amazonie, Evropa, východní Afrika a jihovýchodní Asie. Počet hostitelských druhů (žlutý sloupec), zoonotické patogeny (červený sloupec). Tato mapa zobrazuje 5 007 volně žijících savců z 27 řádů (Han a kol. 2016).

2.1.2 Historický vhled do problematiky zoonóz

Kořeny vzájemného přenosu agens mezi zvířaty a lidmi pravděpodobně sahají až k počátku antropogeneze. Je velmi těžké určit dobu, ve které by lidé (či jejich předci) a zvířata

3 neexistovali v těsném soužití (Fiennes 1979). Domníváme se, že se první zoonózy objevily v souvislosti s domestikací divokých zvířat a následným přetvářením okolní krajiny. Zvířata nesloužila pouze jako zdroj potravy (drůbež, ovce, kozy, dobytek), ale i k dopravě (koně, velbloudi) nebo jako domácí společník (pes, kočka) (Johnson 2014). Už Virchow, Koch i Pasteur si uvědomovali, že lidé i zvířata sdílejí některé patogeny a navrhovali zavedení pojmu „one medicine“ – sjednocení vědomostí ohledně veterinární a lidské medicíny (Atlas 2012).

Lidská kultura byla vždy determinována svým geografickým prostředím. Vyvinula se z původních lovců a sběračů na farmáře s cílem chovat zvířata, pěstovat plodiny a následně s nimi dále obchodovat (Galvin a kol. 2001). Domestikace zvířat nebyla jednorázovou událostí, probíhala v době přibližně od 13 000 do 2 500 př.n.l. (Diamond 2002).

Nejvhodnější zvířata určená pro domestikaci byla ta, která se přirozeně vyskytovala ve skupině (stádo, smečka). Tyto druhy byly speciálně šlechtěny a chovány kvůli daným specifickým kvalitám (maso, mléko, kožešiny) a v současné době se již geneticky liší od svých volně žijících předků. Domestikace vedla k zvětšení produkce určitých druhů zvířat, k zvýšení lidské populace a umožnila rozvoj lidské civilizace (Rose a Lauder 1996). Na druhou stranu to ovšem vedlo i k ničení životního prostředí, jehož důsledkem bylo vymření některých původních zvířecích druhů. Lidská populace rostla a to vyžadovalo větší nárok na půdu a vodní zdroje pro zemědělství. Tato evoluční změna v chování lidí (domestikace, chov zvířat, doprava a obchod) umožnila větší šanci k mezidruhovému přenosu nejen virových nákaz (Bidaisee a kol. 2014).

2.1.3 Migrace lidí, zvířat a jejich přeprava

Dalším důvodem narůstajícího počtu zoonóz byla/je lidská populační expanze. S tím souvisí rozšiřování měst (urbanizace) a zvyšování podílu zemědělské půdy na úkor lesů/pralesů (Johnson 2014). V současné době světová populace překročila hranici 7 miliard lidí. Můžeme pozorovat dva trendy – v rozvinutém světě se lidé začínají stěhovat z velkých měst do jeho okolí (satelitní města), zatímco v rozvojovém světě se lidé stěhují do velkých měst. V roce 1950 byla za megaměsta označena jen New York a Londýn (> 10 miliónů lidí), v roce 2015 se už na světě nacházelo více než 38 megaměst (z toho 23 v Asii) (UN 2010). S lidmi se také stěhují i domácí mazlíčci. To zvyšuje šanci na např. zisk hantavirového syndromu z potkanů chovaných jako domácí mazlíčci (McElhinney a kol. 2016). Lidská migrace je neustále probíhající děj a dochází k ní z různých důvodů (např. stěhování do velkých měst za prací, válečné konflikty, globální oteplování). Hlavními problémy, které sužují migranty, jsou

4 nedostatek hygieny, pitné vody a sanitace. Tyto faktory umožňují jednodušší šíření vodou přenosných virových zoonóz. V tropických oblastech je dalším problémem vysoká hustota vektorů, které ve spojení s přelidněním podporují rychlé šíření zoonóz.

S rozvojem letecké a lodní dopravy je dnes možné během krátké doby procestovat celý svět. To umožňuje zavlečení agens do nových oblastí a možné rozšíření virových zoonóz po celém světě za velmi krátkou dobu (viry není možné detekovat v jejich inkubační době). Globalizace podporuje produkci, transport a spotřebu divoce žijících a domácích zvířat a produktů z nich. Takto se dováží a vyváží zvířata určená na výstavy, pro vědu a výzkum, ochranu přírody (ZOO), domácí a chovná zvířata (Marano a kol. 2007). Tento způsob dopravy je opět dalším ze zdrojů šíření virových zoonóz. Dle Jenkins a kol. (2007) bylo jen do USA dovezeno v letech 2000-2004 kolem 37 miliónů obojživelníků, ptáků, savců a plazů. Bohužel u nelegálního trhu se zvířaty podobná čísla neexistují, ale jsou určitě mnohem vyšší.

2.1.4 Přirozená migrace zvířat

Kromě této lidmi řízené přepravy zvířat je důležité se zmínit i o přirozené migraci zvířat, zvláště pak ptáků. Ptáci jsou dobře popsanými rezervoáry virových zoonóz, které jsou velmi závažné pro lidské zdraví. Berthold (2001) odhadl, že přibližně 50 miliard ptáků každoročně migruje a překonává vzdálenosti od desítek až několik tisíc kilometrů. Z tohoto pohledu se zdá, že ptáci jsou skvělým příkladem pro rozšiřování agens na nová území. Předpokládá se, že každoročně migruje přes Severní Ameriku kolem 5 miliard ptáků (US Fish and Wildlife Services 2010) a je dokázána jejich stěžejní role při šíření např. ptačí chřipky (AI) a viru západonilské horečky (WNV) (Rao a kol. 2009). Tato migrace na krátkou (<1 km) nebo dlouhou (až 70 000 km) vzdálenost je stimulovaná změnou ročních období, změnou v dostupnosti potravy, teplotou, délkou dne nebo změnou přírodních podmínek (Dingle 1996, Schmidt a kol. 2007, Egevang a kol. 2010). Problematika šíření agens migrací ptáků je však velmi komplexní a závisí na spoustě faktorů např. patogenezi viru k danému ptačímu druhu, imunitnímu systému hostitele, schopnosti hostitele migrovat a hlavně na celkové ekologii hostitele (Prosser a kol. 2014). Mezi virové původce přenášené ptáky patří ptačí paramyxovirus 1 (kormorán) (MacPherson 1956), virus Sindbis (tetřev, drozd, vrána) (Kurkela a kol. 2008), virus západonilské horečky (pěvci, vodní ptactvo) (Hubálek 2004), virus japonské encefalitidy (volavka) (Pfeffer a Dobler 2010), virus Saint Louis (pěvci) (Hubálek 2004), virus Usutu (kos, puštík) (Weissenböck a kol. 2001) nebo virus ptačí chřipky (Alexander 2007).

5

Existuje několik možných mechanismů, jak migrace zvířat může přispívat k šíření virových chorob: 1) migrující zvíře se nakazí ještě před cestou, je schopné si uchovat dostatečnou virémii i během migrace a rozšíří dané agens na novém území; 2) latentní nákaza se projeví během migrace nebo po ní a virus je vylučován průběžně; 3) migrující zvíře s sebou nese infikovaného krevsajícího členovce (vektor), kterého zanese na nové území (přímý přenos), nebo se místní krevsající členovec nakazí od infikovaného migrujícího zvířete (nepřímý přenos) (Hubálek 2004, Prosser a kol. 2014). K tomuto přenosu agens na nová území může docházet každoročně (znovuzavedení) hlavně v případě, kdy agens (nebo vektor) nejsou schopni přežít určité období (např. zimu) a nedojde k vertikálnímu přenosu (z dospělce na další generace). Důkazy ukazují, že migrace může virovou prevalenci jak zvýšit (virové agens se rozšíří na nová území a uchytí se tam), tak i snížit (migrující zvířata „uniknou“ danému patogenu) (Altizer a kol. 2011). Ačkoliv hodně druhů hmyzu, savců, ryb a ptáků migruje a má potenciál přenášet a šířit onemocnění, většina studií zabývající se virovými zoonózami se zaměřuje hlavně na ptáky a netopýry (Prosser a kol. 2014).

Na rozdíl od ptáků se u savců migrace tolik nevyskytuje. Nicméně ji můžeme pozorovat u některých druhů lichokopytníků a sudokopytníků, mořských savců a u savců schopných létat. Přenos virových zoonóz je nejlépe prostudován u netopýrů. Netopýři jsou známí jako rezervoárová zvířata mnoha virových zoonóz (SARS-podobných koronavirů, Balboni a kol. 2012; henipavirů, Breed a kol. 2006; rhabdovirů, Calisher a kol. 2006; viru Ebola, Leroy a kol. 2005) a mohou je přenášet na další savce včetně lidí, u kterých mohou způsobit závažná onemocnění až smrt. Hlavní cestou přenosu těchto zoonóz na člověka je přímý kontakt s nakaženým netopýrem (lovci, veterináři), kontakt se sekundárním hostitelem (dobytek, koně, prasata), od kterého se člověk může nakazit inhalací infikovaných sekretů (Calisher a kol. 2006). Hlavní příčinou objevu nových netopýřích virových zoonóz je ničení pralesů a vstup lidí do těchto oblastí. Přibližně 3% netopýřích druhů má schopnost migrovat a je schopno uletět až několik tisíc kilometrů a tím přispívat k šíření virů na nová území (Fleming a Eby 2003, Breed a kol. 2010).

2.1.5 Změny klimatu

V současné době jsme svědky měnícího se klimatu. Jako důsledek můžeme pozorovat zvyšování teploty vzduchu a moří, zvyšování hladiny oceánů a častější výskyt extrémního počasí – extrémní horka či sucha, mrazy, povodně a bouře. V některých případech mohou tyto

6 změny klimatu ovlivnit i životní cyklus různých přenašečů (arthropod-borne zoonoses, členovci přenášené zoonózy).

2.1.6 Surveillance

V současné době se epidemiologové zaměřují nejčastěji na surveillanci (dohled, monitoring) těchto nákaz a všech vnějších podmínek, které mohou mít význam pro jejich dynamiku (Hubálek a Rudolf 2007, 2011). Tím se rozumí sběr dat např. ohledně rozšíření vektorů nebo rezervoárů a potvrzených klinických případů s jejich rychlým vyhodnocením, a v případě nebezpečí i implementace postupů k jejich eliminaci. Mnoho různých programů a systémů kontrol probíhá po celém světě s cílem nalézt a co nejrychleji odpovědět na nové zoonózy. Surveillance u lidí spoléhá na data získaná např. protilátkovým screeningem u co nejširšího počtu obyvatel. U zvířat se surveillance opírá nejvíc o sběr různých biologických vzorků (např. u sentinelových zvířat), které jsou následně sérologicky a molekulárně vyšetřeny

Virové zoonózy s významným dopadem na lidské zdraví jsou monitorovány ve spolupráci oborů, jako jsou zoologie, epidemiologie, virologie a dalších vědních disciplín. Co nejrychlejší zachycení varovných signálů vyžaduje neustálou surveillanci a zapojení co největšího počtu dat k vyhodnocení.

Kromě lékařů a vědců se do surveillance zapojují i sociologové, kteří zkoumají, jaké sociální faktory ovlivňují emergenci zoonotických nákaz. Tento výzkum je ale velmi často problematický (Parkes a kol. 2005). Výsledkem tohoto snažení je tvorba modelů a scénářů vztahů mezi lidmi a zvířaty, které umožňují emergenci zoonóz. Dále navrhují jejich využitelnost v predikci potencionálních rizik objevu nových zoonóz v různých podmínkách. S využitím těchto dat se dají vytvořit přehledné mapy výskytu virových patogenů a jejich vztah k prostředí, identifikovat raná stádia onemocnění a zastavit jejich šíření hned v počátku. Sociální práce umožňuje vzdělávat a zapojit místní komunitu do problematiky surveillance.

Pro rychlou, efektivní, jednoduchou a levnou identifikaci a izolaci patogenů by měly být vyvinuty vhodné metody využitelné nejen v diagnostických laboratořích, ale i v terénu. V současné době již existují i mikročipy, s jejichž pomocí je možné provádět PCR metody i jednoduché sekvenování přímo v terénu (Hoenen a kol. 2016). Monitoring reservoárů a vektorů po celém světě patří mezi nejdůležitější pilíře surveillance (Meslin 2008). Na rozdíl od antroponóz (onemocnění přenosná mezi lidmi) se zoonózy nedají jednoduše eradikovat. Je to způsobeno hlavně množstvím různých obratlovčích rezervoárů a velkou škálou bezobratlých přenašečů (Kallio-Kokko a kol. 2005).

7

Pro rychlou komunikaci po celém světě dnes slouží řada internetových portálů, např. PROMED, WHO, CDC, ECDC, v České republice třeba EPIDAT Státního zdravotního ústavu. Tyto platformy slouží pro sdílení výsledků, rychlých zpráv, analýz rizik a různých doporučení. Velmi vhodné jsou i kampaně určené pro veřejnost. Vytvoření a provedení těchto kampaní vyžaduje skloubit znalosti dané problematiky se sociálními, kulturními, ekonomickými, antropologickými a etickými aspekty s důrazem na to, aby této kampani porozumělo co nejvíc lidí.

Závěrem této kapitoly je nutné dodat, že pro úspěšnou surveillance je nutná spolupráce napříč různými obory v celosvětovém měřítku. Tato spolupráce není jen na poli diagnostiky a lékařství, ale závisí i na řadě intervencí v různých zemích a spolupráci daných vlád (Fidler 2003). Cílem je pak zajistit maximální ochranu před mezinárodním rozšířením nemoci ale s minimálním zásahem do světové dopravy. To vyžaduje například velmi rychlou reakci daného státu, ve které se nákaza vyskytla, a schopnost kontrolovat pohyb osob v rámci země (WHO 1983). Mezinárodní právo také napomáhá kontrolovat výskyt onemocnění a velké množství smluv a dohod specifikuje povinnosti států v případě výskytu některých infekčních onemocnění (Fidler 2001).

2.2 Virové zoonózy

2.2.1 Emergence virových zoonóz

Většina nových virových zoonóz se objevila v důsledku vstupu lidí do volné přírody (odlesňování pralesů, ničení krajiny), díky blízkému soužití lidí a zvířat (drůbež, prasata a lidé žijící na jednom místě – Čína), globálnímu obchodu se zvířaty a cestování po celém světě (turistika). Interakce mezi prostředím a lidským chováním jsou vždy komplexní a ovlivňují emergenci (re-emergenci) zoonotických virů často způsoby, které nejsou vždy úplně jasné. Jako emergentní (re-emergentní) organismy označujeme agens, která jsou nově rozpoznaná nebo nově se šířící (Han a kol. 2016) a patří mezi ně např. viry Nipah, Hendra, SARS-CoV a MERS-CoV, virus ptačí chřipky (H5N1), virus západonilské horečky (USA – ptáci) či virus (ostrovy Indického Oceánu, jižní Evropa, Střední Amerika – komáři).

Emergence je několikastupňový proces a v každém případě vyžaduje kontakt člověka s infekčním agens (ať už přímý nebo nepřímý) pocházejícím z volné přírody (Childs a kol. 2007). Pro úspěšný mezidruhový přenos (cross-species, spill-over infection) je nutné, aby cizí

8 virus v novém hostiteli úspěšně dokončil svůj životní cyklus: a) adsorbce, penetrace, odhalení nukleové kyseliny a doputování do místa replikace, b) transkripce a translace, c) sestavení nových virionů a jejich uvolnění z hostitelské buňky (Nayak 2000). Adsorbce a penetrace do hostitelské buňky je podmíněna přítomností vhodných receptorů. V některých případech může tento mezidruhový přenos vyžadovat přítomnost vektorů nebo dalších hostitelů (Nayak 2000, Childs 2004). Průběh infekce u nového hostitele (nahodilého) se může lišit od většinou inaparentního průběhu infekce u rezervoárového zvířete. Příklady mohou být léze (způsobené herpesvirem B) na čelistech makaků, které je nijak neohrožují, ale u člověka může tento virus způsobit až smrtelnou meningoencefalitidu (Huff a Barry 2003), nebo inaparentně probíhající infekce hlodavců hantaviry, které se mohou u člověka projevit od mírných horečnatých příznaků až po hemoragické horečky (Zaki a kol. 1995). Vše závisí na virulenci daného agens a na imunitním systému hostitele. Dalšími kroky, které už ale nejsou nutné pro emergenci, jsou mezilidský přenos a genetická adaptace na lidského hostitele. Tyto poslední kroky jsou nezbytnou podmínkou pro pandemickou emergenci daného patogena (Childs 2004).

Probíhající objevy nových zoonóz jen potvrzují teorii, že dosud známé viry jsou pouhým vrcholem ledovce (Murphy 1998), přičemž především RNA viry jsou schopné velmi rychlé adaptace ke stále se měnícím přírodním podmínkám a patří mezi přední emergentní patogeny (Ludwig a kol. 2003).

2.2.2 Způsoby přenosu virových zoonóz

Jak bylo zmíněno výše, je mnoho různých druhů zoonotických agens. To, zda způsobí onemocnění, záleží na jejich vlastnostech, na stavu hostitele a na vlivu prostředí. Patogenitou rozumíme soubor jevů a procesů, které vedou k onemocnění. Je to složitý proces, který zahrnuje způsob šíření nákazy, cesty vstupu patogenu do organismu člověka a délku inkubační doby. Míru patogenity pak určuje virulence, která je dána schopností patogenu se množit v daném hostiteli za projevů jeho poškození nebo onemocnění. Virulence může být usnadněna invazivitou, schopností agens proniknout do hostitele, a toxigenitou, schopností poškozovat hostitele produkcí toxinů. Vnímavost hostitele je dána např. věkem, stavem imunity, výživou a na molekulární úrovni např. přítomností buněčných receptorů.

Cesty průniku virů do organismu nejsou nahodilé, ale jsou výsledkem dlouhého vývoje. K šíření virů mezi hostiteli dochází přímou nebo nepřímou cestou. Nejčastěji se nákazy přenášejí kapénkovou infekcí (respirační viry), střevním traktem (enteroviry) a přímým kontaktem. Lidské tělo od okolí oddělují tří hlavní bariéry – kůže, střevní a dýchací trakt.

9

Epitel genitálu a oční spojivky jsou menší bariéry. Pro úspěšné zdolání musí být daný virus schopný buď infekce buněk těchto bariér, anebo se po poškození těchto bariér (pokousáním/poškrábáním zvířetem, kousnutí/sání hmyzem) dostane do vnitřního prostředí. Zvláštním způsobem přenosu je vertikální přenos (Růžek 2012, Votava 2005).

V těle se pak virus šíří sliznicemi (mezi buňkami), lymfatickou cestou, neurální cestou nebo krevní cestou. Z těla mohou být viry vylučovány již v místně primárního pomnožení nebo v případě generalizované infekce sputem, krví, slinami, močí, stolicí či spermatem.

Virové zoonózy přenášené vektory (vector-borne zoonoses)

Na začátku 20. století se staly epidemie virových zoonóz přenášených vektory velkým celosvětovým problémem. Největší epidemie byly způsobeny virem žluté zimnice a virem horečky dengue. Následovaly rychlé a efektivní preventivní programy, kontrolní opatření, vývoj a úspěšné použití nových insekticidů, léčiv a vakcín (Gubler 1998). Ke konci 20. století se ale začaly projevovat důsledky změn klimatu a lidského chování, které vedly k re- emergenci těchto zoonóz (Gubler 1989). Původně lokální rozšíření vektorů charakteristických pro určitou zoonózu se zvětšilo na širší území. Hnací silou byly i zde hlavně antropogenní faktory (migrace, cestování, doprava). Vektoři přenášející patogeny jsou citliví na změny klimatu. To se projeví hlavně na úrovni jejich přežití a reprodukci, frekvenci sání na hostiteli, inkubační době patogenů a jejich reprodukci, a na efektivitě přenosu patogenů mezi různými hostiteli (NCBI 2008). Z řady vektory přenášených zoonóz jsou nejdůležitějšími původci re- emergentních nákaz arboviry (arthropod-borne viruses) z čeledí Togaviridae, a Bunyaviridae. Příkladem těchto zoonóz mohou být žlutá zimnice, západonilská horečka, klíšťová či japonská encefalitida (Hubálek a Rudolf 2011).

Virové zoonózy přenosné vzduchem (air-borne zoonoses)

V posledních letech jsme svědky narůstajícího počtu epidemií vyvolaných respiračními zoonotickými viry. Tato vypuknutí ('outbreaks') jsou způsobena skutečnou emergencí nových patogenů. Mohou se vyskytovat na lokální úrovni (virus Hendra, virus Nipah) nebo se mohou rozšířit i po celém světě (virus SARS, viry influenzy (H5N1) (Condon a Sinha 2010). Vzduchem přenosné virové nákazy patří mezi nejzávažnější infekční choroby u lidí a mohou způsobovat až pandemie (virus influenzy H1N1 v době konce 1. světové války). Pandemie v letech 1918-1919 měla na svědomí smrt asi 50 miliónů lidí (Mettenleiter 2006). V roce 2009 měl kmen influenzy H1N1 (prasečí chřipka, mexická chřipka neboli nový typ A/H1N1) na

10 svědomí světovou pandemii, která vyústila ve velmi přísné restrikce v cestování a obchodu v mnoha zemích světa (WHO 2010). V současné době panují obavy ohledně nově kolujících kmenů ptačí influenzy H5N1 a H7N9. Zdrojem těchto respiračních infekcí jsou zvířata a přenos je uskutečněn skrze respirační trakt. Klinické projevy mohou být lokální na úrovni infekce horních/dolních dýchacích cest nebo se mohou rozvinout do systémové infekce a napadat různé orgány. Přírodní zdroj těchto zoonotických virů zůstává v některých případech stále nejistý, ale většinou se uvažuje o vodních ptácích.

Hlavními důvody této emergence jsou opět cestování, světový obchod, změny v zemědělství a změny klimatu (Wang 2011). Pohyb lidí má na šíření těchto patogenů velký vliv. V dnešní době se počet cestovatelů nejen zvyšuje, ale zvyšuje se i frekvence a rychlost s jakou cestují (Condon a Sinha 2010). Vzduchem přenosné virové zoonózy jsou v současné době velkou výzvou a jsou přímým důsledkem problematiky globálního cestování.

Virové zoonózy přenosné vodou a potravou (water-borne and food-borne zoonoses)

Kontaminace vodních zdrojů viry a jejich přenos orální cestou je dalším ze způsobů šíření zoonotických virů. Ke kontaminaci vody může dojít lidskou činností (nedostatečná úprava pitné vody, poruchy kanalizace, průmysl, přelidnění), zemědělskou činností (splachy) nebo při přírodních katastrofách a změnách klimatu (záplavy, tsunami, bouře) (Sedas 2007). Je statisticky prokázán vztah mezi nadměrnými dešti a nárůstem počtu nákaz způsobených vodou přenosnými viry (Curriero a kol. 2001). Tyto lijáky mohou způsobit povodně, díky kterým dochází ke kontaminaci vodních zdrojů splašky. V přímořských oblastech dochází ke snížení salinity vody a tato změna pH umožňuje virovou replikaci v případech, kdy by to za normálních podmínek nebylo možné (Harvell a kol. 2002, Hunter 2003).

Většina velkých epidemií způsobených vodou přenosnými viry jsou spíše antroponózy, ve kterých je zdrojem nakažený člověk. Ale mnoho těchto virových zástupců má i svého zvířecího hostitele a tedy zoonotický potenciál. Lze je tudíž brát i jako zoonózy. Podobně je na tom virus hepatitidy E. U tohoto viru je v současnosti zkoumán hlavně jeho zoonotický potenciál při konzumaci nedostatečně tepelně upraveného masa z domácích i divokých prasat, zvěřiny a mořských plodů (Pavio a kol. 2010). Cestou nákazy u virů přenosných vodou je fekálně-orální přenos. Je tedy možné předpokládat, že v případech, kdy lidé a zvířata žijí v těsném soužití, může dojít ke kontaminaci vody např. bovinními nebo prasečími rotaviry a člověk se může nakazit (Gratacap-Cavallier a kol. 2000, Vašíčková a kol. 2005).

11

Virové zoonózy přenášené z volně žijících zvířat (wildlife-associated viral zoonoses)

Virové zoonózy mají své zvířecí rezervoáry hlavně ve volné přírodě. Každý krajinný ekosystém obsahuje množství druhů obratlovců a bezobratlých vektorů, a každý z nich v sobě může nést řadu potencionálně zoonotických patogenů včetně virů. Počet těchto virových zoonóz pocházejících z volné přírody v poslední době vzrůstá a s tím stoupá i jejich klinická důležitost. Emergence těchto přírodně-ohniskových zoonóz je velmi ovlivněna globální lidskou činností. Rozpínající se lidská populace a území nutné pro zvířecí produkci zasahují do oblastí, které bývaly předtím výlučně tvořené původní přírodní krajinou ('wildlife area') a tím zvyšují pravděpodobnost styku volně žijících zvířat, domácích zvířat a lidí. Kromě již zmíněných nákaz jako SARS a ptačí chřipka, můžeme do této kategorie zařadit vzteklinu nebo vysoce nakažlivé a nebezpečné hemoragické horečky Ebola a Marburg (Bengis a kol. 2004). Nejvíce ohrožené jsou osoby, které pracují v přírodních ohniscích (lesníci, myslivci, zemědělci, lovci) a ti, kteří se podílejí na produkci a prodeji tzv. „bushmeat“. Tento obchod s masem zvířat pocházejících z pralesů je další možnou příčinou emergence a šíření nových virových zoonóz. Do tohoto koloběhu jsou zapojení jak lovci, tak i řezníci a spotřebitelé. Nejčastější cestou přenosu jsou pak škrábance, pokousání nakaženým zvířetem v průběhu lovu, a také řezné rány a kontakt s tělními tekutinami mrtvých zvířat během zpracování masa. Tento způsob nákazy byl popsán např. u opičích neštovic, u virových hemoragických horeček Marburg a Ebola a horečky Lassa (Wolfe a kol. 2005, Friant a kol. 2015). Tyto horečky se vyskytují v Africe a přenášejí se přímým stykem s opicemi, kaloni, případně hlodavci, kteří jsou považováni za jejich rezervoár (Feldman a Klenk 1996). Neustávající kácení pralesů a využívání nových ploch k zemědělským účelům nebo pro výstavbu vesnic a silnic vede k potencionálnímu zvyšování rizika přenosu virových zoonóz na lidi (LoGiudice a kol. 2003). Dalšími příklady jsou hemoragické horečky bolivijská (Machupo virus) a argentinská (Junin virus), které se přenášejí na lidi přímým stykem s hlodavci a jejich exkrety (křečci, krysy, potkani, myši) (Bidaisee a Macpherson 2014). Klíšťaty přenosná nebezpečná zoonóza vyskytující se v subsaharské Africe, východní Evropě, střední Asii a na Balkáně je způsobena virem krymsko-konžské hemoragické horečky (Hoch a kol. 1995). Komáry přenášená zoonóza, která se může šířit i kontaktem s nakaženými ovcemi, kozami a dobytkem, se vyskytuje v Africe a je způsobená virem horečky Rift Valley (Lacy a Smego 1996). Samozřejmě existuje mnohem víc příkladů virových zoonóz, jejichž rezervoár se vyskytuje ve volné přírodě. Mají společné to, že u většiny z nich se podaří nalézt jasnou příčinu jejich

12 výskytu – blízký kontakt lidí a volně žijících živočichů. Dalším problémem je nelegální trh s volně žijícími zvířaty včetně 'pet trade'.

2.2.3 Současný stav vědění

Před zhruba 50 lety se po celém světě začaly objevovat nové virové zoonózy. Většina z nich je ale vázána na subtropické a tropické oblasti (Kallio-Kokko a kol. 2005). V posledních letech byly takovouto hrozbou např. epidemie Eboly v západní Africe nebo epidemie viru Zika v Jižní Americe. Tyto nově se šířící virové nákazy nepředstavovaly v Evropě nijak závažný problém, protože se zde nevyskytovala buď rezervoárová zvířata, nebo jejich přenašeči. Ale vzhledem k velkému rozmachu turistiky, masové migraci osob z tropických a subtropických oblastí a změně klimatu se v Evropě začínáme setkávat i s novými chorobami. Příkladem mohou být importované nákazy např. horečka Lassa z Afriky nebo horečka dengue. Tyto nákazy ale většinou nepředstavují žádné větší riziko dalšího šíření v Evropě. Dalším významným problémem je šíření vektorů na nová území v Evropě, které někdy souvisí se změnou klimatu – globálním oteplováním.

Nejvýznamnějšími vektory zoonóz jsou v Evropě komáři a klíšťata (arthropod-borne diseases). V nich se agens aktivně množí, což umožňuje jejich udržování v přírodě a biologický přenos mezi vnímavými obratlovci (hostitelé) a krevsajícími členovci (vektoři).

Komáři v Evropě

Komáři patří mezi obtížný hmyz a jsou přenašeči velkého množství onemocnění. Tyto choroby jsou často endemické v různých částech Afriky, Ameriky nebo Asie. Každoročně způsobí úmrtí až několika milionů lidí po celém světě (ECDC 2016a). Jako invazivní druhy označujeme druhy, které jsou schopny kolonizovat nová území. Mezi ně patří např. Aedes aegypti nebo Aedes albopictus, kteří jsou přenašeči původců významných chorob – virů chikungunya, žluté zimnice, Zika nebo dengue. Aedes albopictus se již vyskytuje skoro po celém území jižní Evropy a sleduje se jeho rozšíření dále na sever. Aedes aegypti se vyskytuje na Madeiře a v oblasti Černého moře. Nejrozšířenějším druhem komára v Evropě je Culex pipiens, který je zároveň hlavním přenašečem viru západonilské horečky. Komáři rodu Anopheles nepatří mezi zásadní přenašeče zoonotických virů, ale byly z nich izolovány viry Batai nebo virus západonilské horečky. V tropických oblastech jsou samozřejmě hlavními vektory malárie. Zásadní vliv na rozšíření komárů ve světě má cestování (99% případů malárie v Evropě má souvislost s cestováním), obchod (díky lodní dopravě byl Ae. albopictus

13 přenášen z kontinentu na kontinent; více než 5 miliónů turistů z Evropy navštíví ročně oblasti rozšíření horečky dengue) a změna klimatu (předpokládá se, že při současném trendu zvyšování teploty a vlhkosti vzduchu se brzy Ae. albopictus usadí i ve střední nebo dokonce severní Evropě; vzrůstající teplota v období léta může přispívat k zvýšení počtu případů západonilské horečky v nových oblastech Evropy) (ECDC 2016a). Příkladem lokálního přenosu komáry přenášených nákaz může být horečka dengue v Chorvatsku v roce 2010, kde se jednalo o autochtonní nákazu německého turisty s následným průkazem horečky dengue i u místního obyvatelstva (Gjenero-Margan a kol. 2011), epidemie viru chikungunya na severu Itálie u 217 lidí v roce 2007 (Liumbruno a kol. 2008), lokální epidemie chikungunya a dengue ve Francii v letech 2010, 2014 a 2015 (Grandadam a kol. 2011; Succo a kol. 2016) a první ohnisko horečky dengue na Madeiře v letech 2012-2013, kde byl jako vektor určen komár Ae. aegypti (Lourenco a Recker 2014). Všechny tyto nákazy byly do Evropy zavlečeny díky cestování, navíc došlo k úspěšnému zavlečení těchto virů do místní populace komárů.

Klíšťata v Evropě

Klíšťata jsou malí ektoparazité, kteří ke svému životnímu cyklu potřebují svého hostitele (savce, ptáky). Často také sají na lidech a mohou takto přenášet různé patogeny. Nejrozšířenějším klíštětem je Ixodes ricinus, které se vyskytuje v celé Evropě, vyžaduje vysokou vlhkost a můžeme jej najít v listnatých až smíšených lesích. Je přenašečem lymské borreliózy (nejčastější klíšťaty přenosná choroba v Evropě) a viru klíšťové encefalitidy (je dostupná vakcína). V současné době vzrůstá obava ohledně zavlečení TBEV na nová území díky šíření klíšťat (ECDC 2016b). Životní cyklus klíštěte obecného trvá kolem 2-3 let, ale vlivem počasí se může měnit. Vyšší teplota může životní cyklus urychlit a mírná zima umožní přežití většího množství klíšťat a jejich rychlou aktivitu na jaře. Vývoj klíštěte zahrnuje 4 fáze: vajíčko (uložené v půdě), z něj se vylíhne larva, která saje na myších, ptácích a malých savcích, z ní se vyvine nymfa, která saje na hlodavcích a středně velkých obratlovcích, a konečné stádium dospělce, které saje na velkých savcích např. srny, jeleni. Hostitelé jsou důležitou složkou šíření klíšťat, protože je mohou zanést na nová území. Člověk je náhodným hostitelem a taktéž konečným hostitelem ('dead-end host') (Hubálek a Rudolf 2007, 2011).

Dalším důležitým druhem klíštěte je Hyalomma marginatum, které preferuje sušší a teplejší klima Středomoří a vyskytuje se hlavně v jižní a východní Evropě. Je přenašečem viru krymžsko-konžské hemoragické horečky. Tento virus patří mezi emergentní patogeny v Evropě (ECDC 2016b).

14

2.2.4 Zoonózy v Evropě a v České republice

Dle EFSA jsou nejčastějšími zoonózami v Evropě kampylobakteróza, salmonelóza, yersinióza, infekce VTEC (verotoxigenní E.coli), listerióza, echinokokóza, Q-horečka, brucelóza, tularémie, trichinelóza, západonilská horečka a vzteklina (ECDC EFSA 2015). EFSA se zabývá hlavně potravou přenosnými patogeny, proto tím mohou být data částečně ovlivněna. Mezi původce dalších evropských virových zoonóz můžeme zařadit hantaviry, lymfocytární choriomeningitidy, virus ptačí chřipky, hepevirus virové hepatitidy E, nairovirus krymžsko-konžské hemoragické horečky, orthobunyaviry Ťahyňa a Inkoo, fleboviry Toscana a horeček papatači, alfavirus Sindbis, flaviviry klíšťové encefalitidy a louping ill a flavivirus Usutu. Mezi arboviry, občas importované do Evropy, řadíme flaviviry dengue, žluté zimnice a alfavirus chikungunya (Hubálek a Rudolf 2011).

V České republice se ze zoonóz vyskytují nejvíce kampylobakteróza, salmonelóza, lymská borrelióza, toxoplazmóza, toxokarózy, zoofilní dermatofytózy, leptospiróza, listerióza, tularémie a klíšťová encefalitida (EPIDAT 2017, Sedlák a Tomšíčková 2006). Samozřejmě se i u nás občas vyskytne několik importovaných případů horečky dengue, malárie nebo žluté zimnice.

15

3 Cíle dizertační práce

Tato předložená dizertační práce se zaměřuje z velkého výčtů virových zoonóz na tři oblasti – virové zoonózy přenášené hlodavci - hantaviry, virové zoonózy přenášené komáry – virus západonilské horečky a virus Usutu, a virové zoonózy přenášené potravou – virus hepatitidy E v souvislosti s jejich volně žijícími rezervoárovými zvířaty.

 Cílem první části bylo doplnění nejnovějších poznatků ohledně hantavirů detekovaných u hlodavců a nově i u netopýrů na území České republiky. V rámci mé stáže v Německu bylo mým cílem potvrdit/vyvrátit časový a zeměpisný výskyt Dobrava-Belgrade viru u myšice temnopásé, a poprvé provést testování hlodavců z Litvy na hantaviry.

 Cílem druhé části bylo sérologicky vyšetřit volně žijící divokou zvěř a vodní ptáky na přítomnost protilátek proti dvěma flavivirům, viru západonilské horečky a viru Usutu, což by potvrdilo jejich důležitou roli pro udržování těchto virů v přírodním ohnisku nákazy.

 Cílem třetí části bylo retrospektivně sérologicky vyšetřit volně žijící divoká prasata a další lovnou zvěř na přítomnost protilátek proti viru hepatitidy E. Pozitivní nálezy by potvrdily, že se tento virus nacházel v České republice mnohem dřív, než se u nás začal sledovat především z pohledu lidských případů.

17

4 Komentovaný soubor prací

4.1 Hantaviry

Dle nejnovější taxonomie ICTV patří hantaviry (rod ) do čeledi Hantaviridae a řádu (ICTV proposal 2017). Ve své práci se dále budu držet starší taxonomie a nazývat rod „hantavirus“ namísto „Orthohantavirus“. Jejich genom je tvořen ssRNA s negativní polaritou a je složen ze tří segmentů – L („large“), který kóduje virovou RNA- dependentní RNA polymerázu, M („medium“), který kóduje dva strukturní glykoproteiny G1 a G2, a S („small“), který kóduje nukleokapsidový protein (Obr. 2) (King a kol. 2011).

Obr.2: Schéma virionu bunyavirů. Tři segmenty virového genomu (S, M, L) jsou obaleny nukleokapsidovým proteinem a spolu s funkční RNA dependentní RNA polymerázou tvoří ribonukleový komplex. Celý virion je obalen lipidovým obalem pocházejícím z hostitelské buňky a jsou do něj vnořeny virové glykoproteiny. U bunyavirů se nevyskytuje M protein. Převzato z Schlegel a kol. 2014.

Objev hantavirů je spojen s válkou v Koreji v 50. letech 20. století, kdy onemocnělo několik tisíc vojáků hemoragickou horečkou neznámé etiologie. Až v roce 1978 byl popsán u myšice temnopásé (Apodemus agrarius) původce této korejské hemoragické horečky, byl izolován a pojmenován podle řeky Hantaan – Hantaan virus - HTNV (Lee a kol. 1978). Následně byly objeveny i další hantaviry, např. Puumala virus – PUUV (Brummer-Korvenkontio a kol. 1980), Dobrava-Belgrade virus - DOBV (Avsic-Zupanc a kol. 1992), Seoul virus – SEOV

19

(Lee a kol. 1982), Sin Nombre virus - SNV (Elliot a kol 1994) nebo Andes virus - ANDV (Galeno a kol. 2002). Dnes je známo více než 50 hantavirů, ale oficiálně uznaných ICTV je 41 (ICTV 2017). V nejnovější taxonomii z letošního roku jsou již oficiálně uznané i některé netopýří hantaviry.

Za hlavní rezervoár hantavirů byli dlouho považováni pouze hlodavci (Rodentia) hlavně z čeledi myšovitých (Muridae) a křečkovitých (Cricetidae – Arvicolinae, Neotominae, Sigmodontinae). Dnes se k rezervoárům hantavirů řadí i hmyzožravci (Eulipotyphla – rejsci Soricidae a krtci Talpidae) a netopýři (Chiroptera) (Obr. 3). Pořád ale zůstává neobjasněno, jestli jsou tyto nové hantaviry patogenní pro člověka. Mezi hantaviry nalezené u rejsků řadíme například: Seewis virus (Song a kol. 2007a), Thottapalayam virus (Carey a kol. 1971), Asikkala virus (Radosa a kol. 2013) a Cao bang virus (Song a kol. 2007b). U hmyzožravců a hlodavců se často vyskytují spill-over infekce. Jako příklad hantavirů nalezených u krtků lze uvést: Nova virus (Kang a kol. 2009) a Asama virus (Arai a kol. 2008), u netopýrů – Mouyassué virus (Sumibcay a kol. 2012), Magboi virus (Weiss a kol. 2012), Xuan Son virus a další asijské hantaviry (Guo a kol. 2013).

Obr. 3: Mapa rozšíření hantavirů a jejich hostitelů. Převzato z Guo a kol. 2013.

20

Hantaviry jsou rozšířeny celosvětově a kdysi se dělily na hantaviry Starého a Nového světa (Obr. 3). Podle tohoto starého dělení patřily do skupiny Starého světa (Evropa, Asie) např. PUUV, DOBV, HTNV a do Nového světa (Severní a Jižní Amerika) např. SNV a ANDV. Dnes se vzhledem k nově popisovaným hantavirům od tohoto dělení upouští. V současné době byly popsány hantaviry i v Africe (Klempa a kol. 2006, Witkowski a kol. 2014), jejich přítomnost v Austrálii však zůstává stále neobjasněna (LeDuc a kol. 1986).

Přenos hantavirů je uskutečněn vzdušnou cestou („air-borne“), kdy člověk vdechne aerosol kontaminované hlodavčí moči, trusu a slin (Obr. 4). Přenos je také možný přímým kontaktem s infikovaným hlodavcem (poškrábání, pokousání) nebo fekálně-orální cestou (Klein a Calisher 2007, Schlegel a kol. 2014). Hlodavci jsou chronicky infikováni bez známek probíhající infekce. U lidí mohou proběhnout dva typy klinického onemocnění v závislosti na druhu hantaviru. V Evropě a Asii se jedná o hemoragickou horečku se selháním ledvin (HFRS – hemorrhagic fever with renal syndrome) a její mírnější formu nephropathia epidemica (NE) vyskytující se hlavně ve Skandinávii. V Severní a Jižní Americe se onemocnění nazývá hantavirový (kardio-) plicní syndrom (HPC – hantavirus pulmonary syndrome). Závažnost vždy závisí na virulenci daného agens, infekční dávce a stavu imunitního systému člověka. Obecně ale platí, že většina lidských infekcí probíhá inaparentně. Letalita se u HFRS uvádí od 1 % do 20 % (horší průběh bývá u HFRS způsobeným DOBV než u PUUV, kde se při manifestní infekci jedná nejčastěji o NE), zatímco u HPC dosahuje v některých případech až 50 % (Yanagihara a kol. 2015).

Obr. 4. Patogeneze hantavirů. Převzato a upraveno z: https://knoji.com/images/user/danmsnyder/hantavirus- transmission-52d678d7.jpg .

21

V Evropě se vyskytuje cca 10 hantavirů, z nichž pouze DOBV a PUUV způsobují onemocnění u lidí. TULV se i přes několik zdokumentovaných případů (Zelená a kol. 2013; Reynes a kol. 2015) považuje stále za nepatogenní. Největší počet lidských infekcí je hlášen ze Skandinávie (PUUV většinou mírného průběhu – NE) a z oblasti Balkánu (HFRS – většinou vážný průběh onemocnění), nicméně střední Evropa je považována také za důležitý „hot-spot“, protože se zde vyskytují rezervoárová zvířata PUUV a DOBV, byly popsány lidské případy a dochází k popisu nových hantavirů – (Obr. 5) (Klempa a kol. 2013a; Olsson a kol. 2010).

Obr. 5. Výskyt hantavirů ve střední Evropě. DE - Německo,PL - Polsko, CH - Švýcarsko, AT - Rakousko, CZ - Česká republika,SK - Slovenská republika, HU – Maďarsko. Převzato z Klempa a kol. 2013a.

V současné době dochází k popisu nových hantavirů u různých zvířat a z různých oblastí světa. Tyto nové výsledky (sekvence, ať už kompletní či částečné) přispívají k celkovému pohledu na evoluci a fylogeografii hantavirů. U již popsaných a dobře známých hantavirů se věda zaměřuje na detailnější popis např. jejich struktury a funkci jejich jednotlivých proteinů, jejich patogenitu, na imunitní reakci hostitele apod. U patogenních hantavirů dnes probíhají různé monitorovací akce na lokální (státní) úrovni (např. odchyty hlodavců a jejich screening, nebo testy séroprevalence u lidí).

22

4.1.1 Soubor komentovaných prací týkajících se hantavirů

1. práce – rukopisy v přípravě, komentář k současnému stavu práce

Hantaviruses in the Czech Republic; Tula virus in the common voles in the Czech Republic. Straková P. (spoluautor)

2. práce – souhrnné sdělení, publikováno v Epidemiologie, Mikrobiologie, Imunologie (IF2015 - 0,268)

Vrbovská V., Chalupa P., Straková P., Hubálek Z., Rudolf I. (2015): Onemocnění člověka způsobená hantaviry – stále opomíjené zoonózy? Epidemiologie, Mikrobiologie, Imunologie, 64 (4): 188-196. (Příloha publikace I)

3. práce – rukopis v přípravě, komentář k současnému stavu práce

Spatial and temporal occurrence of Dobrava-Belgrade virus genotype Kurkino in Apodemus agrarius in Germany. Straková P. (prvoautor) a kol.

4. práce – původní práce, publikováno v Zoonoses and Public Health (IF2015 – 2,574)

Drewes S., Turni H., Rosenfeld M., Obiegala A., Straková P., Imholt C., Glatthaar E., Dressel K., Pfeffer M., Jacob J., Wagner-Wiening C., Ulrich R.G. (2016): Reservoir-driven heterogeneous distribution of recorded human Puumala virus cases in south-west Germany. Zoonoses and Public Health. Ahead of print. (Příloha publikace II)

5. práce – research letter, publikováno v Emerging Infectious Diseases (IF2015 – 6,99)

Straková P., Jagdmann S., Balčiauskas L, Balčiauskiené L, Drewes S, Ulrich R.G. (2017): Puumala virus in bank voles, Lithuania. Emerging Infectious Diseases. 23: 158-160. (Příloha publikace III)

6. práce – rukopis v přípravě, komentář k současnému stavu práce

Novel hantavirus found in the population of the tundra voles (Microtus oeconomus) in Lithuania. Straková P. (prvoautor) a kol.

7. práce – krátké sdělení, publikováno v Infection, Genetics and Evolution (IF2015 – 2,591)

Straková P., Dufková L., Širmanová J., Salát J., Bartonička T., Klempa B., Pfaff F., Höper D., Hoffmann B., Ulrich R. G., Růžek D. (2017): Novel hantavirus

23

identified in European bat species Nyctalus noctula. Infection, Genetics and Evolution 48: 127-130. (Příloha publikace IV)

Posloupnost předložených prací byla navržena tak, že jsem se chtěla nejprve zmínit o výzkumu hantavirů v České republice se zaměřením na Tula virus, kterým jsme se zabývali nejen u nás (ve spolupráci s doc. Martou Heroldovou, ÚBO AV ČR Brno), ale i v Německu, kde se část vzorků z ČR vyšetřuje (práce 1 a 2). Dále byl mým tématem výskyt Dobrava- Belgrade viru u myšice temnopásé (práce 3) a Puumala viru (práce 4 a nekomentovaná práce Drewes a kol. 2017) v Německu, a vyšetřování vzorků plic hlodavců odchycených v Litvě (práce 5 a 6). Ve spolupráci Výzkumného ústavu veterinárního lékařství, v.v.i. (VÚVEL) v Brně a Friedrich-Loeffler-Institutu (FLI) v Německu jsme se zabývali hantaviry v netopýrech pocházejících z České republiky.

Doufám, že čtenář promine rozsáhlost textu u prací 1, 3 a 6. Tyto práce byly podrobně rozpracovány z toho důvodu, že ještě nejsou opublikovány a zdálo se mi vhodné, aby byl čtenář dopodrobna seznámen s tím, jak výzkum probíhal.

24

Strany 25 až 47 nejsou součástí veřejné verze práce.

4. práce

Drewes S., Turni H., Rosenfeld M., Obiegala A., Straková P., Imholt C., Glatthaar E., Dressel K., Pfeffer M., Jacob J., Wagner-Wiening C., Ulrich R.G. (2016): Reservoir-driven heterogeneous distribution of recorded human Puumala virus cases in south-west Germany. Zoonoses and Public Health. (Příloha publikace II)

Úvod a cíl práce: Puumala virus, čeleď Bunyaviridae, je nejčastěji se vyskytujícím hantavirem v Evropě. Tento hantavirus je zodpovědný za největší počet lidských případů nejen v Německu, ale i v celé Evropě, i když se jedná o velmi heterogenní výskyt (Ulrich a kol. 2004, Linard a kol. 2007, Heyman a kol. 2011, Boone a kol. 2012, Ali a kol. 2014, Clement a kol. 2014, Castel a kol. 2015). Onemocnění, které způsobuje, se označuje jako nephropathia epidemica (NE) a jedná se o mírnější formu HFRS (Brummer-Korvemkontio a kol. 1980). Jeho rezervoárem je norník rudý (Myodes glareolus) (Obr. 18), který se vyskytuje skoro po celé Evropě. Občas můžeme hlavně v Německu a střední Evropě, pozorovat jejich přemnožení, které souvisí s nadprodukcí jejich důležité potravy – bukvic (Fagus sylvatica) a žaludů (Quercus spp.) (Tersago a kol. 2009). První lidské případy PUUV byly v Německu popsány už v 80. letech (Pilaski a kol. 1991). Od roku 2001 spadají hantavirové infekce v Německu mezi hlášená onemocnění a do dneška jich bylo popsáno více než 10 000 (Robert- Koch Institute, SurvStat). V Německu proběhlo několik velkých molekulárních a sérologických studií u pacientů a u norníků, které potvrdily velké sekvenční rozdíly mezi kmeny PUUV (Pilaski a kol. 1994, Heiske a kol. 1999, Essbauer a kol. 2006, Essbauer a kol. 2007, Schilling a kol. 2007, Hofmann a kol. 2008, Ettinger a kol. 2012, Faber a kol. 2013, Ali a kol. 2015, Drewes a kol. 2017) (Obr.19).

Obr. 18: Norník rudý (Myodes glareolus). Zdroj: www.naturfoto.cz (se souhlasem autora).

49

Obr. 19.: Zeměpisná distribuce PUUV pozitivních a negativních norníků (nalevo) a příslušná evoluční linie norníků rudých (napravo). Obrázek převzatý z Drewes a kol. (2017) – tato práce navazovala na tento komentovaný článek. Červeně tečkovaná linie ilustruje hypotetickou hranici rozšíření PUUV pozitivních norníků (všichni patřili do centrální linie PUUV, fylogenetický strom neuveden). Taktéž lze z obrázků vyčíst, že většina PUUV-pozitivních norníků patří to západní evoluční linie.

Výskyt PUUV se ve spolkových zemích Německa značně liší (Tab. 5). Nejvíce lidských případů bylo popsáno ve spolkové zemi Bádensko-Württembersko (BW), které leží na jihozápadě Německa (Pilaski a kol. 1991, Zoller a kol. 1995, Boone a kol. 2012, Robert-Koch Institut, Survstat) (Obr. 19, 20). Razzauti a kol. (2013) a Weber de Melo a kol. (2015) potvrdili ve svých studií z Německa a Finska, že existuje jakási oscilace v prevalenci PUUV u norníků, ale i dlouhodobá přítomnost daných kmenů PUUV.

50

Obr. 20: Mapa BW s vyznačenými odchytovými lokalitami v roce 2012 a 2013. Napravo incidence lidských případů PUUV znázorněnou v mapě BW.

Tab. 5: Incidence zaznamenaných lidských případů PUUV v osmi krajích BW (na 100 000 obyvatel).

Cílem této studie bylo otestovat hypotézu týkající se vztahu mezi populační hustotou norníků, počtem norníků sérologicky nebo molekulárně PUUV pozitivních, počtem pacientů infikovaných PUUV a nadprodukcí potravy norníků či rozlohou listnatých lesů v okresech s vysokým počtem lidských případů (H – high, vysoký) a v okresech s nízkým nebo žádným výskytem PUUV pozitivních pacientů (L – low, nízký) ve spolkové zemi Bádensko- Württembersko.

51

Materiál a metodika: Norníci byli odchyceni na 4 odchytových H–lokalitách (H1 – Stuttgart, H2 – Tübingen, H3 – Göppingen a H4 – Heidenheim) a na 4 L–lokalitách (L1 – Schwäbisch Hall, L2 – Emmendingen, L3 – Freiburg a L4 – Waldshut) (Obr. 20). Na každou lokalitu bylo použito 50 pastí. Odchytávalo se třikrát ročně (květen-červen, červenec-srpen a září-říjen). Byly vybrány lokality s charakterem listnatých lesů s převahou buků.

Odchycení jedinci byli druhově určeni, zváženi a změřeni. Po usmrcení dislokací páteře byly kadavery ihned zamraženy. Norníci byli vypitváni dle protokolu vypracovaného v institutu.

Pro sérologický screening jsme využili in-house metodu ELISA. Jako antigen sloužil rekombinantní N protein PUUV kmene Bavaria (Mertens a kol. 2011). Molekulárně jsme detekovali virovou RNA pomocí metody RT-PCR navržené dle S segmentu (primery 342F a 1102R) (Essbauer a kol. 2006).

Pro srovnání prevalence mezi H a L lokalitami, obdobím odchytu a váhou jedinců byl použit Fisherův exaktní test. K určení faktorů, které mohou ovlivnit přenos PUUV na lidi, byly využity dva regresní modely (backward multiple linear regression models). První test se zaměřil na testování faktorů, které nejlépe korelují s lidskými případy PUUV v roce 2012, kdy se v BW vyskytla epidemie PUUV. Testovanými faktory bylo množství norníků, prevalence protilátek a virové RNA u testovaných norníků. Výsledky metody ELISA se upravily dle váhy jedince (< 16 g) tak, aby se vyloučili jedinci s mateřskými protilátkami (Kallio a kol. 2010). Druhý test se zaměřil na faktory prostředí v 8 sledovaných oblastech, které se mohou podílet na heterogenní distribuci lidských PUUV případů. Hodnoty zalesnění daných oblastí byly získány z dat federálního lesnického úřadu (www.fva-bw.de).

Výsledky a diskuze: Během roku 2012 bylo odchyceno 499 norníků rudých v rozsahu 32-87 zvířat na odchytovou lokalitu. Úspěšnost odchytu byla přepočítána na 100 odchytových nocí (100 TN). Sérologické vyšetření pomocí metody ELISA odhalilo prevalenci protilátek (7 - 50%) proti PUUV v 7 z 8 okresů a molekulární metodou jsme potvrdili pozitivní zvířata rovněž v 7 z 8 odchytových oblastí (1,8 - 27,5%) (Tab. 6). V H oblastech se pohybovala sérologická a molekulární prevalence od 17,5 – 30%, zatímco v L oblastech se tato hodnota pohybovala od 7 – 50% v séroprevalenci a od 1,8 – 18,8% při detekci virové RNA. V oblasti L3 nebyl žádný norník pozitivní na PUUV. V roce 2012 byla prevalence PUUV pozitivních zvířat signifikantně vyšší v H oblastech než L oblastech a dospělí jedinci (váha vyšší než 19,5 g) byli častěji pozitivní než juvenilové. V roce 2013 bylo odchyceno 161 norníků rudých. V 7 oblastech bylo odchyceno méně zvířat než v roce 2012 (Tab. 6). Pouze v odchytové oblasti L1

52 byli odchycení pozitivní norníci. Ve všech ostatních odchytových oblastech byli chycení norníci negativní.

Model lineární regrese odhalil shodu mezi prevalencí PUUV u norníků a počtem lidských PUUV případů. Ale nebyl rozhodující počet norníků na odchytovou oblast, ani přítomnost specifických protilátek. Dále se nepotvrdila hypotéza ohledně procenta zalesnění oblasti, nebo nadprodukce potravy norníků. V případě, kdy jsme ale spojili předchozí dva faktory, procento zalesnění a nadprodukce potravy, už se jednalo o pozitivní korelaci a vedlo to k zvýšení počtu lidských PUUV případů v oblastech s vysokým procentem zalesnění.

Závěr: Ve shodě s předchozími studiemi jsme potvrdili výskyt PUUV pozitivních zvířat ve všech H-oblastech a ve 3 ze 4 L-oblastí (Bernshtein a kol. 1999, Olsson a kol. 2002, Augot a kol. 2008). Také jsme potvrdili, že starší jedinci jsou častěji pozitivní než juvenilové. Naše výsledky naznačují, že nerovnoměrnost ve výskytu lidských případů PUUV v těchto odchytových lokalitách může být vysvětlena rozdílnou prevalencí PUUV pozitivních norníků a odlišnými environmentálními faktory (zalesnění a nadbytek potravy). Dalším problémem je nízká informovanost lékařů ohledně této nemoci, řada případů zůstane tudíž nezachycených a k lékařům se dostanou pouze těžší případy (Dressel 2014). Přemnožení norníků způsobených nadbytkem jejich potravy je jedním z hlavních faktorů vysokého počtu lidských případů PUUV v Evropě (Tersago a kol. 2009, Clement a kol. 2010, Reil a kol. 2016). Tímto způsobem může být vysvětleno i velké množství norníků odchycených v roce 2012. Toto přemnožení totiž nastalo po nadprodukci žaludů a bukvic ve všech 8 lokalitách BW v roce 2011. Dalšími faktory mohly být např. klimatické faktory ovlivňující stabilitu viru mimo hostitele, anebo chování norníků a lidí v zasažených oblastech. Přikláníme se k názoru, že je nutné v takových oblastech zřídit dlouhodobé monitorovací studie. Data získaná z těchto studií o prevalenci PUUV pozitivních norníků a jejich množství mohou sloužit jako systém rychlého upozornění možného výskytu ohnisek PUUV.

53

Tab. 6: Tabulka znázorňující abundanci norníků a počet séropozitivních a molekulárně pozitivních zvířat v každé z 8 oblastí.

54

5. práce

Straková P., Jagdmann S., Balčiauskas L, Balčiauskiené L, Drewes S, Ulrich R.G. (2017). Puumala virus in bank voles, Lithuania. Emerging Infectious Diseases. (Příloha publikace III)

Úvod a cíl práce: Na rozdíl od řady publikací týkajících se výskytu Puumala viru (PUUV) v různých částech Evropy, málo se ví o situaci PUUV v Pobaltských státech a Polsku. Lundkvist a kol. (2002) sérologicky potvrdili výskyt hantavirů u lidí v Lotyšsku. Molekulární studie norníků rudých (Myodes glareolus) z Lotyšska potvrdila výskyt dvou PUUV linií – ruské (Russian) a lotyšské (Latvian) (Razzauti a kol. 2012). V Estonsku byli molekulárně i sérologicky potvrzeni PUUV pozitivní norníci. I v Estonsku byla jako nejbližší PUUV linie určena ta ruská (Golovljova a kol. 2002). Následně byly popsány i první lidské případy (Golovljova a kol. 2007). Z Polska je známo několik studií o výskytu PUUV u lidí a norníků (Nowakowska a kol. 2009, Wojcik-Fatla a kol. 2013, Ali a kol. 2014, Michalski a kol. 2014, Sadkowska-Todys a kol. 2015, Rosenfeld a kol. 2017). Ali a kol. (2014) popsali na severu a severovýchodě Polska sekvenci nejblíže příbuznou sekvencím kmenů z Lotyšska (Latvian), zatímco Rosenfeld a kol. (2017) vyšetřovali norníky z jižního Polska a jejich výsledky byly nejvíce příbuzné PUUV ruským sekvencím identifikovaným v Lotyšsku. Jediné publikace ohledně hantavirů v Litvě popisují sérologické studie u lidí (Sandmann a kol. 2005, Dargevicius a kol. 2007).

Cílem této práce bylo vyšetřit hlodavce odchycené v různých částech Litvy na přítomnost hantavirů.

Materiál a metodika: V roce 2015 bylo odchyceno 134 norníků rudých (M. glareolus), 72 myšic temnopásých (A. agrarius), 59 myšic lesních (A. flavicollis), 23 hrabošů mokřadních (Microtus agrestis) a 48 hrabošů hospodárných (M. oeconomus) v 5 oblastech v Litvě (Juodkranté, Elektrénai, Lukštas – lesy v okolí hnízdní kolonie kormoránů; Žalgiriai a Rusné – lesy a zaplavené louky) (Obr. 21).

55

Obr. 21: Mapa Litvy s vyznačenými lokalitami odchytu. Tmavěji jsou zabarveny kraje, ve kterých byly sérologicky potvrzeny lidské případy hantavirových infekcí. Černý čtvereček znázorňuje lokalitu, ve kterých jsme nalezli pozitivní norníky. Černá kolečka znázorňují místa, ze kterých pochází již opublikované sekvence PUUV pozitivních norníků.

Pro izolaci celkové RNA jsme využili vzorek plic (protokol s využitím Qiazolu, QIAGEN, Německo) a pro detekci virové RNA metodu RT-PCR pro S segment (primery 342F a 1102R) (Essbauer a kol. 2006). Abychom získali celou kódující oblast S segmentu, využili jsme tzv. procházení primerem (primer-walking) s využitím následujících primerů: PuNCRS (5´-TAG TAG TAG ACT CCT TGA A-3´) and Pu255R (5´-TGG ACA CAG CAT CTG CCA -3´); Pu40F (5´-CTG GAA TGA GTG ACT TAA C-3´) and Pu393R (5´- TAT GGT AAT GTC CTT GAT GT-3´); Pu1027F (5´- ATG GCA GAG TTA GGT GCA-3´) and Pu1779R (5´- TCA GCA TGT TGA GGT AGT -3´). Pro vytvoření fylogenetických stromů jsme použili programy BioEdit, Mega7 a Mr.Bayes 3.2.6.

56

Z Litvy jsme obdrželi pouze plíce, takže jsme nemohli odchycená zvířata vyšetřit metodou ELISA na přítomnost specifických protilátek.

Pro molekulárně pozitivní zvířata jsme ještě provedli PCR genu pro cytochrom b na určení evoluční linie norníků (CytB fw: 5´- TCA TCM GAT GAA AYT TYG G-3´, CytB rev: 5´- ACT GGY TGD CCB CCR ATT CA-3´) (Schlegel a kol. 2012b).

Výsledky a diskuze: Specifický produkt jsme detekovali u 5 ze 45 (11,1%) norníků odchycených v lokalitě Lukštas (Obr. 21). Kompletní kódující segment jsme byli schopni získat u 3 z 5 pozitivních zvířat (LT15/164, LT15/174, LT/201). Dvě zbývající sekvence byly standardní velikosti pro RT-PCR S segment (LT15/165, LT15/166). Kompletní kódující sekvence pro S segment, které jsme získali z 3 norníků rudých z lokality Lukštas, sdílely 98,2–99,8% identitu (nt) a 99,8-100% identitu (aa) (Tab. XVIII v příloze).

Dle fylogenetického stromu byla těmto třem kompletním sekvencím nejbližší sekvence z Lotyšska (Jelgava1) (Obr. 22). I pro částečné sekvence je z fylogenetického stromu jasně patrné shlukování se sekvencemi z Polska (Mikolajki) a Lotyšska (Jelgava1) (Obr. 23). Všechny tyto sekvence jsou jasně oddělené od dalších evropských PUUV linií. Pro určení možné spojitosti mezi PUUV linií a evoluční linií norníků jsme určili druh hostitele i molekulárně. Stejně jako Ali a kol. (2014) jsme prokázali karpatskou evoluční linii pro 4 norníky ale jeden norník patřil do východní evoluční linie.

Závěr: V naší studii jsme detekovali PUUV u norníků z lokality Lukštas. Jedná se o oblast, ve které už přechozí autoři popsali séropozitivní pacienty (Sandmann a kol. 2005), a která leží na hranicích s Polskem. Tyto výsledky podporují hypotézu heterogenního výskytu PUUV v Evropě. To, že jsme v některých lokalitách PUUV nepotvrdili, neznamená, že se tam nevyskytuje. Jednalo se o první studii hlodavců v Litvě a pracovali jsme s malým počtem odchycených zvířat. Pro přesnější určení výskytu PUUV v Litvě a okolí je nutná dlouhodobější studie na větším počtu odchycených zvířat a z více lokalit.

57

Obr. 22: Fylogenetický strom založený na kompletních kódujících sekvencích pro S segment PUUV (1 302 nt), Maximum-Likelihood tree kombinovaný s Mr. Bayes výpočty.

Obr. 23: Fylogenetický strom založený na částečných sekvencích pro S segment PUUV (465 nt), Maximum- Likelihood tree kombinovaný s Mr. Bayes výpočty.

58

Strany 59 až 69 nejsou součástí veřejné verze práce.

7. práce

Novel hantavirus identified in European bat species Nyctalus noctula (2017): Straková P., Dufková L., Širmanová J., Salát J., Bartonička T., Klempa B., Pfaff F., Höper D., Hoffmann B., Ulrich R. G., Růžek D. Infection, Genetics and Evolution (Příloha publikace IV)

Úvod a cíl práce: Netopýři a kaloni jsou rezervoárovými zvířaty mnoha zoonotických virů např. henipavirů (Hendra a Nipah viry), koronaviru SARS podobných virů, lyssavirů nebo Ebola viru (Leroy a kol. 2005, Calisher a kol. 2006, Epstein a kol. 2008, Warrell 2010, Drexler a kol. 2014). Mnoho netopýřích druhů žije v rozsáhlých a početných sociálních skupinách, což umožňuje rychlé šíření viru. Dalšími vlastnostmi, které jsou důležité pro udržení a přenos virů, jsou schopnost létat (u některých druhů i migrace na dlouhé vzdálenosti), dlouhá délka života nebo schopnost osídlit různé habitaty (včetně lidských obydlí) (Brook a Dobson 2015, Witkowski a kol. 2016). S rozmachem nových metod a postupů bylo jen otázkou času, kdy se hantaviry detekují i v nich. V současné době bylo popsáno několik geneticky odlišných netopýřích hantavirů. V Africe byly popsány tyto netopýří hantaviry – Mouyassué virus (MOYV) z Pobřeží slonoviny (Sumibcay a kol. 2012, Gu a kol. 2014), Magboi virus (MGBV) v Sierra Leone (Weiss a kol. 2012) a Makokou virus (MAKV) v Gabonu (Witkowski a kol. 2016). V Asii byly popsány Xuan son virus (XSV) z Vietnamu (Arai a kol. 2013, Gu a kol. 2014), Huangpi virus (HUPV), Longquan virus (LQUV) a Laibin virus (LBV) z Číny (Guo a kol. 2013, Xu a kol. 2015). Všechny tyto hantaviry byly detekovány u hmyzožravých netopýrů. Dalším průlomem bylo objevení Quezon viru (QZNV) na Filipínách, který byl popsán u fruktivorního kaloně (Arai a kol. 2016) (Tab. 8). Další autoři popisují nález virové RNA blízké hantavirům u netopýrů z Afriky (Těšíková a kol. 2017), anebo séropozitivní netopýry v Brazílii, u nichž se ale zřejmě jedná o 'spill-over' infekci z místních hlodavců (de Araujo a kol. 2012).

Cílem této práce bylo vyšetřit některé druhy netopýrů z České republiky na přítomnost hantavirů.

71

Tab. 8: Shrnutí všech dosud publikovaných netopýřích a kaloních hantavirů.

Materiál a metodika: Mezi lety 2008-2013 bylo shromážděno 53 netopýrů z jižní Moravy. Jednalo se o netopýry, kteří byli nalezeni mrtví. Jako první byly tyto kadavery vypitvány na VÚVELu v Brně a z plic, jater a ledvin (pokud byly dostupné) byla vyizolována RNA (QIAamp viral RNA Mini Kit, QIAGEN, Německo). Tyto orgány byly následně vyšetřeny metodou RT-PCR cílenou na L segment hantavirů (Klempa a kol. 2006).

S úmyslem získat celý genom jsme zaslali pozitivní vzorky do Německa (FLI, Insel Riems). Na základě real-time RT-qPCR (qScript XLT 1-step RT-PCR Kit, Quanta/VWR) s primery navrženými dle našich pozitivních sekvencí (data neuvedena), byl vybrán jeden vzorek určený pro vyšetření metodou NGS (Ion Torrent, ThermoFischer).

Výsledky a diskuze: Po skríningu našich netopýrů RT-PCR metodou jsme objevili 2 pozitivní netopýry – netopýry pestré (Nyctalus noctula) pocházející z Brna (Obr. 33). Výsledné sekvence, získané překvapivě z ledvin a jater, byly dlouhé 369 nt, což bylo velmi málo na označení tohoto výsledku jako nalezení nového viru. Dle fylogenetického stromu (Obr. 34) je jasné, že se naše sekvence shlukují s dalšími netopýřími hantaviry, ale že jsou i mezi sebou velmi rozdílné.

Tento virus jsme předběžně pojmenovali jako Brno virus (BRNV).

72

Obr. 33: Netopýr pestrý (Nyctalus noctula). Zdroj: www.naturfoto.cz (se souhlasem autora)

Pro zisk většího množství informací jsme jeden vzorek vyšetřili metodou NGS. Po dvou kolech NGS jsme získali cca 500 sekvencí blízkých hantavirům. Ty byly poskládány do kontigů, které vyjadřovaly kompletní kódující oblasti S, M i L segmentu (1 272 nt/424 aa, 3411 nt/1 137 aa, 6 435 nt/2 415 aa) (Tab. XX v příloze). Výsledná matice sekvenční podobnosti zjistila podobnost s ostatními netopýřími hantaviry v rozmezí od 54,7 – 78,3% (nt) a 44,5 – 81,7% (aa), zatímco s hantaviry popsanými u hlodavců a hmyzožravců byly podobnosti ještě nižší – 50,1 – 64,8% (nt) a 38,9 – 64,1% (aa) (Tab. XX v příloze). Kde to bylo možné, tak jsme samozřejmě porovnávali kompletní kódující oblasti, ale bohužel u většiny netopýřích hantavirů je k dispozici pouze částečná sekvence, anebo chybí daný segment úplně. Nejbližším příbuzným našeho Brno viru je hantavirus Longquan z Číny (potvrzeno i ve fylogenetických stromech pro S a M segment) (Obr. 35 a 36), se kterým zřejmě sdílí společného předka, který je ale odlišný od ostatních netopýřích hantavirů.

Pokus o izolaci Brno hantaviru na VERO buňkách nebo sajících myškách se nezdařil. V současné době vyšetřujeme další netopýry, odchycené v roce 2016, a v případě pozitivního nálezu se o izolaci viru opět pokusíme. Dále jsme obdobně vyšetřili 1 000 netopýrů odchycených po celém Německu. S využitím real-time RT-qPCR jsme odhalili 3 pozitivní netopýry a opět to byli netopýři pestří (Bernd Hoffmann, osobní sdělení), což ukazuje na možné rozšíření Brno viru nebo příbuzného hantaviru i v sousedních státech.

73

Obr. 34: Fylogenetický strom založený na částečné sekvenci L segmentu. Pozice naší sekvence je znázorněna šipkou.

74

53 NC 005219 Hantaan virus 100 NC 005234 DOBV NC 005237 Seoul virus EF543526 Cao Bang virus EU929075 Asama virus NC 005215 Sin Nombre virus NC 005223 Puumala virus NC 005228 Tula virus NC 010708 Thotta.virus KX845679 Brno virus JX465397 Longquan virus KU950714 Quezon virus 98 KM102248 Laibin virus KT004446 Nova virus

0.2

Obr. 35: Fylogenetický strom založený na částečné sekvenci S segmentu (1 000 nt), Neighbor-Joining phylogenetic tree, Jukes-Cantor model, bootstrap method 1000.

87 EF543524 Cao Bang virus 84 EU929072 Asama 94 EF636024virus Seewis virus

100 NC 005218 Hantaan virus NC 005236 Seoul virus 95 55 NC 005232 DOBV 92 NC 005216 Sin Nombre virus 72 90 NC 005224 Puumala virusNC 005227 Tula virus 100 JX193695 Uluguru virus NC 010704 KT004445 Nova virusThotta.virus 56 JX473273 Huangpi 100 KX845678virus Brno virus JX465415 Longquan virus 99 KM102247 Laibin virus KF704710 Xuan son virus 26 38 KU950713 Quezon virus KM361048 Altai virus

0.10 Obr. 36: Fylogenetický strom založený na částečné sekvenci M segmentu (3 100 nt), Neighbor-Joining phylogenetic tree, Jukes-Cantor model, bootstrap method 1000.

75

Na rozdíl od velmi úspěšné detekce hantavirů u hlodavců může být nízký záchyt hantavirů u netopýrů způsoben několika faktory. Výzkum na netopýrech je značně omezen, protože v některých státech patří netopýři mezi chráněné druhy. Ve státech, kde se vyskytují jiná zoonotická virová onemocnění, se netopýři testují pouze na tato agens a většinou se netestují na nic jiného. Genom netopýřích hantavirů se může velmi lišit od genomu hlodavčích hantavirů, takže některé metody, např. panHanta RT-PCR (Klempa a kol. 2006), nemusí netopýří hantavirus zachytit. Na druhou stranu dalšími problémy mohou být vysoká hostitelská specificita hantavirů u netopýrů, omezená náchylnost netopýrů k infekci hantaviry způsobená odpovídající imunitní reakcí, která virovou replikaci nebo virovou perzistenci omezí (Yanagihara a kol. 2015). Někteří autoři poukazují na to, že vzhledem k nízkému poměru počtu popsaných netopýřích hantavirů k počtu testovaných netopýřích druhů je v rozporu hypotéza dlouhotrvajícího vztahu mezi hantavirem a jeho rezervoárem, a přiklání se spíše u netopýrů ke 'spill-over' infekci anebo 'host-switching' události (Gu a kol. 2014).

S popisem nových hantavirů u hmyzožravců a netopýrů se mění názory i na celkovou fylogenezi hantavirů. Dle Zhang (2014) se hantaviry dělí do 4 „fyloskupin“ (Obr. 37). První skupina (I) obsahuje hantaviry nalezené u hmyzožravců (Soricidae - rejskovití). Druhá skupina (II) obsahuje nově popsané netopýří hantaviry a Nova virus nalezený u krtka obecného. Do třetí skupiny (III) jsou zařazeny hantaviry ze skupiny Soricomorpha a Murinae (jsou jasně zřetelné dvě hlavní větve). V poslední čtvrté skupině (IV), která taktéž obsahuje dvě monofyletické skupiny, jsou zařazeny hantaviry z hlodavců podčeledí Arvicolinae, Neotominae a Sigmodontinae.

Obr. 37. Fylogenetický strom založený na S segmentu všech hantavirů zobrazující 4 „fyloskupiny“. Převzato z Zhang 2014.

76

Závěr: V této práci byl popsán první evropský netopýří hantavirus pojmenovaný Brno virus. Jedná se o důležitý objev, který poukázal na rozšíření netopýřích hantavirů i mimo Asii a Afriku. Netopýří hantaviry jsou i mezi sebou velmi odlišné, ale sdílí společného předka. Jejich nejbližšími příbuznými jsou zřejmě hantaviry nalezené u hmyzožravců. Výzkum by se měl zaměřit na ekologií hostitelů a dynamiku přenosu hantavirů v populaci netopýrů. Dalším krokem by měla být izolace netopýřích hantavirů a zkoumání jejich možné patogenity pro jiné obratlovce včetně člověka. Pro lepší pochopení fylogeneze netopýřích hantavirů bude nutné vyšetřit mnohem větší počet netopýřích druhů z různých částí světa. Nová data nám umožní pochopit členění hantavirů a nalézt jejich evolučního předka.

77

4.1.2 Autorčin podíl na daném výzkumu

 1+2 práce – část ČR: odchyty v lokalitách jižní Moravy a pitvy odchycených zvířat ve spolupráci s kolegy z ÚBO AV ČR ve Valticích (Hana Blažejová, Lenka Betášová, Kristýna Venclíková a Juraj Peško), odchyty z jiných lokalit provedla doc. Marta Heroldová z ÚBO AV ČR v Brně, izolace RNA a molekulární detekce RT-PCR samostatně, sekvenaci provedl Dr. Jan Mendel z ÚBO AV ČR v Brně, fylogenetické zpracování samostatně

- část Německo: odchyty provedla doc. Marta Heroldová z ÚBO AV ČR v Brně (hraboši z ČR), ostatní hraboši (Německo, Francie) odchyceni partnery z FLI (Friedrich-Loeffler-Institut, Insel Riems), pitvy probíhaly rovněž na FLI ve spolupráci s celým týmem Dr. Rainera Ulricha (Stephan Drewes, Stefan Fisher, René Ryll, Dörte Kaufmann, Anke Mandelkow, Maysaa Dafalla, Dewi Murni, Kornelija Marcinkevičiuté, Christoph Gertler), sérologie, izolace RNA a molekulární detekce ve spolupráci se studenty bakalářského oboru, kterým jsem byla školitelkou (David Kohlhause a Chao Wen), fylogenetické zpracování samostatně

 3. práce – jelikož se jednalo o úkol dokončit již dlouhodobě probíhající studii, navázala jsem na výsledky svých kolegů (Jens Jacob, Sabrina Schmidt). Ti vyšetřili sérologicky i molekulárně zvířata odchycená v letech 2005-2010. Já jsem sérologicky i molekulárně vyšetřila myšice od roku 2011 do roku 2016. Pro nová zvířata (2015 a 2016) jsem byla vedoucí pitev, která opět probíhala na FLI. Nezúčastnila jsem se žádných odchytů. Ty byly zprostředkované partnery FLI. Pro NGS studii jsem vzorek připravila ve spolupráci s kolegyní Anke Mandelkow. Analýzu a zpracování výsledků NGS provedl kolega Florian Pfaff z Oddělení virové diagnostiky na FLI. Fylogenetické zpracování všech výsledků už jsem provedla opět samostatně.

 4. práce – v tomto článku jsem uvedena jako spoluautor, protože jsem se zúčastnila pitev norníků (opět celý tým FLI) a pomohla jsem svému kolegovi Stephanu Drewesovi je molekulárně vyšetřit jak na přítomnost Puumala viru, tak na gen cytochromu b.

 5. práce – zvířata nám byla doručena z Litvy již vypitvaná - norníci (odchyty provedli Dr. Laima Balčiauskienė a Dr. Linas Balčiauskas). Izolaci RNA a částečnou molekulární detekci PUUV začala kolegyně Sandra Jagdmann, která výsledky částečně použila do své diplomové práce. Já jsem navázala na molekulární vyšetřování

79

a následně jsem ve spolupráci se Stephanem Drewes sestavovala komplení kódující oblasti. Fylogenetické zpracování jsem provedla samostatně.

 6. práce – zvířata nám byla doručena z Litvy již vypitvaná - hraboši (odchyty provedli Dr. Laima Balčiauskienė a Dr. Linas Balčiauskas). V této části jsem již provedla izolaci RNA a molekulární detekci samostatně. Pro NGS jsem vzorek opět pouze připravovala a analýzu NGS dat mi poskytl Florian Pfaff. V současné době navrhuji primery na primer-walking metodu a na dálku spolupracuji s Kathrin Jeske, novou PhD studentkou, která se tomuto tématu částečně věnuje.

 7. práce – odchycené netopýry a informace o nich nám poskytl Dr. Tomáš Bartonička. Pitva netopýrů probíhala na Výzkumném ústavu veterinárního lékařství (VÚVEL) a provedl ji Dr. Jiří Salát a Dr. Lucie Dufková. Já jsem izolovala RNA a provedla molekulární detekci hantavirové RNA. Sekvenace proběhla komerčně. Fylogenetické zpracování dat proběhlo ve spolupráci s VÚVELem a Dr. Borisem Klempou. Vzorek pro NGS v Německu jsem připravila samostatně a data z NGS mi opět poskytl Florian Pfaff. Následné fylogenetické zpracování jsem prováděla samostatně.

80

4.2 Flaviviry - virus západonilské horečky a virus Usutu

Virus západonilské horečky (West Nile virus – WNV) i virus Usutu (USUV) patří do čeledi Flaviviridae a jsou součástí sérokomplexu Japonské encefalitidy. Genom tvoří +ssRNA o velikosti přibližně 11 kb kódující 10 genů u WNV (Chancey a kol. 2015) a 11 genů u USUV (Ashraf a kol. 2015) (Obr. 38). Oba tyto viry pocházejí z Afriky a rozšířily se na další kontinenty pomocí migrujících ptáků.

Obr. 38.: Struktura virionu WNV určená kryoelektronovou mikroskopií. Převzato z Mukhopadhya a kol. (2003).

Poprvé byl WNV popsán v roce 1937 v Ugandě jako příčina febrilního onemocnění člověka (Smithburn a kol. 1940). Během druhé poloviny 20. století se tento virus rozšířil do dalších zemí např. Izrael, Egypt, Indie a Jihoafrická republika (Bernkopf a kol. 1953, Hubálek a Halouzka 1999, Jupp 2001, Murgue a kol. 2001a, Bondre a kol. 2007) (Obr. 39). Největší emergence WNV byla pozorována na území Severní Ameriky, kde se WNV poprvé vyskytl v roce 1999 (pacienti s encefalitidou v New Yorku) a během následujících let se vlnovitě přenesl z východního na západní pobřeží. Kmen WNV, který byl zodpovědný za tuto emergenci byl označen jako WNV NY99 a byl příbuzný izraelskému kmenu WNV izolovanému během epidemie v roce 1998 (Jia a kol. 1999, Lanciotti a kol. 2002). Mezi lety 2002-2007 byla aktivita WNV velmi vysoká s přibližně 1 000 lidských případů za rok. V dalších letech (2008-2011) došlo k poklesu jeho aktivity, než v roce 2012 vypukla další velká epidemie s více než 2 500 lidských případů a největším počtem úmrtí. Během let 1999 – 2012 bylo v USA nahlášeno skoro 40 000 případů lidských infekcí WNV a 1 700 úmrtí (Mostashari a kol. 2001, Ebel a kol. 2004, Davis a kol. 2005, Komar a kol. 2005, Moudy a kol. 2007, Snapinn a kol. 2007, CDC 2013).

WNV je v Evropě známý už od roku 1958, kdy byl sérologicky detekován v Albánii (Hubálek a Halouzka 1999). Od té doby byl tento virus zjištěn v jižní, střední a východní

81

Evropě u komárů, ptáků, savců a i u lidských případů (Filipe 1972, Molnár a kol. 1976, Ernek a kol. 1977, Tsai a kol. 1998, Hubálek a kol. 1998, Hubálek a Halouzka 1999, Platonov a kol. 2001, Murgue a kol. 2001a, Murgue a kol. 2001b, Autorino a kol. 2002, Mailles a kol. 2003, Zeller a Schuffenecker 2004, Esteves a kol. 2005, Durand a kol. 2005, Couissinier-Paris 2006, Balanca a kol. 2009, Calistri a kol. 2010, Rizzo a kol. 2012, Jesús-de La Calle a kol. 2012, Barzon a kol. 2013, Napoli a kol. 2013, Merdic a kol. 2013, Popovic a kol. 2013, Bakonyi a kol. 2013).

WNV je genomicky velmi rozmanitý virus a nejlépe jsou v současné době popsány jeho tři genomové linie – WNV 1, 2 a 3. WNV linie 1 se vyskytuje v Africe, Evropě, Americe a Asii (WNV 1a) a také v Austrálii (WNV 1b – ) (Petersen a Roehrig 2001). WNV linie 2 je endemický v subsaharské Africe a na Madagaskaru (McLean a kol. 2002), ale objevuje se už i v Evropě včetně Česka (Rudolf a kol. 2014), a způsobil epidemie např. v Itálii a Řecku (Barzon a kol. 2013, Barzon a kol. 2015), zatímco WNV linie 3 (Rabensburg) byl popsán v České republice a Rakousku (Bakonyi a kol. 2005). U WNV 1 a WNV 2 je prokázána patogenita pro lidi. První lidské případy západonilské horečky byly popsány v Česku na jižní Moravě po záplavách v roce 1997 (Hubálek a kol. 1999).

Obr. 39: Zeměpisná mapa rozšíření WNV v 2. pol. 20. století. Převzato z MicrobiologyBytes 2011, staženo dne 13.3. 2017.

82

USUV je považován za emergentní virus v Evropě. Poprvé byl izolován z komára Culex neavei v jižní Africe v roce 1959 (Woodall 1964) a v následujících letech se rozšířil do dalších afrických států např. Středoafrická republika, Senegal, Tunisko (Cornet a kol. 1979, Chevalier a kol. 2009, Nikolay a kol. 2011, Ben Hassine a kol. 2014, Adam a Digoutte – databáze afrických virů). USUV byl v Evropě popsán až v roce 2001 v Rakousku v souvislosti s masovým úhynem kosů černých (Turdus merula) (Weissenböck a kol. 2002). Zajímavostí je, že retrospektivní studie provedená v Itálii na archivovaných tkáních uhynulých ptáků odhalila přítomnost USUV již v roce 1996 (Weissenböck a kol. 2013). Od té doby byl popsán v několika evropských zemích (hlavně Itálie, Španělsko, Švýcarsko, Německo, Rakousko i ČR) v komárech, u ptáků i u lidí (Weissenböck a kol. 2003, Chvala a kol. 2004, Buckley a kol. 2006, Chvala a kol. 2007, Bakonyi a kol. 2007, Hubálek a kol. 2008a, Hubálek a kol. 2008b, Vázquez a kol. 2011, Jöst a kol. 2011, Steinmetz a kol. 2011, Savini a kol. 2011, Calzolari a kol. 2012, Becker a kol. 2012, Höfle a kol. 2013, Buchebner a kol. 2013, Garigliany a kol. 2014, Hubálek a kol. 2014, Ziegler a kol. 2016, Moniuszko-Malinowska a kol. 2016, Rijsk a kol. 2016, Lecollinet a kol. 2016, Garigliany a kol. 2017, Cadar a kol. 2017). Kromě volně žijících ptáků byl USUV prokázán i u ptáků v zoologických zahradách (dravců, sov) a u netopýrů (Buchebner a kol. 2013, Cadar a kol. 2014).

Jedná se o viry (WNV, USUV) s typickým enzootickým cyklem zajišťujícím cirkulaci mezi ptáky a ornitofilními komáry. Ptáci jsou považováni za hlavního hostitele, ale mezi další hostitele mohou patřit výjimečně savci, ale jen u některých se vyvine virémie dostatečně vysoká pro infekci sajících komárů. Komáři (rod Culex, méně často Aedes) jsou vektory WNV i USUV (Hubálek a Halouzka 1999, Turell a kol. 2005, CDC 2008) (Obr. 40). Komáři, kteří jsou schopni sát jak na ptácích, tak na savcích, jsou označováni jako „bridge“ vektoři, protože slouží jako „most“ mezi infikovaným rezervoárem (pták) a náhodným hostitelem. Zajímavostí je, že na rozdíl od flavivirů horečky dengue nebo žluté zimnice, WNV je přenášen řadou různých druhů komárů (Chancey a kol. 2015), což může zjednodušit jeho šíření do nových oblastí. Šíření jak WNV tak USUV do nových oblastí je uskutečněno pomocí komárů i díky migrujícím ptákům.

83

Obr. 40: Komár rodu Culex. Zdroj: www.naturfoto.cz.

Člověk je infikován při sání komára a většina případů je asymptomatických. Pouze zřídka (např. při velkých epidemiích, <1%) se při infekci WNV rozvine encefalitida nebo meningitida (Kramer a kol. 2007). Symptomatické infekce se nejčastěji manifestují jako chřipkovitá onemocnění. Neblahý vliv na rozvoj onemocnění má vysoký věk, snížená imunita nebo chronická onemocnění (Hayes a O´Leary 2004, Lindsey a kol. 2009, Lindsey a kol. 2012). Až do roku 2004 patřily evropské izoláty, získané z pacientů, do WNV linie 1. Od té doby se již vyskytly i případy infekce WNV linie 2 (Řecko – Papa a kol. 2011, Rumunsko – Sirbu a kol. 2011, Itálie – Monaco a kol. 2011, Maďarsko – Bakonyi a kol. 2013, Španělsko – Garcia-Bocanegra a kol. 2011, Hernández-Triana a kol. 2014). Lidské případy USUV byly popsány zatím jen ojediněle. Prvním popsaným případem byl muž s horečkou a vyrážkou ve Středoafrické republice v roce 1981 (Adam a Digoutte - databáze afrických virů). V roce 2009 se jednalo o dva případy z Itálie - žena trpící meningoencefalitidou (Pecorari a kol. 2009) a imunosuprimovaná žena po transplantaci jater (Cavrini a kol. 2009). V obou případech byl USUV potvrzen molekulárně. Sérologicky byly popsány případy v Německu (Allering a kol. 2012), Itálii (Gaibani a kol. 2012) a v Chorvatsku (Vilibic-Cavlek a kol. 2014).

V Evropě v současné době probíhají hlavně monitorovací programy těchto flavivirů, v rámci kterých jsou komáři odchytáváni a vyšetřováni na přítomnost virové RNA nebo izolačně. Protože ptáci slouží jako hostitelé, hodně studií se zaměřuje i na jejich sérologické či molekulární testování. Výsledky pak upozorňují kliniky na možný výskyt lidských onemocnění v daných oblastech.

84

4.2.1 Soubor komentovaných prací týkajících se flavivirů

1. práce – krátké sdělení, publikováno v Research in Veterinary Science (IF2015 – 1,504)

Straková P., Šikutová S., Jedličková P., Sitko J., Rudolf I., Hubálek Z. (2015): The common coot as sentinel species for the presence of West Nile and Usutu flaviviruses in Central Europe. Res. Vet. Sci. 102: 159-161. (Příloha publikace V)

2. práce – rukopis zaslaný do Vector-Borne and Zoonotic Diseases (IF2015 – 1,956)

Serologic survey for West Nile virus in wild artiodactyls in central Europe. Hubálek Z., Juřicová Z., Straková P., Blažejová H., Betášová L., Rudolf I. (Příloha publikace VI)

85

1. práce

Straková P., Šikutová S., Jedličková P., Sitko J., Rudolf I., Hubálek Z. (2015): The common coot as sentinel species for the presence of West Nile and Usutu flaviviruses in Central Europe. Res. Vet. Sci. 102: 159-161. (Příloha publikace V)

Úvod a cíl práce: Usutu virus i virus západonilské horečky (West Nile virus – WNV) patří do čeledi Flaviviridae a oba byly prokázány v České republice. Tyto flaviviry kolují v přírodě mezi ptáky a ornitofilními komáry a pro jejich emergenci hrají velkou roli migrující ptáci. Předchozí studie (Hubálek a kol. 2008a) zaměřená na flaviviry u volně žijících ptáků v České republice odhalila přítomnost protilátek proti WNV a USUV u lysek černých (Fulica atra) (Obr. 41).

Obr. 41: Lyska černá (Fulica atra). Zdroj: www.naturfoto.cz.

My jsme se v této práci zaměřili za sérologické testování právě těchto lysek černých za účelem zjištění, zda tento druh migrujícího ptáka hraje nějakou roli v koloběhu těchto virů v přírodě.

Materiál a metodika: Během září až října 2011 bylo zastřeleno rybáři u rybníků blízko vesnice Záhlinice 146 lysek černých. Byla jim odebrána krev a získané sérum bylo uloženo v – 20 °C. Před samotným testováním plak redukčním neutralizačním testem (PRNT) byla séra inaktivována 30 min / 56 °C a naředěna v poměru 1:5 Leibowitz L-15 médiem. V počátečním skríningovém testování byl použit pouze WNV (kmen Eg-101). U následovného testování lysek, které byly pozitivní na WNV, jsme použili další dva flaviviry (virus klíšťové

87 encefalitidy kmen TBEV Hypr a virus Usutu kmen USUV 939), abychom mohli případně vyloučit zkříženou reakci. PRNT probíhal následně: napipetované naředěné sérum v mikrotitrační destičce bylo kultivováno s virem 60 min / 37 °C; přidaly se Vero E6 buňky na 4 hod / 37 °C; po inkubaci se destička přelila karboxymethylcelulózou a po 3-5 dnech při 37 °C se buňky obarvily 0,1 % roztokem naftalenové černi. Pro vyhodnocení PRNT se použila hodnota 90% redukce PFU a jako pozitivní byly hodnoceny vzorky s titry >20.

Výsledky a diskuze: Ze 146 vyšetřených lysek černých bylo po prvním testování PRNT90 s WNV odhaleno 18 pozitivních ptáků (12,3%). Tyto pozitivní vzorky byly následně vyšetřeny i s TBEV a USUV. Z 18 WNV pozitivních ptáků mělo 9 lysek specifickou reakci s USUV, 2 s WNV a 7 nemohlo být dle PRNT90 rozlišeno (Tab. 9).

Tab. 9: Výsledky PRNT90 testu 18 pozitivních lysek černých. Specifické reakce pro daný virus jsou zvýrazněny tučně.

Č. vzorku WNV TBEV USUV 42 20 <20 80 43 40 40 80 45 40 <20 40 46 40 20 80 47 40 20 40 50 40 80 80 56 40 40 80 57 20 <20 80 60 20 <20 40 155 20 20 40 175 40 <20 40 176 40 40 80 178 40 <20 80 179 20 <20 20 182 40 20 40 184 160 20 20 186 20 <20 20 187 80 20 20

Výskyt WNV v České republice je znám již od roku 1985 a od té doby bylo napsáno několik článků pojednávajících o WNV u volně žijících ptáků i komárů (Juřicová a Halouzka 1993, Juřicová a kol. 1993, Hubálek a kol. 1998, Hubálek a kol. 2000, Bakonyi a kol. 2005, Hubálek a kol. 2008a, Rudolf a kol. 2014). Specifické protilátky proti WNV byly nalezeny u lysek i v jiných státech – Španělsko (Figuerola a kol. 2007), Rusko (Lvov a kol. 2008), Irán (Fereidouni a kol. 2011), Indie (Mishra a kol. 2012). Usutu virus je v Evropě znám zatím pouze krátce a je často dáván do souvislosti s hromadnými úhyny volně žijících ptáků (např.

88 kosů černých) (Weissenböck a kol. 2002, Bakonyi a kol. 2007, Steinmetz a kol. 2011, Jost a kol. 2011, Becker a kol. 2012, Hubálek a kol. 2014). Jako důkaz možného „usazení“ USUV v naší volné přírodě je izolace virové USUV RNA z komárů Culex modestus odchycených na jižní Moravě (Rudolf a kol. 2015). Tato sekvence se ideálně shlukovala s dalšími sekvencemi USUV z Itálie, Rakouska, Maďarska a Německa a tato větev byla jasně odlišena od kmenů pocházejících z Afriky (dana neuvedena).

Závěr: Vyšetřili jsme 146 lysek černých a u 9 z nich (6,2 %) jsme odhalili specifické protilátky proti USUV a u 2 (1,4 %) specifické protilátky proti WNV. Jednalo se už o druhé testování lysek z této oblasti a to, že jsme potvrdili pozitivní případy, naznačuje, že se může jednat o sentinelový druh, který se účastní koloběhu USUV a WNV v přírodě. Nemůžeme samozřejmě potvrdit, zda se tyto lysky infikovaly u nás nebo v jiných zemích, protože se jedná o migrující druh (Cepák a kol. 2008). Pro další závěry by bylo vhodné pokračovat v sérologickém monitoringu tohoto druhu na komáry přenášené flaviviry.

89

2. práce

Serologic survey for West Nile virus in wild artiodactyls in central Europe. Hubálek Z., Juřicová Z., Straková P., Blažejová H., Betášová L., Rudolf I. Vector-borne and Zoonotic Diseases – v redakčním řízení (Příloha publikce VI)

Úvod a cíl práce: Virus West Nile (WNV) je původcem zádonilské horečky, která ve většině případů probíhá asymptomaticky (80%), u symptomatických infekcí se objevuje horečka, třes, křeče, svalová bolest, vyrážka a lymfadenopatie, a v těch nejtěžších případech až encefalitida s trvalými neurologickými následky. Podobné symptomy můžeme nalézt i u dalších savců (hlavně koní) či některých druhů ptáků (Kramer a kol. 2007). WNV se přenáší sáním infikovaného komára (nejčastěji rod Culex). Při vyšetřování komárů na různé arboviry během let 2006-2008 (Hubálek a kol. 2010) byl WNV-3 izolován taktéž z komára Aedes rossicus, který na rozdíl od ornitofilních komárů rodu Culex, preferuje sání na savcích (včetně člověka) (Becker a kol. 2010).

Cílem této práce tedy bylo retrospektivně vyšetřit volně žijící lovné savce z jižní Moravy na přítomnost protilátek proti WNV. Pozitivní výsledky by pak mohly naznačovat alternativní koloběh WNV mezi komáry a lovnou zvěří na jižní Moravě.

Materiál a metodika: Všechny oblasti lovu se nacházely na území Břeclavska. Jednalo se o oblast „Soutok“ - rozsáhlá oblast lužních lesů a zaplavovaných luk na soutoku řek Dyje a Moravy s oborou, kde se vyskytuje divoká lovná zvěř (srnec obecný, jelen lesní, daněk evropský, prase divoké), oblast „Pálava“ - chráněná krajinná oblast, ve které se taktéž nachází obora s lovnou zvěří (srnec obecný, jelen lesní, daněk evropský, prase divoké, muflon asijský). Dalšími oblastmi „BV-other“ byly menší revíry různě po Břeclavsku. Všechny tyto oblasti také spadají do oblastí, kde se hojně vyskytují komáři (Šebesta a kol. 2010). Zvířata byla odstřelena během lovných sezón (1990-2008) a krev jim byla odebrána přímo ze srdce nebo hrudní dutiny. Získané sérum bylo uchováno při -20 °C. Všech 1 023 sudokopytníků (105 srnců, 148 jelenů, 287 daňků, 71 muflonů a 412 divokých prasat) (Obr. 42) bylo vyšetřeno plak redukčním neutralizačním testem (PRNT). PRNT ve zkratce: v mikrotitrační destičce byla naředěná inaktivovaná séra (1:10) smíchána s virem (WNV Eg-101) a inkubována 60 min / 37 °C, pak byly přidány Vero E6 buňky, po inkubaci 4 hod / 37 °C následovalo převrstvení jamek karboxymethylcelulózou a po 4-5 dnech byly buňky obarveny naftalenovou černí. Pro vyhodnocení PRNT se použila hodnota 80% redukce

91

PFU a jako pozitivní byly hodnoceny vzorky s titry >20. Podobně jako u lysek byly pozitivní výsledky znovu testovány s viry TBEV a USUV na případné zkřížené reakce s těmito viry.

Obr. 42: Jelen lesní (Cervus elaphus). Zdroj: www.naturfoto.cz.

Výsledky a diskuze: Specifické protilátky byly detekovány u 53 z 1 023 vyšetřených sudokopytníků (5,2%). V Tab. XXI (v příloze) je jasně vidět, že u žádných pozitivních zvířat se neprojevila zkřížená reakce s jiným flavivirem. V Tab. 10 je uvedeno, kolik bylo pozitivních zvířat dle období odstřelu a v Tab. 11 je sumarizováno, kolik bylo pozitivních zvířat dle jednotlivých vyšetřovaných druhů.

Tab. 10: WNV séropozitivita zvířat dle let odstřelu (upraveno).

Roky: 1990−93 1994−95 1996−97 2002−06 2007−08

Celkově vyšetřeno 150 117 260 226 270

No. (%) séropozitivních 5 (3.3%) 12 (10.3%) 18 (6.9%) 1 (0.4%) 17 (6.3%)

92

Tab. 11: Podíl pozitivních zvířat jednotlivých druhů (upraveno).

Druhy: Srnec obecný Jelen lesní Daněk evropský Muflon Prase divoké asijský Capreolus Cervus Dama dama Sus scrofa Ovis capreolus elaphus musimon

Celkově vyšetřeno 105 148 287 71 412

No. (%) 5 (4.8%) 6 (4.1%) 18 (6.3%) 7 (9.9%) 17 (4.1%) séropozitivních

Rozsah reciprokých 40-160 20-160 20-320 40-160 20-160 titrů

Průměrný titr, GMT 70 57 54 80 63

V Evropě se tomuto tématu věnuje pouze několik publikací. Na Slovensku potvrdili specifické protilátky proti WNV u divoké zvěře Kozuch a kol. (1976). V České republice Juřicová (1992) a Juřicová a Hubálek (1999) vyšetřovali lovnou zvěř pomocí hemaglutinačně- inhibičního testu, který je však méně specifický než PRNT z důvodu častých zkřížených reakcí, a Halouzka a kol. (2008), kteří se zabývali detekcí specifických PRNT protilátek proti WNV u divokých prasat. Kromě České a Slovenské republiky se studiem WNV u divoké zvěře zabývaly pouze týmy ve Španělsku (Boadella a kol. 2012, Gutiérrez-Guzmán a kol. 2012, Garcia-Bocanegra a kol. 2016) a Srbsku (Escribano-Romero a kol. 2015).

Závěr : Vyšetřili jsme retrospektivně 1 023 volně žijících sudokopytníků z Břeclavska na přítomnost specifických protilátek proti WNV. Protilátky jsme prokázali u 5,9% přežvýkavců a u 4,1% divokých prasat. Tyto výsledky naznačují, že WNV cirkuloval mezi lety 1990-2008 ve variabilní frekvenci u volně žijící lovné zvěře a potvrdily jsme, že volně žijící zvěř může hrát roli v koloběhu WNV v naší přírodě.

93

94

4.2.3 Autorčin podíl na daném výzkumu

 1. práce – zúčastnila jsem se vyšetřování PRNT s prof. Zdeňkem Hubálkem, Mgr. Petrou Jedličkovou a Ladislavou Ševčíkovou

 2. práce – archivní kolekci založila RNDr. Zina Juřicová, CSc., já jsem připravila vzorky pro testování – odebrání séra, příprava na inaktivaci, samotné vyšetřování PRNT proběhlo opět v týmu s prof. Zdeňkem Hubálkem, Ladislavou Ševčíkovou a Ing. Lenkou Betášovou

95

4.3 Virus hepatitidy E

Původce hepatitidy E - virus hepatitidy E (VHE) byl poprvé popsán v roce 1983 (Khuroo 1980, Balayan a kol. 1983). Jeho genom je tvořen +ssRNA o velikosti 7,2 kb (Chandra a kol. 2008). VHE tvoří samostatný rod Orthohepevirus v čeledi Hepeviridae (ICTV 2017). V současné době dochází k popisu nových „hepatitis E-like“ virů, které zapříčinily návrh nové taxonomie (Johne a kol. 2014). HEV se dělí do 4 genotypů, z nichž genotypy 1 a 2 se označují jako antroponotické a genotypy 3 a 4 jako zoonotické (Obr. 43).

Obr. 43: Zeměpiské rozšíření hepevirů. A – antroponotické genotypy 1+2, B – zoonotické genotypy 3+4, C – „hepatitis-E“ podobné viry detekované u králíků, slepic, netopýrů, krys, fretek, norků a lišek. Převzato z Johne a kol. 2014.

97

Antroponotické genotypy se vyskytují hlavně v Africe a Asii (Obr. 43) a souvisejí s nedostatečnou hygienou. Jsou přenášeny fekálně-orální cestou kontaminovanou vodou a mohou způsobovat velké epidemie (např. uprchlické tábory, přírodní katastrofy) (Hazam a kol. 2010). Vyskytují se v tzv. hyperendemických zónách (jižní Asie – Indie, Bangladéš, Pakistán; jihovýchodní Asie – Kambodža, Indonésie, Vietnam; severní Afrika – Maroko, Tunisko, Súdán; východní Afrika – Keňa, Uganda; západní Afrika – Libérie, Nigérie, Mali a např. Mexiko v Severní Americe), kde jsou epidemie způsobené především genotypem 1, v Mexiku i genotypem 2 (Khuroo 2011). Mezi endemické oblasti patří např. Blízký východ a Jižní Amerika, kde se ale velké epidemie nevyskytují (Ghabrah a kol. 1995, Khuroo a kol. 2016a). Zajímavou oblastí je Egypt, kde se onemocnění, způsobené genotypem 1 se subtypy odlišnými od asijských typů, vyskytuje hlavně u mladých lidí a těhotných žen (Darwish a kol. 1996, Amer a kol. 1996, Navaneethan a kol. 2008).

Objev zoonotických genotypů VHE souvisel i s nárůstem výskytu onemocnění v rozvinutých zemích (Obr. 43), které nebyly importovaného, ale autochtonního původu (Mansuy a kol. 2004, Dalton a kol. 2007). Tyto infekce jsou způsobeny genotypy 3 a 4, jsou většinou asymptomatické a vyskytují se především u starších lidí. Zajímavostí je, že nezpůsobují velké epidemie a vážná onemocnění u těhotných žen (Scobie a Dalton 2013, Khuroo a kol. 2016a, Khuroo a kol. 2016b). Genotypy 3 a 4 byly popsány u různých zvířat po celém světě (Tab. 1 v Johne a kol. 2014) a z hlediska rizika přenosu VHE na lidi byl nejvýznamnější jejich potvrzený nález u prasat (Meng a kol. 1997) (Obr. 44). K přenosu zoonotických VHE dochází nejčastěji pozřením nedostatečně tepelně upraveného vepřového masa, vepřových jater nebo výrobků z nich, anebo kontaminovanou zvěřinou a mořskými plody (Tei a kol. 2003, Yazaki a kol. 2003, Matsuda a kol. 2003, Tamada a kol. 2004, Masuda a kol. 2005, Li a kol. 2005, Li a kol. 2007, Colson a kol. 2010, Di Bartolo a kol. 2012, Crossan a kol. 2012, Berto a kol. 2013, Said a kol. 2014, Grodzki a kol. 2014, Gao a kol. 2015 Di Bartolo a kol. 2015, Riveiro-Barciela a kol. 2015, Guillois a kol. 2016, Mesquita a kol. 2016).

98

Obr. 44: Různé způsoby přenosu zoonotických genotypů VHE (převzato a upraveno z Pavio a kol. 2015).

Průběh onemocnění velmi připomíná průběh hepatitidy A, ale inkubační doba VHE je delší, cca 6 týdnů, nejčastěji se nakazí spíše dospělí lidé (u genotypů 3 a 4) než děti (u genotypů 1 a 2) (Collier a kol. 2011, Khuroo a kol. 2016a). Mezilidský přenos je diskutován (Teshale a kol. 2010, Aggarwal a Naik 2009, Collier a kol. 2011, Khuroo a kol. 2016a) a byly popsány případy přenosu VHE krevní transfúzí (Khuroo a kol. 2004, Matsubayashi a kol. 2004, Yamamoto a kol. 2004, Matsubayashi a kol. 2008). Z toho důvodu se v některých státech rozhodli provádět screening dárců krve na VHE (Fukuda a kol. 2004, Fukuda a kol. 2007, Vollmer a kol. 2012, Juhl a kol. 2014, Holm a kol. 2015). Dalším způsobem přenosu je vertikální přenos z matky na dítě (Khuroo a kol. 1995, Kumar a kol. 2001, Singh a kol. 2003, Khuroo a kol. 2009, Khuroo a kol. 2016b).

S objevem zoonotických genotypů a vývojem rychlých sérologických a molekulárních metod došlo k obrovskému nárůstu literatury na toto téma. Nejčastěji se publikují nově popsané „hepatitis E-like“ viry u různých druhů zvířat (krysy, králíci, netopýři) s cílem osekvenovat celý genom. Tyto informace pak slouží k vývoji lepších metod, k potvrzení/vyvrácení zoonotického potenciálu, míře patogenity, evoluci apod. Nejdůležitější je stanovit tyto informace u těch druhů zvířat, které slouží jako potrava pro lidi. V České republice došlo k nárůstu počtu klinických případů hepatitidy E v období 2005 až 2016 z 35 na přibližně 350 (EPIDAT 2017). Tento nárůst je způsoben nejen rozvojem lepších diagnostických metod, ale

99 také zvýšenou pozorností kliniků, kteří jsou dnes schopni toto onemocnění lépe diagnostikovat.

100

4.3.1 Komentovaná práce týkající se viru hepatitidy E

1. práce – rukopis v přípravě, komentář k současnému stavu práce

Retrospective serosurvey of wild boars for hepatitis E virus-specific antibodies from South Moravia, Czech Republic. Straková P. (prvoautor) a kol.

101

Strany 103 až 107 nejsou součástí veřejné verze práce.

4.3.2 Autorčin podíl na daném výzkumu

 1. práce – archivní kolekci založila RNDr. Zina Juřicová, CSc., příprava sér i zpracování metody ELISA včetně hodnocení výsledků jsem provedla samostatně

109

5 Závěr

 Potvrdili jsme výskyt Tula viru u hrabošů v České republice. Všechny další druhy hlodavců – myšice a norníci - byly při molekulárním testování RT-PCR na přítomnost hantavirů negativní. Náš pozitivní vzorek hraboše mokřadního pochází z Beskyd. Další pozitivní hraboše na této lokalitě jsme v následujících letech neprokázali.

Velmi cenným výsledkem bylo popsání nového hantaviru u netopýrů z Brna. Jedná se o první takovýto výsledek v Evropě.

V Německu jsme jasně prokázali výskyt Dobrava-Belgrade viru u myšice temnopásé a potvrdili hypotézu ohledně zeměpisného rozšíření tohoto viru. Důležitým bodem byla konstrukce fylogenetického stromu, kde se sekvence kmenů získaných z myšic shlukovaly se sekvencemi kmenů získaných z pacientů.

Jako první jsme provedli molekulární testování litevských hlodavců na hantaviry. Prokázali jsme cirkulaci Puumala viru v populaci norníků rudých, a navíc jsme u populace hraboše hospodárného objevili zřejmě nový hantavirus.

 Dle předchozích výsledků ze screeningu vodního ptactva byly u lysek černých objeveny protilátky proti viru západonilské horečky a také vysoký titr protilátek proti viru Usutu. My jsme se zaměřili pouze na tento ptačí druh a znovu jsme u nich protilátky k viru Usutu detekovali. Je tedy možné, že tento druh vodního ptáka hraje významnou roli v cirkulaci flavivirů ve volné přírodě.

V další části jsme se zaměřili na detekci protilátek proti viru západonilské horečky u volně žijících sudokopytníků. I zde jsme u malého procenta zvířat tyto specifické protilátky nalezli.

 V současné době dochází k nárůstu klinicky potvrzených případů hepatitidy E u obyvatel České republiky. Z důvodu jasně doloženého vztahu mezi pozřením kontaminovaného masa a infekcí hepatitidou E se v České republice testují chovy domácích prasat, divoká prasata i další lovná zvěř. Retrospektivně jsme vyšetřili archivovaná séra divokých prasat na přítomnost specifických protilátek proti viru hepatitidy E. Nejstarší pozitivní sérum získané z prasete divokého bylo z roku 1990. Během let 1990-2008 jsme detekovali několik pozitivních prasat a retrospektivně tak prokázali koloběh tohoto viru u divokých prasat ve volné přírodě na jižní Moravě.

111

Naše výsledky potvrdily výskyt zoonotických virů u volně žijících endotermních obratlovců na území České republiky i v dalších evropských státech.

Onemocnění přenášená hlodavci (HRFS, NE), anebo další onemocnění, u kterých hrají hlodavci důležitou ekologickou roli (lymská borrelióza, klíšťová encefalitida), nabývají v posledních letech značně na významu. Virus západonilské horečky se v Evropě šíří do nových oblastí, ve kterých zatím lidské případy nebyly detekovány. Zdá se, že se virus Usutu po úspěšné introdukci pomocí migrujícího ptactva etabloval v oblasti střední Evropy a je hrozbou pro ptačí populace. V posledních 10 letech se výzkumu viru hepatitidy E věnuje velká pozornost. Jedná o virus přenášený kontaminovanou vodou a potravou, a tudíž může být výskyt VHE ovlivněn mj. změnami klimatu.

Všechny tyto zoonotické viry jsou RNA viry, pro které je obecně charakteristická vysoká mutační rychlost. Pro dlouhodobé sledování je vhodné založit monitorovací („surveillance“) programy, které se budou zabývat nejen výskytem jejich rezervoárových zvířat nebo hostitelů, ale i vektorů a séroprevalencí u lidí. Ani pro jedno studované agens neexistuje účinná léčba nebo vakcína. I přes většinou asymptomatický průběh těchto infekcí představují tyto viry hrozbu pro lidské zdraví. Z toho důvodu se klade velký důraz na preventivní opatření. V případě hantavirových infekcí se doporučuje zamezit kontaktu s volně žijícícmi hlodavci, u flavivirů použití komářích repelentů a u viru hepatitidy E je v našich podmínkách nutné dodržovat hygienické postupy (např. při domácích zabíjačkách) a správně tepelně zpracovat masné výrobky pocházející z prasat a zvěřiny.

112

6 Literatura

Adam F., Digoutte J.P. Centre Collaborateur OMS de Référence et de Recherche Pour les Arbovirus et les Virus de Fièvreshémorrhagiques (CRORA) Institut Pasteur de Dakar; Dakar, Senegal. Virus d’ Afrique. In: Ashraf a kol. (2015): Usutu virus: an emerging flavivirus in Europe. Viruses. 7: 219-238. Adlhoch C., Avellon A., Baylis S.A., Ciccaglione A.R., Couturier E., de Sousa R., Epstein J., Ethelberg S., Faber M., Feher A., Ijaz S., Lange H., Mandakova Z., Mellou K., Mozalevskis A., Rimhanen-Finne R., Rizzi V., Said B., Sundqvist L., Thornton L., Tosti M.E., van Pelt W., Aspinall E., Domanovic D., Severi E., Takkinen J., Dalton H.R. (2016): Hepatitis E virus: assessment of the epidemiological situation in humans in Europe, 2014/2015. J. Clin. Virol. 82: 9-16. Aggarwal R., Naik S. (2009): Epidemiology of hepatitis E: current status. J. Gastroenterol. Hepatol. 24: 1484– 1493. Alexander D.J. (2007): An overview of the epidemiology of avian influenza. Vaccine. 25: 5637-5644. Ali H.S., Drewes S., Sadowska E.T., Mikowska M., Groschup M.H., Heckel G., Koteja P., Ulrich R.G. (2014): First molecular evidence for Puumala hantavirus in Poland. Viruses. 6: 340-353. Ali H.S., Drewes S., Weber de Mělo V., Scholegel M., Freise J., Groschup M.H., Heckel G., Ulrich R.G. (2015): Complete genome of a Puumala virus strain from Central Europe. Virus Genes. 50: 292-298. Allering L., Jost H., Emmerich P., Gunther S., Lattwein E., Schmidt M., Seifried E., Sambri V., Hourfar K., Schmidt-Chanasit J. (2012): Detection of Usutu virus infection in a healthy blood donor from south-west Germany, 2012. Euro Surveill. 17: pii=20341. Altizer S., Bartel R., Han B.A. (2011): Animal migration and infectious disease risk. Science. 331: 296-302. Amer A.F., Zaki S.A., Nagati A.M., Darwish M.A. (1996): Hepatitis E antibodies in Egyptian adolescent females: their prevalence and possible relevance. J. Egypt. Public Health Assoc. 71: 273-284. Anheyer-Behmenburg H.E., Szabo K., Schotte U., Binder A., Klein G., Johne R. (2017): Hepatitis E virus in wild boars and spillover infection in red and roe deer, Germany, 2013-2015. Emerg. Infect. Dis. 23: 130-133. Arai S., Ohdachi S.D., Asakawa M., Kang H.J., Mocz G., Arikawa J., Okabe N., Yanagihara R. (2008): Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides). Proc. Natl. Acad. Sci. U. S. A. 105: 16296-16301. Arai S., Nguyen S.T., Boldgiv B., Fukui D., Araki K., Dang C.N., Ohdachi S.D., Nguyen N.X., Pham T.D., Boldbaatar B., Satoh H., Yoskihawa Y., Morikawa S., Tanaka-Taya K., Yanagihara R., Oishi K. (2013): Novel bat-borne hantavirus, Vietnam. Emerg. Infect. Dis. 19: 1159-1161. Arai S., Taniquichi S., Aoki K., Yoshikawa Y., Kyuwa S., Tanaka-Taya K., Masangkay J.S., Omatsu T., Puentespina R., Watanabe S., Alviola P., Alvarez J., Eres E., Cosico E., Quibod M.N., Morikawa S., Yanagihara R., Oishi K. (2016): Molecular phylogeny of a genetically divergent hantavirus harbored by the Geoffroy´s rousette (Rousettus amplexicaudatus), a frugivorous bat species in the Philippines. Infect. Genet. Evol. 45: 26-32. Ashraf U., Ye J., Ruan X., Wan S., Zhu B., Cao S. (2015): Usutu virus: an emerging flavivirus in Europe. Viruses. 7: 219-238. Asikainen K., Hanninen T., Henttonen H., Niemimaa J., Laakkonen J., Andersen H.K., Bille N., Leirs H., Vaheri A., Plyusnin A. (2000): Molecular evolution of Puumala hantavirus in Fennoscandia: phylogenetic analysis of strains from two recolonization routes, Karelia and Denmark. J. Gen. Virol. 81: 2833-2841. Atlas R.M. (2012): One health: its origins and future. Curr. Top. Microbiol. Immunol. 365: 1-13. Augot D., Sauvage F., Boue F., Artois M., Demerson J.M., Combers B., Coudrier D., Zeller H., Cliquet F., Pontier D. (2008): Spatial and temporal patterning of bank vole demography and the epidemiology of the Puumala hantavirus in northeastern France. Epidemiol. Infect. 136: 1638-1643. Autorino G.L., Battisti A., Deubel V., Ferrari G., Forletta R., Giovannini A., Lelli R., Murri S., Scicluna M.T. (2002): West Nile virus epidemic in horses, Tuscany region, Italy. Emerg. Infect. Dis. 8: 1372-1378.

113

Avsic-Zupanc T., Xiao S.Y., Stojanovic R., Gligic A., van der Groen G., LeDuc J.W. (1992): Characterization of Dobrava virus: a hantavirus from Slovenia, Yugoslavia. J. Med. Vir. 38: 132-137. Avsic-Zupanc T., Nemirov K., Petrovec M., Trilar T., Poljak M., Vaheri A., Plyusnin A. (2000): Genetic analysis of wild-type Dobrava hantavirus in Slovenia: co-existence of two distinct genetic lineages within the same natural focus. J. Gen. Virol. 81: 1747-1755. Avsic-Zupanc T., Korva M., Markotic A. (2014): HFRS and hantaviruses in the Balkans/South-East Europe. Virus. Res. 187: 27-33. Bakonyi T., Hubálek Z., Rudolf I., Nowotny N. (2005): Novel flavivirus or novel lineage of West Nile virus, central Europe. Emerg. Infect. Dis. 11: 225-231. Bakonyi T., Erdélyi K., Ursu K., Ferenczi E., Csörgo T., Lussy H., Chvala S., Bukovsky C., Meister T., Weissenböck H. (2007): Emergence of Usutu virus in Hungary. J. Clin. Microbiol. 45: 3870–3874. Bakonyi T., Ferenczi E., Erdelyi K., Kutasi O., Csörgö T., Seidel B., Weissenböck H., Brugger K., Bán E., Nowotny N. (2013): Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet. Microbiol. 165: 61-70. Balanca G., Gaidet N., Savini G., Vollot B., Foucart A., Reiter P., Boutonnier A., Lelli R., Monicat F. (2009): Low West Nile virus circulation in wild birds in an area of recurring outbreaks in Southern France. Vector Borne Zoonotic Dis. 9: 737-741. Balayan M.S., Andjaparidze A.G., Savinskaya S.S., Ketiladze E.S., Braginsky D.M., Savinov A.P., Poleschuk V.F. (1983): Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology. 20: 23-31. Balboni A.F., Battilani M., Prosperi S. (2012): The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus. New Microbiol. 35: 1-16. Barzon L., Pacenti M., Franchin E., Lavezzo E., Masi G., Squarzon L., Pagni S., Toppo S., Russo F., Cattai M., Cusinato R., Palu G. (2013): Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013. Euro Surveill. 19: pii=20591. Barzon L., Papa A., Lavezzo E., Franchin E., Pacenti M., Sinigaglia A., Masi G., Trevisan M., Squarzon L., Toppo S., Papadopoulou E., Nowotny N., Ulbert S., Piralla A., Rovida F., Baldanti F., Percivalle E., Palu G. (2015): Phylogenetic characterization of Central/Southern European lineage 2 West Nile virus: analysis of human outbreaks in Italy and Greece, 2013-2015. Clin. Microbiol. Infect. 21: 1122.e1-1122.e10. Becker N., Petric D., Zgomba M., Boase C., Minoo M., Dahl C., Kaiser A. (2010): Mosquitoes and their control. Springer, Germany, 577 s. Becker N., Jöst H., Ziegler U., Eiden M., Höper D., Emmerich P., Fichet-Calvet E., Ehichioya D.U., Czajka C., Gabriel M. (2012): Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One. 7: e32604. Ben Hassine T., de Massis F., Calistri P., Savini G., BelHaj Mohamed B., Ranen A., di Gennaro A., Sghaier S., Hammami S. (2014): First detection of co-circulation of West Nile and Usutu viruses in equids in the south-west of Tunisia. Transbound. Emerg. Dis. 61: 385–389 Bengis R.G., Leighton L.A., Fischer J.R., Artois M., Mörner T., Tate C.M. (2004): The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech. 23: 497-511. Bernkopf H., Levine S., Nerson R. (1953): Isolation of West Nile virus in Israel. J. Infect. Dis. 93: 207-218. Bernshtein A.D., Apekina N.S., Mikhailova T.V., Myasnikov Y.A., Khlyap L.A., Korotkov Y.S., Gavrilovskaya I.N. (1999): Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys glareolus). Arch. Virol. 144: 2415-2428. Berthold P. (2001): Bird migration: a general survey. Oxford University Press, USA, 253 s. Berto A., Grierson S., Hakze-van der Honing R., Martelli F., Johne R., Reetz J., Ulrich R.G., Pavio N., Van der Poel W.H., Banks M. (2013): Hepatitis E virus in pork liver sausage, France. Emerg. Infect. Dis. 19: 264-266. Bidaisee S., Macpherson C.C., Macpherson C.N.L. (2014): Human behavior and the epidemiology of viral zoonoses. In: Viral infections and global change, edited by Singh S.K., 2014, Wiley-Blackwell, 660 s.

114

Bidaisee S., Macpherson C.N.L. (2014): Zoonoses and one health: a review of the literature. J. Parasitol. Res. Article ID: 874345. Boadella M., Diez-Delgado I., Gutierrez-Guzman A.V., Hofle U., Gortazar C. (2012): Do wild ungulates allow improved monitoring of flavivirus circulation in Spain? Vector Borne Zoonotic Dis. 12: 490-495. Bondre V.P., Jadi R.S., Mishra A.C., Yergolkar P.N., Arankalle V.A. (2007): West Nile virus isolates from India: evidence for a distinct genetic lineage. J. Gen. Virol. 88: 875-884. Boone I., Wagner-Wiening C., Reil D., Jacob J., Rosenfeld U.M., Ulrich R.G., Lohr D., Pfaff G. (2012): Rise in the number of notified human hantavirus infections since October 2011 in Baden-Wurttemberg, Germany. Euro Surveill. 17: pii=20180. Bowen M.D., Gelbmann W., Ksiazek T.G., Nichol S.T., Nowotny N. (1997): Puumala virus and two genetic variants of Tula virus are present in Austrian rodents. J. Med. Vir. 53: 174-181. Breed A.C., Field H.E., Epsterin J.H., Daszak P. (2006): Emerging and flying foxes – conservation and management perspectives. Biol. Conserv. 131: 211-220. Breed A.C., Field H.E., Smith C.S., Edmonston J., Meers J. (2010): Bats without borders: long-distance movements and implications for disease risk management. EcoHealth. 7: 204-212. Brook C.E., Dobson A.P. (2015): Bats as special reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23: 172-180. Brummer-Korvenkontio M., Vaheri A., Hovi T., Vonbonsdorff C.H., Vuorimies J., Manni T., Penttinen K., Okerblom N., Lahdevirta J. (1980): Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 141: 131-134. Buchebner N., Zenker W., Wenker C., Steinmetz H.W., Sós E., Lussy H., Nowotny N. (2013): Low Usutu virus seroprevalence in four zoological gardens in central Europe. BMC Vet. Res. 9: e153. Buckley A., Dawson A., Gould E.A. (2006): Detection of seroconversion to West Nile virus, Usutu virus and in UK sentinel chickens. Virol. J. 3: e71. Cadar D., Becker N., Campos R.M., Börstler J., Jöst H., Schmidt-Chanasit J. (2014): Usutu virus in bats, Germany, 2013. Emerg. Infect. Dis. 20: 1771-1773. Cadar D., Luhken R., van der Jeugd H., Garigliany M., Ziegler U., Keller M., Lahoreau J., Lachmann L., Becker N., Kik M., Oude Munnink B.B., Bosch S., Tannich E., Linden A., Schmidt V., Koopmans M.P., Rijks J., Desmecht D., Groschup M.H., Reusken C., Schmidt-Chanasit J. (2017): Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Euro Surveill. 22: pii=30452. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. (2006): Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531-545. Calistri P., Giovannini A., Savini G., Monaco F., Bonfanti L., Ceolin C., Terregino C., Tamba M., Cordioli P., Lelli R. (2010): West Nile virus transmission in 2008 in north-eastern Italy. Zoonoses Public Health. 57: 211-219. Calzolari M., Gaibani P., Bellini R., Defilippo F., Pierro A., Albieri A., Mailoli G., Luppi A., Rossini G., Balzani A. (2012): Mosquito, bird, and human surveillance of West Nile and Usutu viruses in Emilia-Romagna region (Italy) in 2010. PLoS One. 7: e38058. Carey D.E., Reuben R., Panicker K.N., Shope R.E., Myers R.M. (1971): Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India. Indian J. Med. Res. 59: 1758-1760. Castel G., Couteaudier M., Sauvage F., Pons J.B., Murri S., Plyusnina A., Pontier D., Cosson J.F., Plyusnin A., Marianneau P., Tordo N. (2015): Complete genome and phylogeny of Puumala hantavirus isolates circulating in France. Viruses. 7: 5476-5488. Cavrini F., Gaibani P., Longo G., Pierro A.M., Rossini G.m Bonilauri P., Gerunda G.E., Di Benedetto F., Pasetto A., Girardis M., Dottori M., Landini M.P., Sambri V. (2009): Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August-September 2009. Euro Surveill. 14: pii=19448. CDC (2008): West Nile virus activity – United States, 2007. Dostupné na: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5726a2.htm, 29.3. 2017.

115

CDC (2013): West Nile virus in the United States: Guidelines for surveillance, prevention and control. Dostupné na: https://www.cdc.gov/westnile/resources/pdfs/wnvguidelines.pdf, 29.3. 2017. CDC (2016): Information sheet Zoonotic diseases. Dostupné na: https://www.cdc.gov/onehealth/basics/zoonotic-diseases.html, 21.3. 2017. Cepák J., Klvaňa P., Škopek J., Schropfer L, Jelínek M., Hořák D., Formánek J., Zárybnický J. (2008): Czech and Slovak bird migration atlas. Aventium, Praha, Czech Republic, 608 s. Chalupa P., Vašíčková P., Pavlík I., Holub M. (2014): Endemic hepatitis E in the Czech Republic. Clin. Infect. Dis. 58: 509-516. Chancey C., Grinev A., Volkova E., Rios M. (2015): The global ecology and epidemiology of West Nile virus. Biomed. Res. Int. Vol. 2015. Article ID 376230. Chandra V., Taneja S., Kalia M., Jameel S. (2008): Molecular biology and pathogenesis of hepatitis E virus. J. Biosci. 33: 451-464. Chevalier V., Reynaud P., Lefrancois T., Durand B., Baillon F., Balanca G., Gaidet N., Mondet B., Lancelot R. (2009): Predicting West Nile virus seroprevalence in wild birds in Senegal. Vector Borne Zoonotic Dis. 9: 589–596. Childs J.E. (2004): Zoonotic viruses of wildlife: hither from yon. Arch. Virol. Suppl. 18: 1-11. Childs J.E., Richt J.A., Mackenzie J.S. (2007): Introduction: conceptualizing and partitioning in the emergence proces of zoonotic viruses from wildlife to humans. Curr. Top. Microbiol. Immunol. 315: 1-31. Christova I., Plyusnina A., Gladnishka T., Kalvatchev N., Trifonova I., Dimitrov H., Mitkovska V., Mohareb E., Plyusnin A. (2015): Detection of Dobrava hantavirus RNA in Apodemus mice in Bulgaria. J. Med. Virol. 97: 263-268. Chvala S., Kolodziejek J., Nowotny N., Weissenböck H. (2004): Pathology and viral distribution in fetal Usutu virus infection of birds from the 2001 and 2002 outbreaks in Austria. J. Comp. Pathol. 131: 176–185. Chvala S., Bakonyi T., Bukovsky C., Meister T., Brugger K., Rubel F., Nowotny N., Weissenböck H. (2007): Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003–2005. Vet. Microbiol. 122: 237–245. Clayson E.T., Innis B.L., Myint KS., Narupiti S., Vaughn D.W., Giri S., Ranabhat P., Shrestha M.P. (1995): Detection of hepatitis E virus infections among domestic swine in the Kathmandu Valley of Nepal. Am. J. Trop. Med. Hyg. 53: 228-232. Clement J., Frans J., van Ranst M. (2003): Human Tula virus infection or rat-bite fever? Eur. J. Clin. Microbiol. Infect. Dis. 22: 332-333. Clement J., Maes P., van Ypersele de Strihou C., van der Groen G., Barrios J.M., Verstraeten W.W., van Ranst M. (2010): Beechnuts and outbreaks of nephropathia epidemica (NE): of mast, mice and men. Nephrol. Dial. Transplant. 25: 1740-1746. Clement J., Maes P., Van Ranst M. (2014): Hemorrhagic fever with renal syndrome in the new, and hantavirus pulmonary syndrome in the old world: paradi(se)gm lost of regained? Virus. Res. 187: 55- 58. Collier L., Oxford J., Kellam P. (2011): Human virology. Oxford Press, 365 s. Colson P., Borentain P., Queyriaux B., Kaba M., Moal V., Gallian P., Heyries L., Raoult D., Gerolami R. (2010): Pig liver sausage as a source of hepatitis E virus transmission to humans. J. Infect. Dis. 202: 825-834. Condon B.J., Sintha T. (2010): The effectiveness of pandemic preparations: legal lessons from the 2009 influenza epidemic. Flo. J. Int. Law. 22: 1-30. Cornet M., Robin Y., Chateau R., Heme G., Adam C., Valade M., Le Gonidec G., Jan C., Renaudet J., Dieng P.Y. (1979): Isolement d’arbovirus au Sénégal Oriental a partir de moustiques (1972–1977) et notes surl’épidémiologie des virus transmis par les Aedes en particulier du virus amaril. Cahiers ORSTOM. Sér. Entomologieméd. Parasitol. 17: 149–163. Coussinier-Paris P. (2006): West Nile virus in Europe and Africa: still minor pathogen, or potential threat to public health? Bull. Soc. Pathol. Exot. 99: 348-354.

116

Crossan C., Baker P.J., Craft J., Takeuchi Y., Dalton H.R., Scobie L. (2012): Hepatitis E virus genotype 3 in shellfish, United Kingdom. Emerg. Infect. Dis. 18: 2085-2087. Curriero F.C., Patz J.A., Rose J.B., Lele S. (2001): The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948-1994. Am. J. Public. Health. 91: 1194-1199. Dalton H.R., Thurairajah P.H., Fellows H.J., Hussaini H.S., Mitchell J., Bendall R., Banks M., Ijaz S., Teo C.G., Levine D.F. (2007): Autochthonous hepatitis E in southwest England. J. Viral. Hepat. 14: 304-309. Daneš L., Tkachenko E.A., Ivanov A.P., Lím D., Rezapkin G.V., Dzagurova T.K. (1986): Hemorrhagic fever with renal syndrome in Czechoslovakia: detection of antigen in small terrestrial mammals and specific serum antibodies in man. J. Hyg. Epidemiol. Microbiol. Immunol. 30: 79-85. Daneš L., Pejčoch M., Hubálek Z., Halouzka J., Juřicová Z., Zima J., Tkachenko E.A., Dzagurová T.K., Ivanov A.P., Švandová E. (1991): Hantaviruses in small wild living mammals in Czechoslovakia. Results of a 1983-1989 study. J. Hyg. Epidemiol. Microbiol. Immunol. 35: 281-288. Dargevicius A., Petraityte R., Sribikiene B., Sileikiene E., Razukeviciene L., Ziginskiene E., Vorobjoviene R., Razanskiene A., Sasnauskas K., Bumblyte I.A., Kuzminskis V. (2007): Prevalence of antibodies to hantavirus among hemodialysis patients with end-stage renal failure in Kaunas and its district. Medicina. 43: 72-76. Darwish M.A., Faris R., Clemens J.D., Rao M.R., Edelman R. (1996): High seroprevalence of hepatitis A, B, C, and E viruses in residents in an Egyptian village in Nile delta: a pilot study. Am. J. Trop. Med. Hyg. 54: 554-558. Davis C.T., Ebel G.D., Lanciotti R.S., Brault A.C., Guzman H., Siirin M., Lambert A., Parsons R.E., Beasley D.W., Novak R.J., Elizondo-Quiroga D., Green E.N., Young D.S., Stark L.M., Drebot M.A., Artsob H., Tesh R.B., Kramer L.D., Barrett A.D. (2005): Phylogenetic analysis of North American West Nile virus isolates, 2001-2004: evidence for the emergence of a dominant genotype. Virology. 342: 252-265. De Araujo J., Thomazelli L.M., Henriques D.A., Lautenschalager D., Ometto T., Dutra L.M., Aires C.C., Favorito S., Durigon E.L. (2012): Detection of hantavirus in bats from remaining rain forest in Sao Paulo, Brazil. BMC Res. Notes. 5: 690-694. Deter J., Chaval Y., Galan M., Gauffre B., Morand S., Henttonen H., Laakkonen J., Voutilainen L., Charbonnel N., Cosson J.F. (2008): Kinship, dispersal and hantavirus transmission in bank and common voles. Arch. Virol. 153: 435-444. Di Bartolo I., Diez-Valcarce M., Vasickova P., Kralik P., Hernandez M., Angeloni G., Ostanello F., Bouwknegt M., Rodriguez-Lazaro D., Pavlik I., Ruggeri F.M. (2012): Hepatitis E virus in pork production chain in Czech Republic, Italy, and Spain, 2010. Emerg. Infect. Dis. 18: 1282-1289. Di Bartolo I., Angeloni G., Ponterio E., Ostanello F., Ruggeri F.M. (2015): Detection of hepatitis E virus in pork liver sausages. Int. J. Food Microbiol. 193: 29-33. Diamond J. (2002): Evolution, consequences, and future of plant and animal domestication. Nature. 418: 700- 707. Dingle H. (1996): Migration: the biology of life on the move. Oxford University Press, USA, 480 s. Doceul V., Bagdassarian E., Demange A., Pavio N. (2016): Zoonotic hepatitis E virus: classification, animal reservoirs and transmission routes. Viruses. 8: pii=E270. Dressel K. (2014): Report of Public Risk Perception. EDENext Project, unpublished. Drewes S., Ali H.S., Saxenhofer M., Rosenfeld U.M., Binder F., Cuypers F., Schlegel M., Rohrs S., Heckel G., Ulrich R.G. (2017): Host-associated absence of human Puumala virus infections in Northern and Eastern Germany. Emerg. Infect. Dis. 23: 83-86. Drexler J.F., Corman V.M., Drosten C. (2014): Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral. Res. 101: 45-56. Durand B., Dauphin G., Zeller H., Labie J., Schuffenecker I., Murri S., Moutou F., Zientara S. (2005): Serosurvey for West Nile virus in horses in southern France. Vet. Res. 157: 711-713.

117

Dušek J., Pejčoch M., Kolský A., Seeman T., Němec V., Stejskal J., Vondrák K., Janda J. (2006): Mild course of Puumala nephropathy in children in an area with sporadic occurrence hantavirus infection. Pediatr. Nephrol. 21: 1889-1992. Dzagurova T.K., Klempa B., Tkachenko E.A., Slyusareva G.P., Morozov V.G., Auste B., Kruger D.H. (2009): Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus outbreak in the European part of Russia. J. Clin. Microbiol. 47: 4029-4036. Ebel G.D., Carricaburu J., Young D., Bernard K.A., Kramer L.D. (2004): Genetic and phenotypic variation of West Nile virus in New York, 200-2003. Am. J. Trop. Med. Hyg. 71: 493-500. ECDC EFSA (2015): The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. Dostupné na: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4329/epdf, 21.3.2017. ECDC (2016a): An emerging threat. Mosquito-borne diseases in Europe. Dostupné na: http://ecdc.europa.eu/en/healthtopics/vectors/infographics/Pages/infographic-mosquito-borne-diseases-in- Europe.aspx, 21.3.2017. ECDC (2016b): Small bites, big problems. Tick-borne diseases in Europe. Dostupné na: http://ecdc.europa.eu/en/healthtopics/vectors/infographics/Pages/infographic-tick-borne-diseases-in- Europe.aspx, 21.3.2017. Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fow J.W., Silk J.R.D. (2010): Tracking of arctic terns Sterna paradisaea reveals longest animal migration. Proc. Natl. Acad. Sci. U. S. A. 107: 2078-2081. Elliot L.H., Ksiazek T.G., Rollin P.E., Spiropoulou C.F., Morzunov S., Monroe M., Goldsmith C.S., Humphrey C.D., Zaki S.R., Krebs J.W., Maupin G., Gage K., Chils J.E., Nichol S.T., Peters C.J. (1994): Isolation of the causative agent of hantavirus pulmonary syndrome. Am. J. Trop. Med. Hyg. 51: 102-108. EPIDAT (2017): Infekce v ČR. Dostupné na: http://www.szu.cz/publikace/data/infekce-v-cr. Epstein J.H., Prakash V., Smith C.S., Daszak P., McLaughlin A.B., Meehan G., Field H.E., Cunningham A.A. (2008): infection in fruit bats (Pteropus giganteus), India. Emerg. Infect. Dis. 14: 1309-1311. Ernek E., Kozuch O., Nosek J., Teplan J., Folk C. (1977): Arboviruses in birds in Slovakia. J. Hyg. Epidemiol. Microbiol. Immunol. 21: 353-359. Escribano-Romero E., Lupulovic D., Merino-Ramos T., Blazquez A.B., Lazic G., Lazic S., Saiz J.C., Petrovic T. (2015): West Nile virus serosurveillance in pigs, wild boars, and roe deer in Serbia. Vet. Microbiol. 176: 365-369. Essbauer S., Schmidt J., Conraths F.J., Friedrich R., Koch J., Hautmann W., Pfeffer M., Wolfel R., Finke J., Dobler G., Ulrich R.G. (2006): A new Puumala hantavirus subtype in rodents associated with an outbreak of Nephropathia epidemica in South-East Germany in 2004. Epidemiol. Infect. 134: 1333-1344. Essbauer S.S., Schmidt-Chanasit J., Madeja E.L., Wegener W., Friedrich R., Petraityte R., Sasnauskas K., Jacob J., Koch J., Dobler G., Conraths F.J., Pfeffer M., Pitra C., Ulrich R.G. (2007): Nephropathia epidemica in metropolitan area, Germany. Emerg. Infect. Dis. 13: 1271-1273. Esteves A., Almeida A.P., Galao R.P., Parreira R., Piedade J., Rodrigues J.C., Sousa C.A., Novo M.T. (2005): West Nile virus in Southern Portugal, 2004. Vector Borne Zoonotic Dis. 5: 410-413. Ettinger J., Hofmann J., Enders M., Tewald F., Oehme R.M., Rosenfeld U.M., Ali H.S., Schlegel M., Essbauer S., Osterberg A., Jacob J., Reild D., Klempa B., Ulrich R.G., Kruger D.H. (2012): Multiple synchronous outbreaks of Puumala virus, Germany, 2010. Emerg. Infect. Dis. 18: 1461-1464. Faber M., Wollny T., Schlegel M., Wanka K.M., Thiel J., Frank C., Rimek D., Ulrich R.G., Stark K. (2013): Puumala virus outbreak in Western Thuringia, Germany, 2010: epidemiology and strain identification. Zoonoses Public Health. 60: 549-554. Fedorov V., Goropashnaya A., Jerrell G.H., Fredga K. (1999): Phylogeographic structure and mitochondrial DNA variation in true lemmings (Lemmus) from the Eurasian Arctic. Biol. J. Linn. Soc. 66: 357-371. Feldmann H., Klenk H.D. (1996): Marburg and Ebola viruses. Adv. Virus. Res. 47: 1-52.

118

Fereidouni S.R., Ziegler U., Linke S., Niedrig M., Modirrousta H., Hoffmann B., Groschup M.H. (2011): West Nile virus monitoring in migrating and resident water birds in Iran: are common coots the main reservoirs of the virus in wetlands? Vector Borne Zoonotic Dis. 11: 1377-1381. Fidler D.P. (2001): International law and global infectious disease control. Commission on Macroeconomics and Health Working Paper No. WG2: 18 (2001). Available from: URL: http://www.cmhealth.org/cmh_papers&reports.htm#Working%20Group%202. Fidler D.P. (2003): Emerging trends in international law concerning global infectious disease control. Emerg. Infect. Dis. 9: 285-290. Fiennes R.N.T.W (1979): Zoonoses and the origins and ecology of human disease. Academic Press, London, 196 s. Figuerola J., Soriguer R., Rojo G., Gomez Tejedor C., Jimenez-Clavero M.A. (2007): Seroconversion in wild birds and local circulation of West Nile virus, Spain. Emerg. Infect. Dis. 13: 1915-1917. Filipe A.R. (1972): Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes. Acta. Virol. 16: 361. Fink S., Excoffier L., Heckel G. (2004): Mitochondrial gene diversity in the common voles Microtus arvalis shaped by historical divergence and local adaptations. Mol. Ecol. 13: 3501-3514. Fleming T.H., Eby P. (2003): Ecology of bat migration. In: Bat ecology, edited by Kunz T.H. and Fenton M.B., University of Chicago Press, Chicago, 798 s. Friant S., Paige S.B., Goldberg T.L. (2015): Drivers of bushmeat hunting and perceptions of zoonoses in Nigerian hunting communities. PLoS Negl. Trop. Dis. 9: e0003792. Fukuda S., Sunaga J., Saito N., Fujimura K., Itoh Y., Sasaki M., Tsuda F., Takahashi M., Nishizawa T., Okamoto H. (2004): Prevalence of antibodies to hepatitis E virus among Japanese blood donors: identification of three blood donors infected with a genotype 3 hepatitis E virus. J. Med. Virol. 73: 554-561. Fukuda S., Ishikawa M., Ochial N., Suzuki Y., Sunaga J., Nozawa K., Tsuda F., Takahashi M., Okamoto H. (2007): Unchanged high prevalence of antibodies to hepatitis E virus (HEV) and HEV RNA among blood donors with an elevated alanine aminotransferase level in Japan during 1991-2006. Arch. Virol. 152: 1623- 1635. Gaibani P., Pierro A., Alicino R., Rossini G., Cavrini F., Landini M.P., Sambri V. (2012): Detection of Usutu virus-specific IgG in blood donors from northern Italy. Vector Borne Zoonotic Dis. 12: 431–433. Galeno H., Mora J., Villagra E., Fernandez J., Hernandez J., Mertz G.J., Ramirez E. (2002): First human isolate of hantavirus (Andes virus) in the Americas. Emerg. Infect. Dis. 8: 657-661. Galvin K.A., Randall B.B., Smith N.M., Lynn S.J. (2001): Impacts of climate variability on East African pastoralists: linking social science and remote sensing. Clim. Res. 19: 161-172. Gao S., Li D., Zha E., Zhou T., Wang S., Yue X. (2015): Surveillance of hepatitis E virus contamination in shellfish in China. Int. J. Environ. Res. Public Health. 12: 2026-2036. Garcia-Bocanegra I., Jaen-Tellez J.A., Napp S., Arenas-Montes A., Fernandez-Morente M., Fernandez- Molera V., Arenas A. (2011): outbreak in horses and humans, Spain, 2010. Emerg. Infect. Dis. 17: 2397-2399. Garcia-Bocanegra I., Paniagua J., Gutiérrez-Guzmán A.V., Lecollinet S., Boadella M., Arenas-Montes A., Cano-Terriza D., Lowenski S., Gortázar C., Hofle U. (2016): Spatio-temporal trends and risk factors affecting West Nile virus and related flavivirus exposure in Spanish wild ruminants. BMC Vet. Res. 12: 249. Garigliany M.M., Marlier D., Tenner-Racz K., Eiden M., Cassart D., Gandar F., Beer M., Schmidt- Chanasit J., Desmecht D. (2014): Detection of Usutu virus in a bullfinch (Pyrrhula pyrrhula) and a great spotted woodpecker (Dendrocopos major) in north-west Europe. Vet. J. 199: 191–193. Garigliany M., Linden A., Gilliau G., Levy E., Sarlet M., Franssen M., Benzarti E., Derouaux A., Francis F., Desmecht D. (2017): Usutu virus, Belgium, 2016. Infect. Genet. Evol. 48: 116-119. Ghabrah T.M., Stickland G.T., Tsarev S., Yarbough P., Farci P., Engle R., Emerson S., Purcell R. (1995): Acute viral hepatitis in Saudi Arabia: seroepidemiological analysis, risk factores, clinical manifestations, and evidence for a sixth hepatitis agent. Clin. Infect. Dis. 21: 621-627.

119

Gjenero-Margan I., Aleraj B., Krajcar D., Lesnikar V., Klobučar A., Pem-Novosel I., Kurečic-Filipovic S., Komparak S., Martic R., Duričic S., Betica-Radic L., Okmadžic J., Vilivic-Čavlek J., Babic-Erceg A., Turkovic B., Avšič-Županc T., Radic I., Ljubic M., Šarac K., Benic N., Mlinaric-Galinovic G. (2011): Autochthonous in Croatia, august-september 2010. Euro Surveill. 16: pii=19805. Gledovic Z.B., Jeknic A.S., Grgurevis A.D., Rakocevic B.B., Bozovic B.R., Mugosa B.V. (2008): Hemorrhagic fever with renal syndrome in Montenegro. Jpn. J. Infect. Dis. 61: 386-387. Gligic A., Obradovic M., Stojanovic R., Hlaca D., Antonijevic B., Arnautovic A., Gaoin J., Frusic M., Lee P., Goldgaber D. (1988): Hemorrhagic fever with renal syndrome in Yugoslavia: detection of hantaviral antigen and antibody in wild rodents and serological diagnosis of human disease. Scand. J. Infect. Dis. 20: 261- 269. Gligic A., Stojanovic R., Obradovic M., Hlaca D., Dimkovic N., Diglisic G., Lukac V., Ler Z., Bogdanovic R., Antonijevic B., Ropac D., Avsic—Zupanc T., Leduc J.W., Ksiazek T., Yanagihara R., Gajdusek D.C. (1992): Hemorrhagic fever with renal syndrome in Yugoslavia: epidemiologic and epizootiologic features of a nationwide outbreak in 1989. Eur. J. Epidemiol. 8: 816-825. Golovljova I., Sjolander K.B., Lindegren G., Vene S., Vasilenko V., Plyusnin A., Lundkvist A. (2002): Hantaviruses in Estonia. J. Med. Virol. 68: 589-598. Golovljova I., Vasilenko V., Mittzenkov V., Prukk T., Seppet E., Vene S., Settergren B., Plyusnin A., Lundkvist A. (2007): Characterization of hemorrhagic fever with renal syndrome caused by hantaviruses, Estonia. Emerg. Infect. Dis. 13: 1773-1776. Gozalan A., Kalaycioqlu H., Uyar Y., Sevindi D.F., Turkyilmaz B., Cakir V., Cindemir C., Unal B., Yaqci-Caqlayik D., Korunkluoqlu G., Ertek M., Heyman P., Lundkvist A. (2013): Human Puumala and Dobrava hantavirus infections in the Black Sea region of Turkey: a cross-sectional study. Vector Brone Zoonotic Dis. 13: 111-118. Grandadam M., Caro V., Plumet S., Thiberge J.M., Souarés Y., Failloux A.B., Budelot M., Cosserat D., Leparc-Goffart I., Despres P. (2011): Chikungunya virus, Southeastern France. Emerg. Inf. Dis. 17: 910-913. Gratacap-Cavallier B., Genoulaz O., Brengel-Pesce K., Souler H., Innocenti-Francillard P., Bost M., Gofti L., Zmirou D., Seigneurin J.M. (2000): Detection of human and animal rotavirus sequences in drinking water. Appl. Environ. Microbiol. 66: 2690-2692. Grešíková M., Rajčáni J., Sekeyová M., Brummer-Korvenkontio M., Kozuch O., Labuda M., Turek R., Weismann P., Nosek J., Lysý J. (1984): Hemorrgahic fever virus with renal syndrome in small rodents in Czechoslovakia. Acta. Virol. 28: 416-421. Grodzki M., Schaeffer J., Piquet J.C., Le Saux J.C., Chevé J., Olivier J., Le Pendu J., Le Guyader F.S. (2014): Bioaccumulation efficiency, tissue distribution, and environmental occurrence of hepatitis E virus in bivalve shellfish from France. Appl. Environ. Microbiol. 80: 4269-4276. Gu S.H., Lim B.K., Kadjo B., Arai S., Kim J.A., Nicolas V., Lalis A., Denys C., Cook J.A., Dominguez S.R., Holmes K.V., Urushadze L., Sidamonidze K., Putkaradze D., Kuzmin I.V., Kosoy M.Y., Song J.W., Yanagihara R. (2014): Molecular phylogeny of hantaviruses harbored by insectivorous bats in Cote d´Ivoire and Vietnam. Viruses. 6: 1897-1910. Gubler D.J. (1989): Aedes aegypti and Aedea aegypti-borne disease control in the 1990s: top down or bottoom up. Am. J. Trop. Med. Hyg. 40: 571-578. Gubler D.J. (1998): Resurgent vector-borne diseases as a global helath problem. Emerg. Infect. Dis. 4: 442- 450. Guillois Y., Abravanel F., Miura T., Pavlo N., Vaillant V., Lhomme S., Le Guyader F.S., Rose N., Le Saux J.C., King L.A., Izopet J., Couturier E. (2016): High proportion of asymptomatic infections in an outbreak of hepatitis E associated with a spit-roasted piglet, France, 2013. Clin. Infect. Dis. 62: 351-357. Guo W.P., Lin X.D., Wang W., Tian J.H., Cong M.L., Zhang H.L., Wang M.R., Zhou R.H., Wang J.B., Li M.H., Xu J., Holmes E.C., Zhang Y.Z. (2013): Phylogeny and origins of hantaviruses harbored by bats, insectivores and rodents. PLoS Pathog. 9: e1003159. Gutiérrez-Guzmán A.V., Vicente J., Sobrino R., Perez-Ramirez E., Llorente F., Hofle U. (2012): Antibodies to West Nile virus and related falviviruses in wild boar, red foxes and other mesomammals from Spain. Vet. Microbiol. 159: 291-297.

120

Hall T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Series No. 41: 95-98. Halouzka J., Juricova Z., Jankova J., Hubalek Z. (2008): Serologic survey of wild boars for mosquito-borne viruses in South Moravia (Czech Republic). Ved. Med. 53: 266-271. Han B.A., Kramer A.M., Drake J.M. (2016): Global patterns of zoonotic disease in mammals. Trends Parasitol. 32: 565-577. Harvell C.D., Mitchell C.E., Ward J.R. (2002): Climate warming and disease risk for terrestrial and marine biota. Science. 296: 2158-2162. Hayes E.B., O´Leary D.R. (2004): West Nile virus infection: a pediatric perspective. Pediatrics. 113: 1375- 1381. Hazam R.K., Singla R., Kishore J., Singh S., Gupta R.K., Kar P. (2010): Surveillance of hepatitis E virus in sewage and drinking water in a resettlement colony of Delhi: what has been the experience? Arch. Virol. 155: 1227-1233. Heckel G., Burri R., Fink S., Desmet J.F., Excoffier L. (2005): Genetic structure and colonization processes in European populations of the common vole, Microtus arvalis. Evolution. 59: 2231-2242. Heiske A., Anheier B., Pilaski J., Volchkov V.E., Feldmann H. (1999): A new Clethrionomys-derived hantavirus from Germany: evidence for distinct genetic sublineages of Puumala viruses in Western Europe. Virus Res. 61: 101-112. Henttonen H., Kaikusalo A. (1993): Lemming movements. In: The biology of Lemmings, edited by Stenseth N.C., Academic press, London, 704 s. Hernandez-Triana L.M., Jeffries C.L., Mansfield K.L., Carnell G., Fooks A.R., Johnson N. (2014): Emergence of West Nile virus lineage 2 in europe: a review on the introduction and spread of a mosquito-borne disease. Front. Public Health. 2: 271-279. Heyman P., Klingstrom J., de Jaegere F., Leclercq G., Rozenfeld F., Escutenaire S., Vandenvedle C., Zizi M., Plyusnin A., Lundkvist A. (2002): Tula hantavirus in Belgium. Epidemiol. Infect. 128: 251-256. Heyman P., Ceianu C.S., Christova I., Tordo N., Beersma M., Joao Alves M., Lundkvist A., Hukic M., Papa A., Tenorio A., Zelená H., Essbauer S., Visontai I., Golovljova I., Connell J., Nicoletti L., Van Esbroeck M., Gjeruldsen Dudman S., Aberle S.W., Avsic-Zupanc T., Korukluoqlu G., Nowakowska A., Klempa B., Ulrich R.G., Bino S., Engler O., Opp M., Vaheri A. (2011): A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the hantavirus reservoirs in Europe, 2005- 2010. Euro Surveill. 16: pii=19961. Hoch S.P.F., Khan J.K., Rehman S. (1995): Crimean-congo hemorrhagic fever treated with oral ribavirin. Lancet. 346: 472-475. Hoenen T. (2016): Sequencing of Ebola virus genomes using nanopore technology. Bio. Protoc. 6: e1998. Höfle U., Gamino V., de Mera I.G., Mangold A.J., Ortίz J.A., de la Fuente J. (2013): Usutu virus in migratory song thrushes, Spain. Emerg. Infect. Dis. 19: 1173–1175. Hofmann J., Meisel H., Klempa B., Vesenbeckh S.M., Beck R., Michel D., Schmidt-Chanasit J., Ulrich R.G., Grund S., Enders G., Kruger D.H. (2008): Hantavirus outbreak, Germany, 2007. Emerg. Infect. Dis. 14: 850-852. Hofmann J., Meier M., Enders M., Fuhrer A., Ettinger J., Klempa B., Schmidt S., Ulrich R.G., Kruger D.H. (2014): Hantavirus disease in Germany due to infection with Dobrava-Belgrade virus genotype Kurkino. Clin. Microbiol. Infect. 20: O648-655. Holm D.K., Moessner B.K., Engle R.E., Zaaijer H.L., Georgsen J., Purcell R.H., Christensen P.B. (2015): Declining prevalence of hepatitis E antibodies among Danish blood donors. Transfusion. 55: 1662-1667. Horling J., Chizhikov V., Lundkvist A., Jonsson M., Ivanov L., Dekonenko A., Niklasson B., Dzagurova T., Peters C.J., Tkachenko E., Nichol S. (1996): Khabarovsk virus: a phylogenetically and serologically distinct Hantavirus isolated from Microtus fortis trapped in far-east Russia. J. Gen. Virol. 77: 687-694. Hubálek Z., Halouzka J., Juricová Z., Sebesta O. (1998): First isolation of mosquito-borne West Nile virus in the Czech Republic. Acta. Virol. 42: 119-120.

121

Hubálek Z., Halouzka J. (1999): West Nile fever – a reemerging mosquito-borne in Europe. Emerg. Infect. Dis. 5: 643:650. Hubálek Z., Halouzka J., Juricova Z., Prikazsky Z., Zakova J., Sebesta O. (1999): Surveillance of mosquito-borne viruses in Breclav after the flood of 1997. Epidemiol. Mikrobiol. Imunol. 48: 91-96. Hubálek Z., Savage H.M., Halouzka J., Juricova Z., Sanogo Y.O., Lusk S. (2000): West Nile virus investigations in South Moravia, Czechland. Viral Immunol. 13: 427-433. Hubálek Z. (2004): An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40: 639-659. Hubálek Z., Rudolf I. (2007): Mikrobiální zoonózy a sapronózy. Masarykova univerzita, Brno, 176 s. Hubálek Z., Halouzka J., Juricová Z., Sikutová S., Rudolf I., Honza M., Janková J., Chytil J., Marec F., Sitko J. (2008a): Serologic survey of birds for West Nile flavivirus in southern Moravia (Czech Republic) Vector Borne Zoonotic Dis. 8: 659–666. Hubálek Z., Wegner E., Halouzka J., Tryjanowski P., Jerzak L., Sikutová S., Rudolf I., Kruszewicz A.G., Jaworski Z., Wlodarczky R. (2008b): Serologic survey of potential vertebrate hosts for West Nile virus in Poland. Viral Immunol. 21: 247–253. Hubálek Z., Rudolf I., Bakonyi T., Kazdová K., Halouzka J., Šebesta O., Šikutová S., Juřicová Z., Nowotny N. (2010): Mosquito (Diptera: Culicidae) surveillance for arboviruses in an area endemic for West Nile (Lineage Rabensburg) and Tahyna viruses in Central Europe. J. Med. Entomol. 47: 466-472. Hubálek Z., Rudolf I. (2011): Microbial zoonoses and sapronoses. Springer, Netherlands, 457 s. Hubálek Z., Rudolf I., Čapek M., Bakonyi T., Betášová L., Nowotny N. (2014): Usutu virus in blackbirds (Turdus merula), Czech Republic, 2011–2012. Transbound. Emerg. Dis. 61: 273–276. Huff J.L., Barry P.A. (2003): B-virus (Cercopithecine herpesvirus I) infection in humans and macaques: potential for zoonotic disease. Emerg. Infect. Dis. 9: 246-250. Hukic M., Kurt A., Torstensson S., Lundkvist A., Wiger D., Niklasson B. (1996): Haemorrhagic fever with renal syndrome in north-east Bosnia. Lancet. 347: 56-57. Hunter P.R. (2003): Climate change and waterborne and vector-borne diseases. J. Appl. Microbiol. 94: 37S- 46S. ICTV (2017): The ICTV Taxonomy. Dostupné na: https://talk.ictvonline.org/taxonomy/. Jakab F., Horváth G., Freneczi E., Sebok J., Szucs G. (2008): First detection of Tula hantaviruses in Microtus arvalis voles in Hungary. Arch. Virol. 153: 2093. Jenkins P.T., Genovese K., Ruffler H. (2007): Broken screens: the regulation of live animal importation in the United States. Defenders of wildlife, Washington. Dostupné na: https://www.defenders.org/publications/broken_screens_report.pdf, 21.3.2017. Jesus de la Calla I., Espinosa-Garcia M.J., Perez-Ramos S., Cruz-Rosales E. (2012): First confirmed cases of human meningoencephalitis due to West Nile virus in Andalusia, Spain. Enferm. Infecc. Microbiol. Clin. 30: 426-427. Jia X.Y., Briese T., Jordan I., Rambaut A., Chi H.C., Mackenzie J.S., Hall R.A., Scherret J., Lipkin W.I. (1999): Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet. 354: 1971-1972. Johne R., Dremsek P., Reetz J., Heckel G., Hess M., Ulrich R.G. (2014): Hepeviridae: an expanding family of vertebrate viruses. Infect. Genet. Evol. 27: 212-229. Johnson N. (2014): The role of animals in emerging viral diseases. Elsevier, Academic Press, 364 s. Jöst H., Bialonski A., Maus D., Sambri V., Eiden M., Groschup M.H., Günther S., Becker N., Schmidt- Chanasit J. (2011): Isolation of Usutu virus in Germany. Am. J. Trop. Med. Hyg. 85: 551–553. Juhl D., Baylis S.A., Blumer J., Gorg S., Hennig H. (2014): Seroprevalence and incidence of hepatitis E virus infection in German blood donors. Transfusion. 54: 49-56. Jupp P.G. (2001): The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann. N.Y. Acad. Sci. 951: 143-152.

122

Juřicová Z. (1992): Arbovirus antibodies in wild game caugh in Moravia. Vet. Med. 37: 633-636. Juřicová Z., Hubalek Z., Halouzka J., Machacek P. (1993): Virologic detection of arboviruses in greater cormorants. Vet. Med. 38: 375-379. Juřicová Z., Halouzka J. (1993): Serological examination of domestic ducks in southern Moravia for antibodies against arboviruses of the groups A, B, California and Bunyamwera. Biologia. 48: 481-484. Juřicová Z., Hubálek Z. (1999): Serological surveys for arboviruses in the game animals of southern Moravia (Czech Republic). Folia. Zool. 48: 185-189. Kaci S., Nockler K., Johne R. (2008): Detection of hepatitis E virus in archived Germany wild boar serum samples. Vet. Microbiol. 128: 380-385. Kallio E.R., Begon M., Henttonen H., Koskela E., Mappes T., Vaheri A., Vapalahti O. (2010): Hantavirus infections in fluctuating host populations: the role of maternal antibodies. Pros. Biol. Sci. 277: 3783-3791. Kallio-Kokko H., Uzcategui N., Vapalahti O., Vaheri A. (2005): Viral zoonoses in Europe. FEMS Microbiol. Rev. 29: 1051-1077. Kang H.J., Bennett S.N., Sumibcay L., Arai S., Hope A.G., Mocz G., Song J.W., Cook J.A., Yanagihara R. (2009): Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One. 4: e6149. Khuroo M.S. (1980): Study of an epidemic of non-A, non-B hepatitis. Possibility of another human hepatitis virus distinct from post-transfusion non-A, non-B type. Am. J. Med. 68: 818-824. Khuroo M.S., Kamili S., Jameel S. (1995): Vertical transmission of hepatitis E virus. Lancet. 345: 1025-1026. Khuroo M.S., Kamili S., Yattoo G.N. (2004): Hepatitis E virus infection may be transmitted through blood transfusions in an endemic area. J. Gastroenterol. Hepatol. 19: 778-784. Khuroo M.S., Kamili S., Khuroo M.S. (2009): Clinical course and duration of viremia in vertically transmitted hepatitis E virus (HEV) infection in babies born to HEV-infected mothers. J. Viral. Hepat. 16: 519- 523. Khuroo M.S. (2011): Discovery of hepatitis E: the epidemic non-A, non-B hepatitis 30 years down the memory lane. Virus. Res. 161: 3-14. Khuroo M.S., Khuroo M.S., Khuroo N.S. (2016a): Hepatitis E: Discovery, global impact, control and cure. World J. Gastroenterol. 22: 7030-7045. Khuroo M.S., Khuroo M.S., Khuroo N.S. (2016b): Transmission of hepatitis E virus in developing countries. Viruses. 8: 253-273. King A. M., Lefkowitz E., Adams M. J., Carstens E. B. (2011): Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, 1338 s. Klein S.L., Calisher C.H. (2007): Emergence and persistence of hantaviruses. Curr. Top. Microbiol. Immunol. 315: 217-252. Klempa B., Meisel H., Rath S., Bartel J., Ulrich R., Kruger D.H. (2003): Occurrence of renal and pulmonary syndrome in a region of northeast Germany where Tula hantavirus circulates. J. Clin. Microbiol. 41: 4894-4897. Klempa B., Schutt M., Auste B., Labuda M., Ulrich R., Meisel H., Kruger D.H. (2004): First molecular identification of human Dobrava virus infection in central Europe. J. Clin. Microbiol. 42: 1322-1325. Klempa B., Stanko M., Labuda M., Ulrich R., Meisel H., Kruger D.H. (2005): Central European Dobrava hantavirus isolate from a striped field mouse (Apodemus agrarius). J. Clin. Microbiol. 43: 2756-2763. Klempa B., Fichet-Calvet E., Lecompte E., Auste B., Aniskin V., Meisel H., Denys C., Koivogui L., ter Meulen J., Kruger D.H. (2006): Hantavirus in african wood mouse, Guinea. Emerg. Infect. Dis. 12: 838-840. Klempa B., Radosa L., Kruger D.H. (2013a): The broad spectrum of hantaviruses and their hosts in Central Europe. Acta. Virol. 57: 130-137. Klempa B., Avsic-Zupanc T., Clement J., Dzagurova T.K., Henttonen H., Heyman P., Jakab F., Kruger D.H., Maes P., Papa A., Tkachenko E.A., Ulrich R.G., Vapalahti O., Vaheri A. (2013b): Complex evolution

123 and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics. Arch. Virol. 158: 521-529. Klingstrom J., Hardestam J., Lundkvist A. (2006): Dobrava, but not Saaremaa, hantavirus is lethal and induces nitric oxide production in suckling mice. Microbes Infect. 8: 728-737. Kobzík J., Daneš L. (1992): Laboratory-confirmed cases of hemorrhagic fever with renal syndrome which occurred in Breclav 1989-1990. Epidemiol. Mikrobiol. Immunol. 41: 65-68. Komar N., Panella N.A., Langevin S.A., Brault A.C., Amador M., Edwards E., Owen J.C. (2005): Avian hosts for West Nile virus in St. Tammany Parish, Louisiana, 2002. Am. J. Trop. Med. Hyg. 73: 1031-1037. Korva M., Duh D., Puterle A., Trilar T., Avšič-Županc T. (2009): First molecular evidence of Tula hantavirus in Microtus voles in Slovenia. Vir. Res. 144: 318-322. Kozuch O., Nosek J., Gresikova M., Ernek E. (1976): Surveillance of mosquito-borne focus in Záhorská Lowland. In: 2 International Arbeitskolloquium uber die Naturherde von Infektionskrankheiten in Zentraleuropa, edited by Sixl S. Hygiene Institut der Universitat. Graz, 115-118. Kramer L.D., Li J., Shi P.Y. (2007): West Nile virus. Lancet Neurol. 6: 171-181. Kubánková M., Němeček V., Chalupa P., Mihalčin M., Vašíčková P. (2016): Hepatitidis E virus. Epidemiol. Mikrobiol. Imunol. 65: 4-14. Kubánková M., Králík P., Lamka J., Zakovcik V., Dolanský M., Vašíčková P. (2015): Prevalence of hepatitis E virus in populations of wild animals in comparison with animals bred in game enclosures. Food. Environ. Virol. Ahead of print. Kumar R.M., Uduman S., Rana S., Kochiyil J.K., Usmani A., Thomas L. (2001): Sero-prevalence and mother-to-infant transmission of hepatitis E virus among pregnant women in the United Arab Emirates. Eur. J. Obstet. Gynecol. Reprod. Biol. 100: 9-15. Kumar S., Stecher G., Tamura K. (2016): MEGA7: molecular evolutionary genetics analysus version 7.0. for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. Kurkela S., Raetti O., Huhtamo E., Uzcátegui N.Y., Nuorti J.P., Laakkonen J., Manni T., Helle P., Vaheri A., Vapalahti O. (2008): Sindbis virus infection in resident birds, migratory birds, and humans. Emerg. Infect. Dis. 14: 41-47. Lacy M.D., Smego R.A. (1996): Viral hemorrhagic fevers. Adv. Pediatr. Infect. Dis. 12: 21-53. Lanciotti R.S., Ebel G.D., Deubel V., Kerst A.J., Murri S., Meyer R., Bowen M., McKinney N., Morrill W.E., Crabtree M.B., Kramer L.D., Roehrig J.T. (2002): Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 298: 96-105. Lecollinet S., Blanchard Y., Manson C., Lowenski S., Laloy E., Quenault H., Touzain F., Lucas P., Eraud C., Bahuon C., Zientara S., Beck C., Decors A. (2016): Dual emergence of Usutu virus in common blackbirds, eastern France, 2015. Emerg. Inf. Dis. 22: 2225. LeDuc J.W., Smith G.A., Childs J.E., Pingeiro F.P., Maiztegui J.L., Niklasson B., Antoniafes A., Robinson D.M., Khin M., Shirtridge K.F., Wooster M.T., Elwell M.R., Ilbery P.L.T., Kobch D., Rosa E.S.T., Rosen L. (1986): Global survey of antibody to Hantaan-related viruses among peridomestic rodents. Bull. World Health Organ. 64: 139-144. Lee H.W., Lee P.W., Johnson K.M. (1978): Isolation of the etiologic agent of Korean hemorrhagic fever. J. Infect. Dis. 137: 298-307. Lee H.W., Baek L.J., Johnson K.M. (1982): Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J. Infect. Dis. 146: 638-644. Lee P.W., Amyx H.L., Yanagihara R., Gajdusek D.C., Goldgaber D., Gibbs C.J. (1985): Partial characterization of Prospect Hill virus isolated from meadow voles in the United States. J. Infect. Dis. 152: 826- 829. Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., Délicat A., Paweska J.T., Gonzalez J.P., Swanepoel R. (2005): Fruit bats as reservoirs of Ebola virus. Nature. 438: 575-576.

124

Lhomme S., Top S., Bertahnoli S., Dubois M., Guerin J.L., Izopet J. (2015): Wildlife reservoir for hepatitis E virus, southwestern France. Emerg. Infect. Dis. 21: 1224-1226. Li T.C., Chijiwa K., Sera N., Ishibashi T., Etoh Y., Shinohara Y., Kurata Y., Ishida M., Sakamoto S., Takeda N., Miyamura T. (2005): Hepatitis E virus transmission from wild boar meat. Emerg. Infect. Dis. 11: 1958-1960. Li T.C., Miyamura T., Takeda N. (2007): Detection of hepatitis E virus RNA from the bivalve Yamato- Shijimi (Corbicula japonica) in Japan. Am. J. Trop. Med. Hyg. 76: 170-172. Librado P., Rozas J. (2009): DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25: 1451-1452. Linard C., Tersago K., Leirs H., Lambin E.F. (2007): Environmental conditions and Puumala virus transmission in Belgium. Int. J. Health Geogr. 6: 55. Lindsey N.P., Hayes E.B., Staples J.E., Fischer M. (2009): West Nile virus disease in children, United States, 1999-2007. Pediatrics. 123: e1084-1089. Lindsey N.P., Staples J.E., Lehman J.A., Fischer M. (2012): Medical risk factors for severe West Nile virus disease, United States, 2008-2010. Am. J. Trop. Med. Hyg. 87: 179-184. Liumbruno G.M., Calteri D., Petropulacos K., Mattivi A., Po C., Maici P., Tomasini I., Zucchelli P., Silvetri A.R., Sambri V., Pupella S., Catalano L., Piccinini V., Calizzani G., Grazzini G. (2008): The Chikungunya epidemic in Italy and its repercussion on the blood systém. Blood Transfus. 6: 199-210. LoGiudice K., Ostfeld R.S., Schmidt K.A. (2003): The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. U. S. A. 100: 567-571. Lourenco J., Recker M. (2014): The 2012 Madeira Dengue outbreak: epidemiological determinants and future epidemic potential. PLoS Negl. Trop. Dis. 8: e3083. Ludwig B., Kraus F.B., Allwinn R., Doerr H.W., Preiser W. (2003): Viral zoonoses – a threat under control. Interviology. 46: 71-78. Lundkvist A., Lindegren G., Brus Sjolander K., Mavtchoutko V., Vene S., Plyusnin A., Kalnina V. (2002): Hantavirus infections in Latvia. Eur. J. Clin. Microbiol. Infect. Dis. 21: 626-629. Lvov D.K., Schelkanov M.L., Kolobukhina L.V., Galkina I.V., Aristova V.A., Morozova T.N., Porshina E.S., Kulikov A.G., Kogdenko N.V., Andronova O.V., Pronin N.I., Shevkoplias V.N., Fontanetskii A.S., Vlasov N.A., Nepoklonov E.A. (2008): Serological monitoring of arbovirus infections in the estuary of the Kuban River (the 2006-2007 data). Vopr. Virusol. 53: 30-35. Maas M., de Vries A., van Roon A., Takumi K., van der Giessen J., Rockx B. (2017): High prevalence of Tula hantavirus in common voles in the Netherlands. Vector Borne Zoonotic Dis. 17: 200-205. MacPherson L.W. (1956): Some observations on the epizootiology of Newcastle disease. Can. J. Comp. Med. Vet. Sci. 20: 155-168. Mailles A., Dellamonica P., Zeller H. (2003): Human and equine West Nile virus infections in France, august- seprember 2003. Euro Surveill. 7: 2564. Mansuy J.M., Peron J.M., Abravanel F., Poirson H., Dubois M., Miedouge M., Vischi F., Alric L., Vinel J.P., Izopet J. (2004): Hepatitis E in the south west of France in individuals who have never visited an endemic area. J. Med. Virol. 74: 419-424. Marano N., Arguin P.M., Pappaioanou M. (2007): Impact of globalization and animal trade on infectious disease epidemiology. Emerg. Infect. Dis. 13: 1807-1809. Masuda J., Yano K., Tamada Y., Takii Y., Ito M., Omagari K., Kohno S. (2005): Acute hepatitis E of a man who consumed wild boar meat prior to the onset of illness in Nagasaki, Japan. Hepatol. Res. 31: 178-183. Matsubayashi K., Nagaoka Y., Sakata H., Sato S., Fukai K., Kato T., Takahashi K., Mishiro S., Imai M., Takeda N., Ikeda H. (2004): Transfusion-transmitted hepatitis E caused by apparently indigenous hepatitis E virus strain in Hokkaido, Japan. Transfusion. 44: 934-940. Matsubayashi K., Kang J.H., Sakata H., Takahashi K., Shindo M., Kato M., Sato S., Kato T., Nishimori H., Tsuji K., Maguchi H., Yoshida J., Maekubo H., Mishiro S., Ikeda H. (2008): A case of transfusion-

125 transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food-borne route. Transfusion. 48: 1368-1375. Matsuda H., Okada K., Takahashi K., Mishiro S. (2003): Sever hepatitis E virus infection after ingestion of uncooked liver from a wild boar. J. Infect. Dis. 188: 944 Matyášová L. (1998): Sérologický přehled hantavirových nákaz. Zprávy CEM. 7: 37. McElhinney L., Fooks A.R., Featherstone C., Smith R., Morgan D. (2016): Hantavirus (Seoul virus) in pet rats: a zoonotic viral threat. Veterinary Record. 178: 171-172. McLean R.G., Ubico S.R., Bourne D., Komar N. (2002): West Nile virus in livestock and wildlife. Curr. Top. Microbiol. Immunol. 267: 271-308. Meisel H., Lundkvist A., Gantzer K., Bar W., Sibold C., Kruger D.H. (1998): First case of infection with hantavirus Dobrava in Germany. Eur. J. Clin. Microbiol. Infect. Dis. 17: 884-885. Meng X.J., Purcell R.H., Halbur P.G., Lehman J.R., Webb D.M., Tsareva T.S., Haynes J.S., Thacker B.J., Emerson S.U. (1997): A novel virus in swine is closely related to the human hepatitis E virus. Proc. Natl. Acad. Sci. U.S.A. 94: 9860-9865. Mentel R., Bordihn N., Wendel H., Niklasson B. (1999): Hantavirus Dobrava infection with pulmonary manifestation. Med. Microbiol. Immunol. 188: 51-53. Merdic E., Peric N., Pandak N., Kurolt I.C., Turic N., Vignjevic G., Stolfa I., Milas J., Bogojevic M.S., Markotic A. (2013): West Nile virus outbreak in humans in Croatia, 2012. Coll. Antropol. 37: 943-947. Mertens M., Hofmann J., Petraityte-Burneikiene R., Ziller M., Sasnauskas K., Friedrich R., Niederstrasser O., Kruger D.H., Groschup M.H., Petri E., Werdermann S., Ulrich R.G. (2011): Seroprevalence study in forestry workers of a non-endemic region in eastern Germany reveals infections by Tula and Dobrava-Belgrade hantaviruses. Med. Microbiol. Immunol. 200: 263-268. Meslin F.X. (2008): Public health impact of zoonoses and international approaches for their detection and containment. Vet. Ital. 44: 583-590. Mesquita J.R., Oliveira D., Rivadulla E., Abreu-Silva J., Varela M.F., Romalde J.L., Nascimento M.S. (2016): Hepatitis E virus genotype 3 in mussels (Mytilus galloprovinciallis), Spain. Food. Microbiol. 58: 13-15. Mettenleiter T.C. (2006): Zoonotic respiratory diseases caused by viruses. Symposium 1: Respiratory zoonoses. Dostupné na: http://www.the-vcrs.org/2006meetingupdates/Symposium-I-Res-Zoonoses.pdf, 21.3.2017. Michalski A., Niemcewicz M., Bielawska-Drozd A., Nowakowska A., Gawel J., Pitucha G., Joniec J., Zielonka K., Marciniak-Niemcewicz A., Kocik J. (2014): Surveillance of hantaviruses in Poland: a study of animal reservoirs and human hantavirus disease in Subcarpathia. Vector Borne Zoonotic Dis. 14: 514-522. Mishra N., Kalaiyarasu S., Nagarajan S., Rao M.V., George A., Sridevi R., Behera S.P., Dubey S.C., McCracken T., Newman S.H. (2012): Serological evidence of West Nile virus infection in wild migratory and resident water birds in Eastern and Northern India. Comp. Immunol. Microbiol. Infect. Dis. 35: 591-598. Molnar E., Gulyas M.S., Kubinyi L., Nosek J., Kozuch O., Ernek E., Labuda M., Grulich I. (1976): Studies on the occurrence of tick-borne encephalitis in Hungary. Acta. Vet. Acad. Sci. Hunga. 26: 419-437. Monaco F., Savini G., Calistri P., Polci A., Pinoni C., Bruno R., Lelli R. (2011): 2009 West Nile disease epidemic in Italy: first evidence of overwintering in Western Europe? Res. Vet. Sci. 91: 321-326. Moniuszko-Malinowska A., Czupryna P., Dunaj J., Zajkowska J., Siemieniako A., Pancewicz S. (2016): West Nile virus and Usutu – a threat to Poland. Przegl. Epidemiol. 70: 7-10. Mostashari F., Bunning M.L., Kitsutani P.T., Singer D.A., Nash D., Cooper M.J., Katz N., Lijebjelke K.A., Biggerstaff B.J., Fine A.D., Layton M.C., Mullin S.M., Johnson A.J., Martin D.A., Hayes E.B., Campbell G.L. (2001): Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet. 358: 261-264. Moudy R.M., Meola M.A., Ebel G.D., Kramer L.D. (2007): A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am. J. Trop. Med. Hyg. 77: 365-370.

126

Mukhopadhyay S., Kim B.S., Chipman P.R., Rossmann M.G., Kuhn R.J. (2013): Structure of West Nile virus. Science. 302: 248. Murgue B., Murri S., Triki H., Deubel V., Zeller H.G. (2001a): West Nile in the Mediterranean basin: 1950- 2000. Ann. N.Y. Acad. Sci. 951: 117-126. Murgue B., Murri S., Zientara S., Durand B., Durand J.P., Zeller H. (2001b): West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg. Infect. Dis. 7: 692-696. Murphy F.A. (1998): Emerging zoonoses. Emerg. Infect. Dis. 4: 429-435. Napoli C., Bella A., Declich S., Grazzini G., Lombardini L., Nanni Costa A., Nicoletti L., Pompa M.G., Pupella S., Russo F., Rizzo C. (2013): Integrated human surveillance systems of West Nile virus infections in Italy: the 2012 experience. Int. J. Environ. Res. Public Health. 10: 7180-7192. Navaneethan U., Al Mohajer M., Shata M.T. (2008): Hepatitis E and pregnancy: understanding the pathogenesis. 28: 1190-1199. Nayak D.P. (2000): Virus morphology, replication, and assembly. In: Viral ecology, edited by Hurst C.J., Academic Press, New York, 639 s. NCBI (2008): Vector-borne diseases: understanding the environmental, human health and ecological connections. Workshop summary, 350 s. Németh V., Madai M., Maraczi A., Berczi B., Horvath G., Oldal M., Kisfali P., Banyai K., Jakab F. (2011): Detection of Dobrava-Belgrade hantavirus using recombinant-nucleocapsid-based enzyme-linked immunosorbent assay and SYBR Green-based real-time reverse transcriptase-polymerase chain reaction. Arch. Virol. 156: 1655-1660. Németh V., Oldal M., Madai M., Horváth G., Kemenesi G., Dallos B., Bányai K., Jakab F. (2013): Molecular characterization of Dobrava and Kurkuno genotypes of Dobrava-Belgrade hantavirus detected in Hungary and Northern Croatia. Virus. Genes. 47: 546-549. Nemirov K., Vapalahti O., Lundkvist A., Vasilenko V., Golovljova I., Pluyusnina A., Niemimaa J., Laakkonen J., Henttonen H., Vaheri A., Plyusnin A. (1999): Isolation and characterization of Dobrava hantavirus carried by the striped field mouse (Apodemus agrarius) in Estonia. J. Gen. Virol. 80: 371-379. Nemirov K., Vapalahti O., Papa A., Plyusnina A., Lundkvist A., Antoniadis A., Vaheri A., Plyusnin A. (2003): Genetic characterization of new Dobrava hantavirus isolate from Greese. J. Med. Virol. 69: 408-416. Nemirov K., Andersen H.K., Leirs H., Henttonen H., Vaheri A., Lundkvist A., Plyusnin A. (2004): Saaremaa hantavirus in Denmark. J. Clin. Virol. 30: 254-257. Nikolay B., Diallo M., Boye C.S., Sall A.A. (2011): Usutu virus in Africa. Vector Borne Zoonotic Dis. 11: 1417–1423. Nowakowska A., Heyman P., Knap J.P., Burzynski W., Witas M. (2009): The first established focus of hantavirus infection in Poland, 2007. Ann. Agric. Environ. Med. 16: 79-85. Olsson G.E., White N., Ahlm C., Elgh F., Verlemyr A.C., Juto P., Palo R.T. (2002): Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus). Emerg. Infect. Dis. 8: 924-929. Olsson G.E., Leirs H., Henttonen H. (2010): Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis. 10: 549-561. Papa A., Johnson A.M., Stockton P.C., Bowen M.D., Spiropoulou C.F., Alexiou-Daniel S., Ksiazek T.G., Nichol S.T., Antoniadis A. (1998): Retrospective serological and genetic study of the distribution of hantaviruses in Greece. J. Med. Virol. 55: 321-327. Papa A., Zelená H., Barnetová D., Petroušová L. (2010): Genetic detection of Dobrava/Belgrade virus in a Czech patient with haemorrhagic fever with renal syndrome. Clin. Microbiol. Infect. 16: 1187-1190. Papa A. Christova I. (2011): Genetic detection of dobrava/belgrade virus, Bulgaria. Emerg. Infect. Dis. 17: 308-309. Papa A., Xanthopoulou K., Gewehr S., Mourelatos S. (2011): Detection of West Nile virus lineage 2 in mosquitoes during a human outbreak in Greece. Clin. Microbiol. Infect. 17: 1176-1180.

127

Parkes M.W., Bienen L., Breilh J., Hsu L.N., Patz J.A., Rosenthal J.P., Sahani M., Sleigh A., Walthner- Toews D., Yassi A. (2005): All hands on deck: transdisciplinary approaches to emerging infectious disease. EcoHealth. 2: 258-272. Pavio N., Meng X.J., Renou C. (2010): Zoonotic hepatitis E: animal reservoirs and emerging risks. Vet. Res. 41: 46-66. Pavio N., Meng X.J., Doceul V. (2015): Zoonotic origin of hepatitis E. Curr. Opin. Virol. 10: 34-41. Pecorari M., Longo G., Gennari W., Grottola A., Sabbatini A., Tagliazucchi S., Savini G., Monaco F., Simone M., Lelli R., Rumpianesi F. (2009): First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Euro Surveill. 14: pii=19446. Pejčoch M. (1995): Co to jsou hantaviry? Vesmír. 74: 446. Pejčoch M., Kříž B. (2003): Hantaviruses in the Czech Republic. Emerg. Infect. Dis. 9: 756-757. Pejčoch M., Unar J., Kříž B., Pauchová E., Rose R. (2010a): Characterization of a natural focus of Puumala hantavirus infection in the Czech Republic. Cent. Eur. J. Public Health. 18: 116-118. Pejčoch M., Pazdiora P., Eiselt J., Hájek V., Veselá E., Vlasák J., Benešová J., Kubátová A., Kříž B. (2010b): Seroprevalence of hantavirus antibodies among chronic hemodialysis patients in the Czech Republic. Epidemiol. Mikrobiol. Imunol. 59: 48-51. Pejčoch M., Kříž B., Malý M. (2010c): Promořenost hantaviry ve dvou oblastech s přírodními ohnisky hantavirů. Prakt. Lékař. 90: 167-170. Petersen L.R., Roehrig J.T. (2001): West Nile virus: a reemerging global pathogen. Emerg. Infect. Dis. 7: 611-614. Petrů K., Pejčoch M., Monhart V. (1997): Hemorrhagická horečka s renálním syndromem. Čas. Lék. Čes. 136: 739-740. Pfeffer M., Dobler G. (2010): Emergence of zoonotic arboviruses by animal trade and migration. Parasit. Vectors. 3: 35-50. Pilaski J., Ellerich C., Kreutzer T., Lang A., Benik W., Pohl-Koppe A., Bode L., Vanek E., Autenrieth I.B., Bigos K. (1991): Haemorrhagic fever with renal syndrome in Germany. Lancet. 337: 111. Pilaski J., Feldmann H., Morzunov S., Rollin P.E., Ruo S.L., Lauer B., Peters C.J., Nichol S.T. (1994): Genetic identification of a new Puumala virus strain causing severe hemorrhagic fever with renal syndrome in Germany. J. Infect. Dis. 170: 1456-1462. Platonov A.E., Shipulin G.A., Shipulina O.Y., Tyutyunnik E.N., Frolochkina T.I., Lanciotti R.S., Yazyshina S., Platonova O.V., Obukhov I.L., Zhukov A.N., Vengerov Y.Y., Pokrovskii V.I. (2001): Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999. Emerg. Infect. Dis. 7: 128-132. Plyusnin A., Vapalahti O., Lankinen H., Lehvaslaiho H., Apekina N., Myasnikov Y., Kallio-Kokko H., Henttonen H., Lundkvist A., Brummer-Korvenkontio M., Gavrilovskaya I., Vaheri A. (1994): Tula virus: a newly detected hantavirus carried by European common voles. J. Virol. 68: 7833-7839. Plyusnin A., Nemirov K., Apekina N., Plyusnina A., Lundkvist A., Vaheri A. (1999): Dobrava hantavirus in Russia. Lancet. 353: 207. Plyusnin A., Vaheri A., Lundkvist A. (2003): Genetic interaction between Dobrava and Saaremaa hantaviruses: now or million years ago? J. Virol. 77: 7156-7157. Plyusnin A., Vaheri A., Lundkvist A. (2006): Saaremaa hantavirus should not be confused with its dangerous relative, Dobrava virus. J. Clin. Microbiol. 44: 1608-1609. Plyusnina A., Deter J., Charbonnel N., Cosson J.F., Plyusnin A. (2007): Puumala and Tula hantaviruses in France. Vir. Res. 129: 58-63. Plyusnina A., Frenczi E., Racz G.R., Nemirov K., Lundkvist A., Vaheri A., Vapalahti O., Plyusnin A. (2009): Co-circulation of three pathogenic hantaviruses: Puumala, Dobrava and Saaremaa in Hungary. J. Med. Virol. 81: 2045-2052.

128

Popovic N., Milosevic B., Urosevic A., Poluga J., Lavadinovic L., Nedelijkovic J., Jevtovic D., Dulovic O. (2013): Outbreak of West Nile virus infection among humans in Serbia, August to October 2012. Euro Surveill. 18: pii=20613. Popugaeva E., Witkowski P.T., Schlegel M., Ulrich R.G., Auste B., Rang A., Kruger D.H., Klempa B. (2012): Dobrava-Belgrade hantavirus from Germany shows receptor usage and innate immunity induction consistent with the pathogenicity of the virus in humans. PLoS One. 7: e35587. Pounder K.C., Begon M., Sironen T., Henttonen H., Watts P.C., Voutilainen L., Vapalahti O., Klempa B., Fooks A.R., McElhinney L.M. (2013): Novel hantavirus in field vole, United Kingdom. Emerg. Infect. Dis. 19: 673-675. Prosser D.J., Nagel J., Takekawa J.Y. (2014): Animal migration and risk of spread of viral infections. In: Viral infections and global change, edited by Singh S.K., Wiley-Blackwell, 660 s. Radosa L., Schlegel M., Gebauer P., Ansorge H., Heroldova M., Janova E., Stanko M., Mosansky L., Fricova J., Pejcoch M., Suchomel J., Purchart L., Groschup M.H., Kruger D.H., Ulrich R.G., Klempa B. (2013): Detection of shrew-borne hantavirus in Eurasian pygmy shrew (Sorex minutus) in Central Europe. Infect. Genet. Evol. 19: 403-410. Rasche F.M., Schmidt S., Kretzschmar C., Mertens M., Thiel J., Groschup M.H., Schlegel M., Mayer C., Lindner T.H., Schiekofer S., Ulrich R.G. (2015): Autochthonous Dobrava-Belgrade virus infection in Eastern Germany. Clin. Nephrol. 83: 111-116. Rao J.R., Millar B.C., Moore J.E. (2009): Avian influenza, migratory birds and emerging zoonoses: unusual viral RNA, enteropathogens and Cryptosporidium in poultry litter. Biosci. Hypotheses. 2: 363-369. Razzauti M., Plyusnina A., Niemimaa J., Henttonen H., Plyusnin A. (2012): Co-circulation of two Puumala hantavirus lineages in Latvia: a Russian lineage described previously and a novel Latvian lineage. J. Med. Vriol. 84: 314-318. Razzauti M., Plyusnina A., Henttonen H., Plyusnin A. (2013): Microevolution of Puumala hantavirus during a complete population cycle of its host, the bank vole (Myodes glareolus). PLoS One. 8: e64447. Reil D., Imholt C., Drewes S., Ulrich R.G., Eccard J.A., Jacob J. (2016): Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany? Zoonoses Public Health. 63: 83-88. Reynes J.M., Carli D., Boukezia N., Debruyne M., Herti S. (2015): Tula hantavirus infection in a hospitalised patient, France, June 2015. Euro Surveill. 20: pii=30095. Rijks J.M., Kik M.L., Slaterus R., Foppen R., Stroo A., Ijzer J., Stahl J., Grone A., Koopmans M., van der Jeugd H.P., Reusken C. (2016): Wudespread Usutu virus outbreak in birds in the Netherlands, 2016. Euro Surveill. 21: pii=30391. Riveiro-Barciela M., Minguez B., Girones R., Rodriguez-Frias F., Quer J., Buti M. (2015): Phylogenetic demonstration of hepatitis E infection transmitted by port meat ingestion. J. Clin. Gastroenetrol. 49: 165-168. Rizzo C., Salcuni P., Nicoletti L., Ciufolini M.G., Russo F., Masala R., Frongia O., Finarelli A.C., Gramegna M., Gallo L., Pompa M.G., Rezza G., Salmaso S., Declich S. (2012): Epidemiological surveillance of West Nile neuroinvasive disease in Italy, 2008 to 2011. Euro Surveill. 17: pii=20172. Rose M.R., Lauder G.V. (1996): Adaptation. Academic Press, California, 511 s. Rosenfeld U.M., Drewes S., Ali H.S., Sadowska E.T., Mikowska M., Heckel G., Koteja P., Ulrich R.G. (2017): A highly divergent Puumala virus lineage in southern Poland. Arch. Virol. Ahead of print. Rudolf I., Bakonyi T., Sebesta O., Mendel J., Peško J., Betášová L., Blažejová H., Venclíková K., Straková P., Nowotny N., Hubálek Z. (2014): West Nile virus lineage 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV endemic area to the North? Euro Surveill. 17: 2-5. Rudolf I., Bakonyi T., Sebesta O., Mendel J., Pesko J., Betasova L., Blazejova H., Venclikova K., Strakova P., Nowotny N., Hubalek Z. (2015): Co-circulation of Usutu virus and West Nile virus in a reed bed ekosystém. Parasit. Vectors. 8: 520-525. Růžek D. (2012): Lékařská virologie, 1. část. Učební text, České Budějovice, 56 s.

129

Said B., Ijaz S., Chand M.A., Kafatos G., Tedder R., Morgan D. (2014): Hepatitis E virus in England and Wales: indigenous infection is associated with the consumption of processed pork products. Epidemiol. Infect. 142: 1467-1475. Sadkowska-Todys M., Dudek-Godeau D., Kaminska S., Baumann-Popczyk A., Czerwinski M., Kucharczyk B., Zielinski A. (2015): Occurence and maintenance of hantavirus infections among rodent populations in their natural habitat – results of a field study from Podkarpacike province, Poland 2010-2012. Przegl. Epidemiol. 69: 283-288. Sandmann S., Meisel H., Razanskiene A., Wolbert A., Pohl B., Kruger D.H., Sasnauskas K., Ulrich R.G. (2005): Detection of human hantavirus infections in Lithuania. Infection. 33: 66-72. Savini G., Monaco F., Terregino C., di Gennaro A., Bano L., Pinoni C., de Nardi R., Bonilauri P., Pecorari M., di Gialleonardo L. (2011): Usutu virus in Italy: An emergence or a silent infection? Vet. Microbiol. 151: 264–274. Scobie L., Dalton H.R. (2013): Hepatitis E: source and route of infection, clinical manifestations and new developments. J. Viral. Hepat. 20: 1-11. Sedas V.T. (2007): Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. J. Infect. Dev. Ctries. 1: 224-241. Sedlák K., Tomšíčková M. (2007): Nebezpečné infekce zvířat a člověka. Scientia, 212 s. Scharninghausen J.J., Pfeffer M., Meyer H., Davis D.S., Honeycutt R.L., Faulde M. (2002): Genetic evidence for Tula virus in Microtus arvalis and Microtus agrestis populations in Croatia. Vector Borne Zoonotic Dis. 2: 19-27. Scheuch M., Hoper D., Beer M. (2015): RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics. 16: 69-86. Schilling S., Emmerich P., Klempa B., Auste B., Schnaith E., Schmitz H., Kruger D.H., Gunther S., Meisel H. (2007): Hantavirus disease outbreak in Germany: limitations of routine serological diagnostics and clustering of virus sequences of human and rodent origin. J. Clin. Microbiol. 45: 3008-3014. Schlegel M., Klempa B., Auste B., Bemmann M., Schmidt-Chanasit J., Buchner T., Groschup M.H., Meier M., Balkema-Buschmann A., Zoller H., Kruger D.H., Ulrich R.G. (2009): Dobrava-belgrade virus spillover infections, Germany. Emerg. Infect. Dis. 15: 2017-2020. Schlegel M., Kindler E., Essbauer S.S., Wolf R., Thiel J., Groschup M.H., Heckel G., Oehme R.M., Ulrich R.G. (2012a): Tula virus infections in the eurasian water vole in central Europe. Vector Borne Zoonotic Dis. 12: 503-513. Schlegel M., Ali H.S., Stieger N., Groschup M.H., Wolf R., Ulrich R.G. (2012b): Molecular identification of small mammal species using novel cytochrome B gene-derived degenerated primers. Biochem. Genet. 50: 440- 447. Schlegel M., Jacob J., Kruger D.H., Rang A., Ulrich R.G. (2014): Hantavirus emergence in rodents, insectivores and bats. In: The role of animals in emerging viral diseases, edited by Johnson N., Elsevier, Academic Press, 364 s. Schmidt B., Schaub M., Steinfartz S. (2007): Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity. Frontiers in Zoology. 4: 19. Schmidt S., Essbauer S.S., Mayer-Scholl A., Poppert S., Schmidt-Chanasit J., Klempa B., Henning K., Schares G., Groschup M.H., Spitzenberger F., Richter D., Heckel G., Ulrich R.G. (2014): Multiple infections of rodents with zoonotic pathogens in Austria. Vector Borne Zoonotic Dis. 14: 467–475. Schmidt S., Saxenhofer M., Drewes S., Schlegel M., Wanka K.M., Frank R., Klimpel S., von Blackenhagen F., Maaz D., Herden C., Freise J., Wolf R., Stubbe M., Borkenhagen P., Ansorge H., Eccard J.A., Lang J., Jourdain E., Jacob J., Marianneau P., Heckel G., Ulrich R.G. (2016): High genetic structuring of Tula hantavirus. Arch. Virol. 161: 1135-1149. Schmidt-Chanasit J., Essbauer S., Petraityte R., Yoshimatsu K., Tackmann K., Conraths F.J., Sasnauskas K., Arikawa J., Thomas A., Pfeffer M., Scharninghausen J.J., Splettstoesser W., Wenk M., Heckel G., Ulrich R.G. (2010): Extensive host sharing of central European Tula virus. J. Virol. 84: 459-474.

130

Schultze D., Lundkvist A., Blauenstein U., Heyman P. (2002): Tula virus infection associated with fever and exanthema after a wild rodent bite. Eur. J. Clin. Microbio. Infect. Dis. 21: 304-306. Sibold C., Sparr S., Schulz A., Labuda M., Kozuch O., Lysý J., Kruger D.H., Meisel H. (1995): Genetic characterization of a new hantavirus detected in Microtus arvalis from Slovakia. Virus Genes. 10: 277-281. Sibold C., Ulrich R., Labuda M., Lundkvist A., Martens H., Schutt M., Gerke P., Leitmeyer K., Meisel H., Kruger D.H. (2001): Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J. Med. Virol. 63: 158-167. Singh S., Mohanty A., Joshi Y.K., Deka D., Mohanty S., Panda S.K. (2003): Mother-to-child transmission of hepatitis E virus infection. Indian. J. Pediatr. 70: 37-39. Sirbu A., Ceianu C.S., Panculescu-Gatej R.I., Vazquez A., Tenorio A., Rebreanu R., Niedrig M., Nicolescu G., Pistol A. (2011): Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Euro Surveill. 13: pii=19762. Smithburn K.C., Hughes T.P., Burke A.W., Paul J.H. (1940): A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. Hyg. 20: 471-473. Snapinn K.W., Holmes E.C., Young D.S., Bernard K.A., Kramer L.D., Ebel G.D. (2007): Declining growth rate of West Nile virus in North America. J. Virol. 81: 2531-2534. Song J.W., Gligic A., Yanagihara R. (2002): Identification of Tula hantavirus in Pitymys subterraneus captured in the Cacak region of Serbia-Yugoslavia. Int. J. Infect. Dis. 6: 31-36. Song J.W., Beak L.J., Song K.J., Skrok A. (2004): Characterization of Tula virus from common voles (Microtus arvalis) in Poland: Evidence for geographic-specific phylogenetic clustering. Virus Genes. 29: 239- 247. Song J.W., Gu S.H., Bennett S.N., Arai S., Puorger M., Hilbe M., Yanagihara R. (2007a): Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virol. J. 4:114-119. Song J.W., Kang H.J., Song K.J., Truong T.T., Bennett S.N., Arai S., Truong N.U., Yanagihara R. (2007b): Newfound hantavirus in Chinese mole shrew, Vietnam. Emerg. Infect. Dis. 13: 1784-1878. Stamenkovic G., Nikolic V., Blagojevic J., Bugarski-Stanojevic V., Adnadevic T., Stanojevic M., Vujosevic M. (2015): Genetic analysis of Dobrava-Belgrade virus from western Serbia – a newly detected focus in the Balkan Peninsula. Zoonoses Public Health. 62: 141-150. Stanojevic M., Nikolic V., Stajkovic N., Stamenkovic G., Bozovic B., Cekanac R., Marusic P., Gligic A. (2015): Genetic detection of Dobrava-Belgrade hantavirus in the edible dormouse (Glis glis) in central Serbia. Epidemiol. Infect. 143: 400-404. Steinmetz H.W., Bakonyi T., Weissenböck H., Hatt J.M., Eulenberger U., Robert N., Hoop R., Nowotny N. (2011): Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland–genomic and pathologic comparison to other central European outbreaks. Vet. Microbiol. 148: 207–212. ¨ Straková P., Kříž B., Rudolf I., Hubálek Z. (2014): Seroprevalence study of hepatitis E virus infection in two districts of the Czech Republic. Epidemiol. Mikrobiol. Imunol. 63: 92-94. Succo T., Leparc-Goffart I., Ferré J., Roiz D., Broche B., Maquart M., Noel H., Catelinois O., Entezam F., Caire D., Jourdain F., Esteve-Moussion I., Cochet A., Paupy C., Rousseau C., Paty M., Golliot F. (2016): Autochthonous Dengue outbreak in Nimes, South of France, july to september 2015. Euro Surveill. 21: pii=30240. Sumibcay L., Kadjo B., Gu S.H., Kang H.J., Lim B.K., Cook J.A., Song J.W., Yanagihara R. (2012): Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d´Ivoire. Virol. J. 9: 34-41. Šebesta O., Halouzka J., Hubálek Z., Juricova Z., Rudolf I., Sikutova S., Svobodova P., Reiter P. (2010): Mosquito (Diptera: Culicidae) fauna in an area endemic for West Nile virus. J. Vector. Ecol. 35: 156-162. Tamada Y., Yano K., Yatsuhashi H., Inoue O., Mawatari F., Ishibashi H. (2004): Consumption of wild boar linked to cases of hepatitis E. J. Hepatol. 40: 869-870.

131

Taylor L.H., Latham S.M., Woolhouse M.E. (2001): Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B. Biol. Sci. Rev. 84: 113-131. Tei S., Kitajima N., Takahashi K., Mishiro S. (2003): Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet. 362: 371-373. Teshale E.H., Grytdal S.P., Howard C., Barry V., Kamili S., Drobeniuc J., Hill V.R., Okware S., Hu D.J., Holmberg S.D. (2010): Evidence of person-to-person transmission of hepatitis E virus during a large outbreak in Northern Uganda. Clin. Infect. Dis. 50: 1006-1010. Tersago K., Verhagen R., Servais A., Heyman P., Ducoffre G., Leirs H. (2009): Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol. Infect. 137: 250- 256. Těšíková J., Bryjová A., Bryja J., Lavrenchenko L.A., Gouy de Bellocq J. (2017): Hantavirus strains in East Africa related to Western african hantaviruses. Vector Borne Zoonotic Dis. 17: 278-280. Thiry D., Mauroy A., Saegerman C., Licoppe A., Fett T., Thomas I., Brochier B., Thiry E., Linden A. (2015): Belgian wildlife as potential zoonotic reservoir of hepatitis E virus. Transbound. Emerg. Dis. Ahead of print. Tsai T.F., Popovici F., Cernescu C., Campbell G.L., Nedelcu N.L. (1998): West Nile encephalitis epidemic in southeastern Romania. Lancet. 352: 767-771. Turell M.J., Dohm D.J., Sardelis M.R., Oquinn M.L., Andreadis T.G., Blow J.A. (2005): An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 42: 57-62. Ulrich R., Meisel H., Schutt M., Schmidt J., Kunz A., Klempa B., Niedrig M., Pauli G., Kruger D.H., Koch J. (2004): Prevalence of hantavirus infections in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 47: 661-670. UN (2010): Population division, Concise report on the World population situation in 2010. Dostupné na: https://esa.un.org/PopPolicy/about_database.aspx, 21.3.2017. Van der Poel W.H., Verschoor F., van der Heide R., Herrera M.I., Vivo A., Kooreman M., de Roda Husman A.M. (2001): Hepatitis E virus sequences in swine related to sequences in humans, the Netherlands. Emerg. Infect. Dis. 7: 970-976. Vapalahti O., Lundkvist A., Kukkonen S.K.J., Cheng Y., Gilljam M., Kanerva M., Manni T., Pejčoch M., Niemimaa J., Kaikusalo A., Hettonen H., Vaheri A., Plyusnin A. (1996): Isolation and characterization of Tula virus, a distinct serotype in the genus Hantavirus, family Bunyaviridae. J. Gen. Virol. 77: 3063-3067. Vapalahti O., Lundkvist A., Fedorov V., Conroy C.J., Hirvonen S., Plyusnina A., Nemirov K., Fredga K., Cook J.A., Niemimaa J., Kaikusalo A., Henttonen H., Vaheri A., Plyusnin A. (1999): Isolation and characterization of a hantavirus from Lemmus sibiricus: evidence for host switch during hantavirus evolution. J. Virol. 73: 5586-5592. Vašíčková P., Dvorská L., Lorancová A. (2005): Viruses as a cause of foodborne diseases: a review of the literature. Vet. Med. 50: 89-104. Vašíčková P., Psikal I., Widen F., Smitalova R., Bendova J., Pavlík I., Králík P. (2009): Detection and genetic characterization of hepatitis E virus in Czech pig production herds. Res. Vet. Sci. 87: 143-148. Vašíčková P., Králík P., Slana I., Pavlík I. (2012): Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J. Virol. Methods. 180: 38-42. Vázquez A., Ruiz S., Herrero L., Moreno J., Molero F., Magallanes A., Sánchez-Seco M.P., Figuerola J., Tenorio A. (2011): West Nile and Usutu viruses in mosquitoes in Spain, 2008–2009. Am. J. Trop. Med. Hyg. 85: 178–181. Vollmer T., Diekmann J., Johne R., Eberhardt M., Knabbe C., Dreier J. (2012): Novel approach for detection of hepatitis E virus infection in German blood donors. J. Clin. Microbiol. 50: 2708-2713. Vilibic-Cavlek T., Kaic B., Barbic L., Pem-Novosel I., Slavic-Vrzic V., Lesnikar V., Kurecic-Filipovic S., Babic-Erceg A., Listes E., Stevanovic V., Gjenero-Margan I., Savini G. (2014): First evidence of simultaneous occurrence of West Nile virus and Usutu virus neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection. 42: 689-695.

132

Votava M. (2005): Lékařská mikrobiologie obecná. Neptun, 351 s. Vrbovská V., Chalupa P., Straková P., Hubálek Z., Rudolf I. (2015): Onemocnění člověka způsobená hantaviry – stále opomíjené zoonózy? Epidemiol. Mikrobiol. Imunol. 64: 188-196. Wang L. F. (2011): Discovering novel zoonotic viruses. N. S. W. Public Health Bull. 22: 113-117. Warrell M. (2010): and African bat lyssavirus encephalitis and its prevention. Int. J. Antimicrob. Agents. 36: S47-52. Weber de Melo V., Ali H.S., Freise J., Kuhnert D., Essbauer S., Mertens M., Wanka K.M., Drewes S., Ulrich R.G., Heckel G. (2015): Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus. Evol. Appl. 8: 545-559. Weger S., Elkin B., Lindsay R., Bollinger T., Crichton V., Andonov A. (2016): Hepatitis E virus seroprevalence in free-ranging deer in Canada. Transbound. Emerg. Dis. Ahead of print. Weidmann M., Schmidt P., Vackova M., Krivanec K., Munclinger P., Hufert F.T. (2005): Identification of genetic evidence for dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan RT-PCR. J. Clin. Microb. 43: 808-812. Weiss S., Witkowski P.T., Auste B., Nowak K., Weber N., Fahr J., Mombouli J.V., Wolfe N.D., Drexler J.F., Drosten C., Klempa B., Leendertz F.H., Kruger D.H. (2012): Hantavirus in bat, Sierra Leone. Emerg. Infect. Dis. 18: 159-161. Weissenböck J., Kolodziejek J., Url A. (2001): Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese ecephalitis virus group, central Europe. Emerg. Infect. Dis. 8: 652-656. Weissenböck H., Kolodziejek J., Url A., Lussy H., Rebel-Bauder B., Nowotny N. (2002): Emergence of Usutu virus, an African mosquito-borne flavivirus of the virus group, central Europe. Emerg. Infect. Dis. 8: 652–656. Weissenböck H., Kolodziejek J., Fragner K., Kuhn R., Pfeffer M., Nowotny N. (2003): Usutu virus activity in Austria, 2001–2002. Microbes Infect. 5: 1132–1136. Weissenböck H., Bakonyi T., Rossi G., Mani P., Nowotny N. (2013): Usutu virus, Italy, 1996. Emerg. Infect. Dis. 19: 274–277. Wenzel J.J., Preiss J., Schemmerer M., Huber B., Plentz A., Jilg W. (2011): Detection of hepatitis E virus (HEV) from porcine livers in Southeastern Germany and high sequence homology to human HEV isolates. J. Clin. Virol. 52: 50-54. WHO (1983): International health regulations, 3rd ed., Ženeva, WHO. Dostupné na: http://www.who.int/topics/international_health_regulations/en/, 21.3.2017. WHO (2010): Influenza and other emerging zoonotic diseases at the human-animal interface. FAO/OIE/WHO Joint Scientific Consultation, Italy. Dostupné na: http://www.fao.org/docrep/014/i1963e/i1963e00.pdf, 21.3.2017. Witkowski P.T., Klempa B., Ithete N.L., Auste B., Mfune J.K., Hoveka J., Matthee S., Preiser W., Kruger D.H. (2014): Hantaviruses in Africa. Virus Res. 187: 34-42. Witkowski P.T., Drexler J.F., Kallies R., Ličková M., Bokorová S., Mananga G.D., Szemes T., Leroy E.M., Kruger D.H., Drosten C., Klempa B. (2016): Phylogenetic analysis of a newfound bat-borne hantavirus supporst a laurasiatherian host association for ancestral mammalian hantaviruses. Infect. Gent. Evol. 41: 113- 119. Wojcik-Fatla A., Zajac V., Knap J.P., Sroka J., Cisak E., Sawczyn A., Dutkiewicz J. (2013): A small-scale survey of hantavirus in mammals from eastern Poland. Ann. Agric. Environ. Med. 20: 283-286. Wolfe N.D., Daszak P., Kilpatrick A.M., Burke D.S. (2005): Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg. Infect. Dis. 11: 1822-1827. Woodall J.P. (1964): The viruses isolated from arthropods at the East African virus research institute in the 26 years ending December 1963. Proc. E. Afr. Acad. 2: 141–146. Xu L., Wu J., He B., Qin S., Xia L., Qin M., Li N., Tu C. (2015): Novel hantavirus identified in black- bearded tomb bats, China. Infect. Genet. Evol. 31: 158-160.

133

Yamamoto T., Suzuki H., Toyota T., Takahashi M., Okamoto H. (2004): Three male patients with sporadic acute hepatitis E in Sendai, Japan, who were domestically infected with hepatitis E virus of genotype III or IV. J. Gastroenterol. 39: 292-298. Yanagihara R., Gu S.H., Song J.W. (2015): Expanded host diversity and global distribution of hantaviruses: implications for identifying and investigating previously unrecognized hantaviral diseases. In: Global Virology I – Identifying and Investigating Viral Diseases, edited by Shapshak et al., Springer New York, 840 s. Yazaki Y., Mizuo H., Takahashi M., Nishizawa T., Sasaki N., Gotanda Y., Okamoto H. (2003): Sporadic acute or fulminant hepatitis E in Hokkaido, Japan, may be food-borne, as suggested by the presence of hepatitis E virus in pig liver as food. J. Gen. Virol. 84: 2351-2357. Zaki S.R., Greer P.W., Coffield L.M., Goldsmith C.S., Nolte K.B., Foucar K., Feddersen R.M., Zumwalt R.E., Miller G.L., Khan A.S., Rollin P.E., Ksiazek T.G., Nichol S.T., Mahy B.W.J., Peters C.J. (1995): Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am. J. Pathol. 146: 552-579. Zelená H., Janouška J. (2009): Serological characteristics of hantaviruses from clinical specimens analyzed in 1998-2008 in the Department of Virology, Public Health Institute, Ostrava. Epidemiol. Mikrobiol. Immunol. 58: 115-120. Zelená H., Zvolánková V., Zuchnická J. (2011): Hantavirus infection during a stay in a mountain hut in northern Slovakia. J. Med. Virol. 83: 496-500. Zelená H., Mrázek J., Kuhn T. (2013): Tula hantavirus infection in immunocompromised host, Czech Republic. Emerg. Infect. Dis. 19: 1873-1876. Zeller H.G., Schuffenecker I. (2004): West Nile virus. An overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur. J. Clin. Microbiol. Infect. Dis. 23: 147-156. Zhang Y.Z. (2014): Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus. Virus. Res. 187: 15-21. Ziegler U., Fast C., Eiden M., Bock S., Schulze C., Hoeper D., Ochs A., Schlieben P., Keller M., Zielke D.E., Luehken R., Cadar D., Walther D., Schmidt-Chanasit J., Groschup M.H. (2016): Evidence for an independent third Usutu virus introduction into Germany. Vet. Microbiol. 192: 60-66. Zoller L., Faulde M., Meisel H., Ruh B., Kimmig P., Schelling U., Zeier M., Kulzer P., Becker C., Roggendorf M. (1995): Seroprevalence of hentavirus antibodies in Germany as determined by a new recombinant enzyme immunoassay. Eur. J. Clin. Microbiol. Infect. Dis. 14: 305-313. Zou Y., Wang J.B., Gaowa H.S., Yao L.S., Hu G.W., Li M.H., Chen H.X., Plyusnin A., Shao R., Zhang Y.Z. (2008): Isolation and genetic characterization of hantaviruses carried by Microtus voles in China. J. Med. Virol. 80: 680-688.

134

7 Příloha – tabulky

7.1 Hantaviry

Komentovaná práce 1 +2

Tab. I: Postup metody in-house ELISA. Postup byl shodný při detekci protilátek proti DOBV, PUUV a TULV.

Postup in-house ELISA Antigen naředíme v pufru 1 (2 µl/ml), Pufr 1 slouží i jako negativní kontrola 1. potažení pevné fáze Pipetujeme 100 µl do jamky Inkubace 1 hod/ 37 °C Destičku oklepeme (nepromývat)! Pipetujeme 200 µl pufru 2 do jamky 2. Blokování Inkubace 1 hod při pokojové teplotě Destičku oklepeme (nepromývat)! Naředíme sérum 1:10 v pufru 3 Pipetujeme 100 µl do příslušné jamky 3. Přidání séra Inkubace 1 hod/ 37 °C Destičku oklepeme a promyjeme 3x250 µl Anti-myší-IgG-HRP naředíme 1:3000 v pufru 3 4. Přidání konjugátu Pipetujeme 100 µl do jamky Inkubace 1 hod/ 37 °C Destičku oklepeme a promyjeme 3x250 µl Připravíme substrát TMB: 9 ml roztoku A + 1 ml roztoku B (Bio-Rad) 5. Přidání substrátu Pipetujeme 100 µl do jamky Inkubace 10 min při pokojové teplotě ve tmě 5. Zastavení reakce Pipetujeme 100 µl kyseliny sírové 6. Měření OD při 450 nm

135

Tab. II: Počet vyšetřených hlodavců v roce 2014 (Myodes – norník, Microtus – hraboš, Sorex – rejsek, Apodemus – myšice). Dodělávky – vzorky dodané později.

Tab. III: Počet vyšetřených hlodavců v roce 2015 (Myodes – norník, Microtus – hraboš, Apodemus – myšice).

136

Tab. IV: Množství reagencií pro přípravu mastermixu při molekulárním testování hantavirů.

Ultra PCR voda 6,8 2xRXN pufr 12,5 HAN-L-F1 1 HAN-L-R1 1 MgSO4 0,2 TaqSSIII 1 22,5 µl + 2,5 µl RNA

Tab. V: Obecný program cykleru pro RT-PCR reakci na detekci hantavirů. V případě detekce různých hantavirů se v programu mění pouze annealing teplota.

50 °C/ 45 min 94 °C/ 2 min 94 °C/ 30s 51,2 °C/ 30 s 68 °C/ 1 min – opakovat krok 3-5 40x 68 °C/ 10 min 4 °C – ∞

Tab. VI: Matice podobnosti sekvencí pro RT-PCR pozitivní zvířata z Francie. 2 z nich jsou identické (KS16/653 a KS16/654). Vlevo dole pod diagonálou nukleotidová podobnost, vpravo nahoře aminokyselinová podobnost.

Sequence identity matrix KS16/652_France KS16/653_France KS16/654_France KS16/655_France KS16/652_France ID 95,3 95,3 96,5 KS16/653_France 95,3 ID 1 98,7 KS16/654_France 95,3 1 ID 98,7 KS16/655_France 97,5 97,7 97,7 ID

137

ID 93,6 95,3 95,3 94,9 94,9 94,9 94,9 88,3 89,0 88,6 89,0 86,5 88,6 88,6 KS15/255 ID 87,6 91,4 91,0 93,5 93,5 93,5 93,5 98,7 99,5 99,5 95,2 78,4 100,0 100,0 KS15/170 ID 87,6 91,4 91,0 93,5 93,5 93,5 93,5 98,7 99,5 99,5 95,2 99,8 78,5 100,0 KS15/167 ID 88,5 88,5 88,5 88,8 88,8 88,8 88,8 94,0 94,8 95,2 94,8 96,4 96,2 78,2 KS15/166 ID 88,0 91,9 91,4 94,0 94,0 94,0 94,0 99,1 99,5 92,7 96,2 96,1 79,1 100,0 KS15/165 ID 87,6 91,4 91,0 93,5 93,5 93,5 93,5 98,7 99,5 95,8 95,5 99,1 98,9 78,7 KS15/164 ID 88,0 91,9 91,4 94,0 94,0 94,0 94,0 99,1 95,9 99,8 92,8 96,4 96,2 79,1 KS15/161 ID 87,3 91,1 90,7 93,2 93,2 93,2 93,2 97,5 95,6 97,4 92,3 95,7 95,6 77,9 KS15/159 ID 94,0 97,8 97,4 81,7 83,3 81,6 83,3 79,6 81,7 81,6 87,5 100,0 100,0 100,0 KS15/151 ID

PCR pozitivní hraboše 94,0 97,8 97,4 99,0 81,3 82,7 81,3 82,7 79,0 81,1 81,0 86,7

- 100,0 100,0 KS15/150 ID 94,0 97,8 97,4 99,1 99,8 81,6 83,3 81,6 83,3 79,6 81,7 81,6 87,4 100,0

í pro RT KS15/144

c ID 94,0 97,8 97,4 90,1 89,4 90,3 80,6 81,9 81,4 81,9 78,9 81,3 81,1 96,7 KS15/135 ID 94,8 99,1 97,8 88,7 88,0 88,9 79,2 80,6 80,1 80,6 78,6 79,9 79,8 96,7 KS15/102 ID 94,8 99,4 98,0 88,9 88,2 89,0 79,5 80,6 80,1 80,6 78,6 79,9 79,8 96,6 KS15/96 ID 93,3 93,4 93,4 85,7 85,0 85,6 77,5 78,6 78,4 78,6 80,5 78,4 78,3 93,2 KS14/367

: Matice sekvenční podobnosti sekven

mecka. mecka. Vlevo dole nukleotidová podobnost, vpravo nahoře aminokyselinová

Sequence identity matrix identity Sequence KS14/367_GER KS15/96_GER KS15/102_GER KS15/135_GER KS15/144_GER KS15/150_GER KS15/151_GER KS15/159_GER KS15/161_GER KS15/164_GER KS15/165_GER KS15/166_GER KS15/167_GER KS15/170_GER KS15/255_GER Tab. VII z podobnost.

138

Komentovaná práce 3

ID 93% 98% 92% 95% 95% 88% 78% 94% 92% 94% KS16_858 KS16_858 ID 93% 94% 94% 98% 98% 93% 83% 96% 83% 100% KS13_119 ID 93% 92% 95% 95% 95% 92% 81% 96% 89% 81% KS12_318 ID 93% 94% 94% 98% 98% 93% 83% 89% 99% 82% KS11_2221 ID 81% 78% 81% 81% 81% 83% 86% 79% 85% 72% KS11_2215 ID 91% 88% 92% 91% 91% 87% 97% 87% 95% 79% KS11_2202 ID 94% 96% 96% 87% 78% 89% 86% 90% 83% 100% KS11_1028

Vlevo Vlevo dole nukleotidová ID

94% 96% 96% 87% 78% 89% 86% 90% 83% 100% KS11_1020 ID 94% 94% 97% 97% 86% 78% 87% 86% 87% 81%

pozitivních pozitivních myšic. Sekvenci pro vzorek

KS11_1010 ID 91% 94% 97% 97% 84% 75% 87% 83% 88% 86%

ní sekvenace nezískali. KS11_1005 ID 80% 82% 83% 83% 81% 75% 82% 82% 83% 94% KS10_1206

o nahoře aminokyselinová podobnost. aminokyselinová o nahoře

Matice Matice podobnosti sekvencí z

jsme i přes opaková

:

VIII

Tab. Tab. KS16/851 podobnost, vprav Sequence Identity Matrix Identity Sequence KS10_1206_Treben KS11_1005_Bendelin KS11_1010_Bendelin KS11_1020_Bendelin KS11_1028_Bendelin KS11_2202_Horst KS11_2215_Horst KS11_2221_Horst KS12_318_Jasnitz KS13_119_Richtenberg KS16_858_Gotha

139

ID ID 0,88 0,84 0,865 0,863 0,856 0,854 0,855

0,974 0,972 0,973 0,976 0,976 0,976 0,963 Saaremaa-160V Saaremaa-160V

ID ID 0,83 0,84 0,829 0,834 0,836 0,837 0,837 0,962 0,959 0,963 0,968 0,968 0,969 0,963 Ap/Sochi/hu Ap/Sochi/hu

ID ID 0,98 0,98 0,856 0,859 0,859 0,935 0,999 0,837 0,855 0,976 0,991 0,999 0,969 0,976

Stamforrad/POR Stamforrad/POR

ID ID 0,856 0,859 0,859 0,935 0,999 0,837 0,854 0,979 0,976 0,979 0,991 0,999 0,968 0,976 Slo/Af-BER Slo/Af-BER

ID ID 0,855 0,857 0,859 0,935 0,935 0,836 0,856 0,979 0,975 0,979 0,991 0,991 0,968 0,976 DOBV/Ano-Poroia DOBV/Ano-Poroia

ID ID 0,83 0,98 0,861 0,867 0,859 0,859 0,859 0,863 0,977 0,973 0,979 0,979 0,963 0,973 SK/Aa SK/Aa ID ID 0,88 0,866 0,867 0,857 0,859 0,859 0,834 0,972 0,973 0,975 0,976 0,976 0,959 0,972 GRW/Aa GRW/Aa

ID ID 0,98 0,866 0,861 0,855 0,856 0,856 0,829 0,865 0,972 0,977 0,979 0,979 0,962 0,974 Treben

Treben

I.

II.

kompletních kompletních kódujících sekvencí L segmentu DOBV různých genotypů. I

aminokyselinová úroveň. aminokyselinová

Matice Matice podobnosti sekvencí

X:

I TREBEN GRW/Aa Dobrava-Belgrade virus JQ026206| SK/Aa Dobrava-Belgrade virus GU904039| DOBV/Ano-Poroia/Afl9/1999 Dobrava virus NC_005235| Slo/Af-BER Dobrava-Belgrade virus GU904042| Stamforrad/POR Dobrava-Belgrade virus KT885041| Ap/Sochi/hu Dobrava-Belgrade virus JF920148| Saaremaa-160V Saaremaa virus AJ410618| TREBEN GRW/Aa Dobrava-Belgrade virus JQ026206| SK/Aa Dobrava-Belgrade virus GU904039| DOBV/Ano-Poroia/Afl9/1999 Dobrava virus NC_005235| Slo/Af-BER Dobrava-Belgrade virus GU904042| Stamforrad/POR Dobrava-Belgrade virus KT885041| Ap/Sochi/hu Dobrava-Belgrade virus JF920148| Saaremaa-160V Saaremaa virus AJ410618|

I.

Tab. Tab. II nukleotidová úroveň, II.

140

0,87 0,87 0,87 0,872 0,871 0,872 0,868 0,865 0,821 0,872 0,823 0,824 0,823 0,822 0,791 0,789 DOB/Saa remaa/1 60V ID

0,793 0,798 0,792 0,791 0,791 0,804 0,806 0,799 0,799 0,795 0,804 0,802 0,804 0,802 0,994 0,789 Ap/Sochi /hu ID

0,8 0,8 0,795 0,794 0,793 0,793 0,806 0,808 0,801 0,796 0,806 0,804 0,806 0,804 0,994 0,791

Ap1584/ Sochi-01 ID 0,83 0,829 0,825 0,823 0,828 0,835 0,928 0,831 0,833 0,833 0,997 0,937 0,997 0,804 0,802 0,822 Dobrava Belgrade ID

1 0,83 0,93 0,832 0,827 0,825 0,829 0,837 0,833 0,835 0,835 0,939 0,997 0,806 0,804 0,823

Stamforr ad/POR_ Af ID 0,83 0,822 0,823 0,824 0,821 0,832 0,932 0,823 0,829 0,824 0,939 0,939 0,937 0,804 0,802 0,824 Ano- Poroia/A fl9/1999 ID

1 0,83 0,93 0,832 0,827 0,825 0,829 0,837 0,833 0,835 0,835 0,939 0,997 0,806 0,804 0,823

Slo/Af- BER ID 0,901 0,934 0,873 0,872 0,979 0,871 0,832 0,935 0,919 0,835 0,824 0,835 0,833 0,796 0,795 0,872

GER/07/6 07/Af ID 0,87 0,894 0,916 0,864 0,864 0,917 0,872 0,833 0,917 0,919 0,835 0,829 0,835 0,833 0,801 0,799

GER/05/4 77/Af ID 0,8 0,87 0,896 0,996 0,866 0,864 0,932 0,873 0,835 0,917 0,935 0,833 0,823 0,833 0,831 0,799 GER/08/1 31/Af ID 0,93 0,93

0,834 0,833 0,825 0,826 0,826 0,836 0,835 0,833 0,832 0,932 0,928 0,808 0,806 0,821 East_Slov akia/400 Af/98 ID

0,871 0,873 0,875 0,873 0,867 0,836 0,873 0,872 0,871 0,837 0,832 0,837 0,835 0,806 0,804 0,865 Aa1854/L ipetsk-02 ID

0,897 0,932 0,869 0,867 0,867 0,826 0,932 0,917 0,979 0,829 0,821 0,829 0,828 0,793 0,791 0,868

GER/07/2 93/Aa ID 0,874 0,865 0,982 0,867 0,873 0,826 0,864 0,864 0,872 0,825 0,824 0,825 0,823 0,793 0,791 0,872

East_Slov akia/862 Aa/97 ID

í kódující sekvenci M segmentu DOBV různých 0,874 0,867 0,982 0,869 0,875 0,825 0,866 0,864 0,873 0,827 0,823 0,827 0,825 0,794 0,792 0,871

SK/Aa ID 0,8 0,83 0,87 0,897 0,867 0,865 0,932 0,873 0,833 0,996 0,916 0,934 0,832 0,822 0,832 0,798 GRW/Aa ID

aminokyselinová úroveň. aminokyselinová úroveň.

pro kompletn 0,83 0,83 0,83

0,897 0,874 0,874 0,897 0,871 0,834 0,896 0,894 0,901 0,829 0,795 0,793 0,872 Treben ID

nukleotidová úroveň, II nukleotidová úroveň,

Matice Matice podobnosti sekvencí

Tab. Tab. X: I genotypů. Treben JQ026205|_Dobrava-Belgrade_virus_GRW/Aa AY961616|_Dobrava_virus_SK/Aa AY168578|_Dobrava_virus_East_Slovakia/862Aa/97 GQ205409|_Dobrava-Belgrade_virus_GER/07/293/Aa EU188453|_Dobrava-Belgrade_virus_Aa1854/Lipetsk-02 AY168577|_Dobrava_virus_East_Slovakia/400Af/98 GQ205413|_Dobrava-Belgrade_virus_GER/08/131/Af GQ205411|_Dobrava-Belgrade_virus_GER/05/477/Af GQ205410|_Dobrava-Belgrade_virus_GER/07/607/Af GU904035|_Dobrava-Belgrade_virus_Slo/Af-BER NC_005234|_Dobrava_virus_DOBV/Ano-Poroia/Afl9/1999 KT885042|_Dobrava-Belgrade_virus_Stamforrad/POR_Af L33685|HNVDOBMS_Dobrava-Belgrade_virus EU188450|_Dobrava-Belgrade_virus_Ap1584/Sochi-01 JF920149|_Dobrava-Belgrade_virus_Ap/Sochi/hu AJ009774|_Dobrava_virus_DOB/Saaremaa/160V

I.

141

0,96 0,955 0,959 0,957 0,961 0,957 0,962 0,943 0,959 0,957 0,945 0,941 0,945 0,941 0,903 0,903

DOB/Saa remaa/1 60V ID 0,91 0,91 0,907 0,905 0,908 0,907 0,915 0,939 0,909 0,911 0,938 0,934 0,938 0,934 0,992 0,903

Ap/Sochi /hu ID 0,91 0,909 0,906 0,904 0,907 0,906 0,914 0,938 0,908 0,909 0,937 0,933 0,937 0,933 0,992 0,903

Ap1584/ Sochi-01 ID 0,94 0,94 0,94 0,939 0,938 0,935 0,938 0,936 0,989 0,941 0,996 0,986 0,996 0,933 0,934 0,941

Dobrava Belgrade ID 1 0,94 0,99 0,942 0,941 0,939 0,941 0,944 0,992 0,943 0,945 0,944 0,996 0,937 0,938 0,945

Stamforr ad/POR_ Af ID 0,94 0,99 0,94 0,99 0,99 0,938 0,935 0,938 0,937 0,941 0,942 0,941 0,986 0,933 0,934 0,941

Ano- Poroia/A fl9/1999 ID 1 0,94 0,99 0,942 0,941 0,939 0,941 0,944 0,992 0,943 0,945 0,944 0,996 0,937 0,938 0,945 Slo/Af- BER ID 0,94 0,91 0,96 0,976 0,985 0,963 0,965 0,991 0,971 0,944 0,986 0,986 0,944 0,941 0,944 0,911 GER/07/6 07/Af ID 0,91 0,971 0,986 0,961 0,962 0,983 0,967 0,945 0,988 0,986 0,945 0,942 0,945 0,941 0,909 0,957 GER/05/4 77/Af ID 0,97 0,94 0,94 0,996 0,963 0,963 0,982 0,966 0,943 0,988 0,986 0,943 0,943 0,908 0,909 0,959 GER/08/1 31/Af ID 0,94 0,99 0,944 0,941 0,939 0,941 0,944 0,943 0,945 0,944 0,992 0,992 0,989 0,938 0,939 0,943 East_Slov akia/400 Af/98 ID 0,94 0,967 0,966 0,969 0,972 0,967 0,944 0,966 0,967 0,971 0,944 0,941 0,944 0,914 0,915 0,962 Aa1854/L ipetsk-02 ID 0,98 0,94 0,94 0,94 0,972 0,959 0,961 0,967 0,982 0,983 0,991 0,937 0,936 0,906 0,907 0,957 GER/07/2 93/Aa ID

0,962 0,963 0,996 0,961 0,972 0,941 0,963 0,962 0,965 0,941 0,938 0,941 0,938 0,907 0,908 0,961 East_Slov akia/862 Aa/97 ID 0,96 0,963 0,996 0,959 0,969 0,939 0,963 0,961 0,963 0,939 0,935 0,939 0,935 0,904 0,905 0,957 SK/Aa ID 0,97 0,98 0,963 0,963 0,966 0,941 0,996 0,986 0,985 0,941 0,938 0,941 0,938 0,906 0,907 0,959 GRW/Aa ID 0,97 0,96 0,97 0,94 0,91

0,962 0,972 0,967 0,944 0,971 0,976 0,942 0,942 0,939 0,909 0,955 Treben ID

Treben JQ026205|_Dobrava-Belgrade_virus_GRW/Aa AY961616|_Dobrava_virus_SK/Aa AY168578|_Dobrava_virus_East_Slovakia/862Aa/97 GQ205409|_Dobrava-Belgrade_virus_GER/07/293/Aa EU188453|_Dobrava-Belgrade_virus_Aa1854/Lipetsk-02 AY168577|_Dobrava_virus_East_Slovakia/400Af/98 GQ205413|_Dobrava-Belgrade_virus_GER/08/131/Af GQ205411|_Dobrava-Belgrade_virus_GER/05/477/Af GQ205410|_Dobrava-Belgrade_virus_GER/07/607/Af GU904035|_Dobrava-Belgrade_virus_Slo/Af-BER NC_005234|_Dobrava_virus_DOBV/Ano-Poroia/Afl9/1999 KT885042|_Dobrava-Belgrade_virus_Stamforrad/POR_Af L33685|HNVDOBMS_Dobrava-Belgrade_virus EU188450|_Dobrava-Belgrade_virus_Ap1584/Sochi-01 JF920149|_Dobrava-Belgrade_virus_Ap/Sochi/hu AJ009774|_Dobrava_virus_DOB/Saaremaa/160V

II. II.

142

0,878 0,874 0,877 0,875 0,865 0,865 0,865 0,864 0,868 0,869 0,871 0,875 0,876 0,869 0,879 0,871 0,875 0,877 0,848 0,848 0,982 60V remaa/1 DOB/Saa ID 0,88 0,874 0,877 0,877 0,875 0,866 0,867 0,867 0,865 0,873 0,874 0,871 0,872 0,876 0,871 0,868 0,876 0,879 0,848 0,848 0,982 a/97 Saar/90A ID 0,86 0,87 0,877 0,868 0,865 0,866 0,866 0,865 0,857 0,858 0,869 0,875 0,877 0,878 0,884 0,882 0,882 0,882 0,995 0,848 0,848 /hu Ap/Sochi ID 0,86 0,875 0,869 0,867 0,866 0,867 0,867 0,865 0,855 0,856 0,868 0,875 0,876 0,877 0,884 0,881 0,881 0,882 0,995 0,848 0,848 Ap1584/ Sochi-01 ID 0,88 0,96 0,865 0,879 0,877 0,865 0,868 0,866 0,864 0,865 0,865 0,875 0,951 0,962 0,998 0,963 0,986 0,882 0,882 0,879 0,877 Belgrade

Dobrava- ID 0,95 0,96 0,863 0,884 0,879 0,876 0,864 0,867 0,865 0,863 0,865 0,865 0,873 0,962 0,987 0,965 0,986 0,881 0,882 0,876 0,875 08 Croatia_ Gerovo/ Af957/20 ID 0,86 0,87 0,865 0,881 0,875 0,873 0,858 0,861 0,859 0,857 0,859 0,951 0,962 0,961 0,965 0,965 0,963 0,881 0,882 0,868 0,871 25/2007 Croatia_Z utica/As8 ID

0,88 0,867 0,882 0,881 0,879 0,866 0,869 0,868 0,865 0,867 0,867 0,877 0,953 0,962 0,964 0,965 0,987 0,998 0,884 0,884 0,879 ad/POR Stamforr ID 0,86 0,86 0,864 0,882 0,874 0,872 0,862 0,859 0,857 0,858 0,869 0,957 0,981 0,964 0,961 0,962 0,962 0,877 0,878 0,871 0,869

Ano- 3Af/99 Poroia/1 ID 0,88 0,96 0,96 0,864 0,875 0,873 0,853 0,855 0,853 0,852 0,851 0,852 0,871 0,964 0,981 0,962 0,962 0,876 0,877 0,876 0,876 Ano- fl9/1999 Poroia/A ID 0,85 0,95 0,866 0,881 0,876 0,874 0,848 0,851 0,848 0,847 0,851 0,871 0,964 0,957 0,953 0,951 0,951 0,875 0,875 0,872 0,875 East- 400Af/98 Slovakia/ ID 0,87 0,894 0,896 0,989 0,988 0,914 0,915 0,913 0,913 0,902 0,903 0,871 0,871 0,869 0,877 0,873 0,875 0,868 0,869 0,871 0,871 ipetsk-02 Aa1854/L ID

0,86 0,882 0,894 0,905 0,903 0,936 0,934 0,933 0,935 0,996 0,903 0,851 0,852 0,858 0,867 0,865 0,865 0,856 0,858 0,874 0,869 East- 856-Aa Slovakia- ID 0,85 0,882 0,893 0,904 0,902 0,935 0,933 0,932 0,934 0,996 0,902 0,851 0,857 0,867 0,859 0,865 0,865 0,855 0,857 0,873 0,868 East- 862-Aa Slovakia- ID

0,89 0,99 0,893 0,913 0,911 0,999 0,993 0,934 0,935 0,913 0,847 0,852 0,859 0,865 0,857 0,863 0,864 0,865 0,865 0,865 0,864 SK/Aa ID 0,86 0,892 0,893 0,913 0,911 0,993 0,991 0,993 0,932 0,933 0,913 0,848 0,853 0,868 0,859 0,865 0,866 0,867 0,866 0,867 0,865 /01 Esl/29Aa ID 0,99 0,892 0,895 0,915 0,913 0,991 0,991 0,933 0,934 0,915 0,851 0,855 0,862 0,869 0,861 0,867 0,868 0,867 0,866 0,867 0,865 1 Esl/81Aa/0 ID 0,86 0,891 0,894 0,914 0,912 0,991 0,993 0,999 0,935 0,936 0,914 0,848 0,853 0,866 0,858 0,864 0,865 0,866 0,865 0,866 0,865 1 Esl/34Aa/0 ID 0,895 0,899 0,997 0,912 0,913 0,911 0,911 0,902 0,903 0,988 0,874 0,873 0,872 0,879 0,873 0,876 0,877 0,867 0,868 0,875 0,875

inokyselinová úroveň. úroveň. inokyselinová

Aa/98 Kurkino/44 ID

am

0,87 0,897 0,901 0,997 0,914 0,915 0,913 0,913 0,904 0,905 0,989 0,876 0,875 0,874 0,881 0,875 0,879 0,879 0,869 0,877 0,877 – a/98 Kurkino/53A ID 0,88 0,88

pro kompletní kódující sekvenci S segmentu DOBV 0,917 0,901 0,899 0,894 0,895 0,893 0,893 0,893 0,894 0,896 0,881 0,882 0,882 0,881 0,884 0,875 0,877 0,877 0,874 GRW/Aa ID 0,89 0,86 0,86 0,917 0,897 0,895 0,891 0,892 0,892 0,882 0,882 0,894 0,866 0,864 0,864 0,867 0,865 0,863 0,865 0,874 0,878 Treben ID

nukleotidová úroveň, II nukleotidová II úroveň,

Matice podobnosti sekvencí

Tab. Tab. XI: genotypů. I různých Treben Dobrava-Belgrade GRW/Aa virus JQ026204| Kurkino/53Aa/98Dobrava virus AJ131673| Kurkino/44Aa/98Dobrava virus AJ131672| Esl/34Aa/01 Dobrava virus AY961618| Esl/81Aa/01 Dobrava virus AY533120| Esl/29Aa/01 Dobrava virus AY533118| SK/AaDobrava virus SlovakiaAY961615| Slovakia-862-Aa East Dobrava virus AJ269550| Slovakia-856-Aa East Dobrava virus AJ269549| Dobrava-Belgrade Aa1854/Lipetsk-02 EU188452| virus Slovakia/400Af/98 East Dobrava virus AY168576| DOBV/Ano-Poroia/Afl9/1999NC_005233|Dobrava virus DOBV/Ano-Poroia/13Af/99Dobrava virus AJ410619| Dobrava-Belgrade Stamforrad/POR KT885043| virus KC676608|Dobrava-Belgrade DOBV/Croatia_Zutica/As825/2007 virus KC676595|Dobrava-Belgrade DOBV/Croatia_Gerovo/Af957/2008 virus L41916|HNVNPSSDobrava-Belgrade virus Dobrava-Belgrade Ap1584/Sochi-01EU188449| virus Dobrava-Belgrade Ap/Sochi/hu virus JF920150| Russia Saar/90Aa/97Dobrava virus AJ009775| DOB/Saaremaa/160V Dobrava virus AJ009773|

I.

143

0,96 0,96

0,972 0,974 0,955 0,969 0,969 0,969 0,967 0,965 0,965 0,969 0,972 0,972 0,972 0,972 0,972 0,969 0,962 0,965 0,995 60V remaa/1 DOB/Saa ID 0,96 0,96 0,972 0,974 0,955 0,969 0,969 0,969 0,967 0,965 0,965 0,969 0,972 0,972 0,972 0,972 0,972 0,969 0,962 0,965 0,995

a/97 Saar/90A ID 0,972 0,983 0,969 0,965 0,979 0,979 0,979 0,976 0,974 0,974 0,969 0,979 0,981 0,981 0,976 0,981 0,981 0,974 0,993 0,965 0,965 /hu Ap/Sochi ID 0,969 0,981 0,967 0,962 0,976 0,976 0,976 0,974 0,974 0,974 0,967 0,976 0,979 0,979 0,979 0,979 0,979 0,976 0,993 0,962 0,962 Ap1584/ Sochi-01

ID 0,99 0,974 0,976 0,967 0,962 0,976 0,976 0,976 0,974 0,974 0,974 0,967 0,993 0,993 0,997 0,993 0,993 0,976 0,974 0,969 0,969 Belgrade Dobrava- ID 1 1 1 0,981 0,983 0,974 0,969 0,983 0,983 0,983 0,981 0,979 0,979 0,974 0,997 0,995 0,993 0,979 0,981 0,972 0,972 08 Croatia_ Gerovo/ Af957/20 ID

1 1 1 0,981 0,983 0,974 0,969 0,983 0,983 0,983 0,981 0,979 0,979 0,974 0,997 0,995 0,993 0,979 0,981 0,972 0,972 25/2007 Croatia_Z utica/As8 ID 0,976 0,979 0,969 0,965 0,979 0,979 0,979 0,976 0,976 0,976 0,969 0,993 0,995 0,995 0,995 0,995 0,997 0,979 0,976 0,972 0,972 ad/POR Stamforr ID 1 1 1 0,981 0,983 0,974 0,969 0,983 0,983 0,983 0,981 0,979 0,979 0,974 0,997 0,995 0,993 0,979 0,981 0,972 0,972 Ano- 3Af/99 Poroia/1 ID 1 1 1

0,981 0,983 0,974 0,969 0,983 0,983 0,983 0,981 0,979 0,979 0,974 0,997 0,995 0,993 0,979 0,981 0,972 0,972 Ano- fl9/1999 Poroia/A ID 0,99 0,979 0,981 0,972 0,967 0,981 0,981 0,981 0,979 0,976 0,976 0,972 0,997 0,997 0,993 0,997 0,997 0,976 0,979 0,969 0,969 East- 400Af/98 Slovakia/ ID 0,99 0,99 0,99 0,99 0,96 0,96 0,979 0,981 0,995 0,988 0,986 0,986 0,972 0,974 0,974 0,969 0,974 0,974 0,967 0,967 0,969 ipetsk-02 Aa1854/L ID 0,983 0,986 0,986 0,981 0,995 0,995 0,995 0,993 0,995 0,986 0,976 0,979 0,979 0,976 0,979 0,979 0,974 0,974 0,974 0,965 0,965 East- 856-Aa Slovakia- ID 0,983 0,986 0,986 0,981 0,995 0,995 0,995 0,993 0,995 0,986 0,976 0,979 0,979 0,976 0,979 0,979 0,974 0,974 0,974 0,965 0,965 East- 862-Aa Slovakia- ID 0,986 0,988 0,988 0,983 0,997 0,997 0,997 0,993 0,993 0,988 0,979 0,981 0,981 0,976 0,981 0,981 0,974 0,974 0,976 0,967 0,967 SK/Aa ID 1 1

0,99 0,99 0,99 0,988 0,986 0,997 0,995 0,995 0,981 0,983 0,983 0,979 0,983 0,983 0,976 0,976 0,979 0,969 0,969 /01 Esl/29Aa ID 1 1 0,99 0,99 0,99 0,988 0,986 0,997 0,995 0,995 0,981 0,983 0,983 0,979 0,983 0,983 0,976 0,976 0,979 0,969 0,969 1 Esl/81Aa/0 ID 1 1 0,99 0,99 0,99 0,988 0,986 0,997 0,995 0,995 0,981 0,983 0,983 0,979 0,983 0,983 0,976 0,976 0,979 0,969 0,969 1 Esl/34Aa/0 ID 0,99 0,974 0,976 0,995 0,986 0,986 0,986 0,983 0,981 0,981 0,967 0,969 0,969 0,965 0,969 0,969 0,962 0,962 0,965 0,955 0,955

Aa/98 Kurkino/44 ID 0,99 0,99 0,99 0,96 0,96 0,979 0,981 0,995 0,988 0,986 0,986 0,995 0,972 0,974 0,974 0,969 0,974 0,974 0,967 0,967 0,969

a/98 Kurkino/53A ID 0,99 0,99 0,99 0,983 0,981 0,976 0,988 0,986 0,986 0,981 0,981 0,983 0,983 0,979 0,983 0,983 0,976 0,981 0,983 0,974 0,974

GRW/Aa ID 0,983 0,979 0,974 0,988 0,988 0,988 0,986 0,983 0,983 0,979 0,979 0,981 0,981 0,976 0,981 0,981 0,974 0,969 0,972 0,972 0,972 Treben ID

Treben Dobrava-Belgrade GRW/Aa virus JQ026204| Kurkino/53Aa/98Dobrava virus AJ131673| Kurkino/44Aa/98Dobrava virus AJ131672| Esl/34Aa/01 Dobrava virus AY961618| Esl/81Aa/01 Dobrava virus AY533120| Esl/29Aa/01 Dobrava virus AY533118| SK/AaDobrava virus SlovakiaAY961615| Slovakia-862-Aa East Dobrava virus AJ269550| Slovakia-856-Aa East Dobrava virus AJ269549| Dobrava-Belgrade Aa1854/Lipetsk-02 EU188452| virus Slovakia/400Af/98 East Dobrava virus AY168576| DOBV/Ano-Poroia/Afl9/1999NC_005233|Dobrava virus DOBV/Ano-Poroia/13Af/99Dobrava virus AJ410619| Dobrava-Belgrade Stamforrad/POR KT885043| virus KC676608|Dobrava-Belgrade DOBV/Croatia_Zutica/As825/2007 virus KC676595|Dobrava-Belgrade DOBV/Croatia_Gerovo/Af957/2008 virus L41916|HNVNPSSDobrava-Belgrade virus Dobrava-Belgrade Ap1584/Sochi-01EU188449| virus Dobrava-Belgrade Ap/Sochi/hu virus JF920150| Russia Saar/90Aa/97Dobrava virus AJ009775| DOB/Saaremaa/160V Dobrava virus AJ009773|

II. II.

144

87,829 87,442 87,752 87,519 86,512 86,589 86,589 86,434 86,899 86,977 87,132 87,519 87,674 86,977 87,907 87,132 87,519 87,752 84,884 84,884 98,295 87,442 87,752 87,752 87,519 86,667 86,744 86,744 86,589 87,364 87,442 87,132 87,287 87,674 87,132 88,062 86,822 87,674 87,907 84,806 84,806 99,534

86,047 87,752 87,054 86,822 86,589 86,667 86,667 86,512 85,736 85,814 86,977 87,597 87,752 87,829 88,450 88,217 88,217 88,295 99,535 96,503 96,503

86,047 87,597 86,977 86,744 86,667 86,744 86,744 86,589 85,581 85,659 86,899 87,519 87,674 87,752 88,450 88,140 88,140 88,295 99,301 96,270 96,270

86,589 88,062 87,984 87,752 86,512 86,822 86,667 86,434 86,589 86,589 87,597 95,194 96,047 96,279 99,845 96,357 98,605 97,669 97,436 96,970 96,970

86,357 88,450 87,907 87,674 86,434 86,744 86,589 86,357 86,589 86,589 87,364 95,039 96,047 96,279 98,760 96,512 99,301 97,902 98,135 97,203 97,203 86,589 88,140 87,597 87,364 85,814 86,124 85,969 85,736 85,969 86,047 87,054 95,116 96,202 96,124 96,512 99,301 97,902 98,135 97,203 97,203 100,000

86,744 88,217 88,140 87,907 86,667 86,977 86,822 86,589 86,744 86,744 87,752 95,349 96,202 96,434 99,534 99,534 99,767 97,902 97,669 97,203 97,203

86,434 88,217 87,442 87,209 86,047 86,202 86,047 85,969 85,736 85,814 86,977 95,736 98,140 99,534 99,301 97,902 98,135 97,203 97,203 100,000 100,000 86,434 88,062 87,597 87,364 85,349 85,504 85,349 85,271 85,194 85,271 87,132 96,434 99,534 99,301 97,902 98,135 97,203 97,203 100,000 100,000 100,000 86,667 88,140 87,674 87,442 84,806 85,116 84,806 84,729 85,039 85,116 87,132 99,767 99,767 99,301 99,767 99,767 99,068 97,669 97,902 96,970 96,970

89,457 89,690 98,915 98,837 91,473 91,550 91,395 91,395 90,233 90,310 97,203 97,436 97,436 96,970 97,436 97,436 96,737 96,737 96,970 96,037 96,037

88,295 89,457 90,543 90,310 93,643 93,411 93,333 93,566 99,612 98,601 97,669 97,902 97,902 97,669 97,902 97,902 97,436 97,436 97,436 96,503 96,503

88,217 89,380 90,465 90,233 93,566 93,333 93,256 93,488 99,534 98,601 97,669 97,902 97,902 97,669 97,902 97,902 97,436 97,436 97,436 96,503 96,503

89,070 89,380 91,395 91,163 99,922 99,070 99,302 99,301 99,301 98,834 97,902 98,135 98,135 97,669 98,135 98,135 97,436 97,436 97,669 96,737 96,737 89,225 89,380 91,395 91,163 99,380 99,147 99,767 99,534 99,534 99,068 98,135 98,368 98,368 97,902 98,368 98,368 97,669 97,669 97,902 96,970 96,970

89,225 89,535 91,550 91,318 99,147 99,767 99,534 99,534 99,068 98,135 98,368 98,368 97,902 98,368 98,368 97,669 97,669 97,902 96,970 96,970 100,000

89,147 89,457 91,473 91,240 99,767 99,534 99,534 99,068 98,135 98,368 98,368 97,902 98,368 98,368 97,669 97,669 97,902 96,970 96,970 100,000 100,000

89,535 89,922 99,767 98,601 98,601 98,601 98,368 98,135 98,135 99,068 96,737 96,970 96,970 96,503 96,970 96,970 96,270 96,270 96,503 95,571 95,571

89,767 90,155 99,534 99,068 99,068 99,068 98,834 98,601 98,601 99,534 97,203 97,436 97,436 96,970 97,436 97,436 96,737 96,737 96,970 96,037 96,037

91,705 98,135 97,669 99,068 99,068 99,068 98,834 98,601 98,601 98,135 98,135 98,368 98,368 97,902 98,368 98,368 97,669 98,135 98,368 97,436 97,436

98,368 97,902 97,436 98,834 98,834 98,834 98,601 98,368 98,368 97,902 97,902 98,135 98,135 97,669 98,135 98,135 97,436 96,970 97,203 97,203 97,203 analýza analýza pro S segment Treben. Vlevo dole aminokyselinová

Párová distanční

:

II

Tab. Tab. X nahoře vpravo nukleotidováúroveň, úroveň. Treben GRW/Aa virus Dobrava-Belgrade JQ026204| Kurkino/53Aa/98 virus Dobrava AJ131673| Kurkino/44Aa/98 virus Dobrava AJ131672| Esl/34Aa/01 virus Dobrava AY961618| Esl/81Aa/01 virus Dobrava AY533120| Esl/29Aa/01 virus Dobrava AY533118| Slovakia SK/Aa virus Dobrava AY961615| Slovakia-862-Aa East virus Dobrava AJ269550| Slovakia-856-Aa East virus Dobrava AJ269549| Aa1854/Lipetsk-02 virus Dobrava-Belgrade EU188452| Slovakia/400Af/98 East virus Dobrava AY168576| DOBV/Ano-Poroia/Afl9/1999 virus Dobrava NC_005233| DOBV/Ano-Poroia/13Af/99 virus Dobrava AJ410619| Stamforrad/POR virus Dobrava-Belgrade KT885043| DOBV/Croatia_Zutica/As825/2007 virus Dobrava-Belgrade KC676608| DOBV/Croatia_Gerovo/Af957/2008 virus Dobrava-Belgrade KC676595| virus Dobrava-Belgrade L41916|HNVNPSS Ap1584/Sochi-01 virus Dobrava-Belgrade EU188449| Russia Ap/Sochi/hu virus Dobrava-Belgrade JF920150| Saar/90Aa/97 virus Dobrava AJ009775| DOB/Saaremaa/160V virus Dobrava AJ009773|

145

ň,

alýza alýza pro M segment Treben. Vlevo dole aminokyselinová úrove

Párová distanční an

:

III

Tab. Tab. X nukleotidová nahoře úroveň. vpravo

146

Tab. XIV: Párová distanční analýza pro L segment Treben. Vlevo dole aminokyselinová úroveň, vpravo nahoře nukleotidová úroveň.

TREBEN 86,843 86,299 85,679 85,741 85,756 83,010 86,641 JQ026206| Dobrava-Belgrade virus GRW/Aa 97,621 86,843 85,865 86,036 86,082 83,507 88,115 GU904039| Dobrava-Belgrade virus SK/Aa 97,808 97,621 86,005 85,958 86,005 83,088 86,362 NC_005235| Dobrava virus DOBV/Ano-Poroia/Afl9/1999 98,041 97,808 97,948 93,530 93,576 83,677 85,694 GU904042| Dobrava-Belgrade virus Slo/Af-BER 98,041 97,901 97,948 99,16044776 99,953 83,817 85,508 KT885041| Dobrava-Belgrade virus Stamforrad/POR 98,088 97,948 97,994 99,207 99,953 83,832 85,555 JF920148| Dobrava-Belgrade virus Ap/Sochi/hu 96,315 96,175 96,315 96,922 96,875 96,922 84,034 AJ410618| Saaremaa virus Saaremaa-160V 97,528 97,528 97,388 97,715 97,621 97,668 96,362

Obr. XV: Sliding-window analýza pro kompletní kódující sekvence S segmentu DOBV.

147

Obr. XVI: Sliding-window analýza pro kompletní kódující sekvence M segmentu DOBV.

Obr. XVII: Sliding-window analýza pro kompletní kódující sekvence L segmentu DOBV.

148

Komentovaná práce 5

Tab. XVIII: Párová distanční analýza pro kompletní kódující sekvence S segmentu PUUV z Litvy (LT15/164, 174, 201), Lotyšska (LAT), Ruska (RUS), Finska (FIN), severní Skandinávie (N-SCA), jižní Skandinávie (S-SCA), střední Evropy (CE), Dánska (DAN) a alpinské (ALAD) (označení sekvencí dle Castel a kol. 2015). Vpravo nahoře – nukleotidová podobnost, vlevo dole – aminokyselinová podobnost.

Komentovaná práce 6

Tab. XIX: Matice sekvenční podobnosti pro kompletní kódující sekvenci S segmentu. New – náš nově detekovaný hantavirus u hraboše hospodárného. Vpravo nahoře – aminokyselinová podobnost, vlevo dole – nukleotidová podobnost.

New Topografov Khabarovsk Yakeshi Vladivostok Fusong Kamiiso Isla vista Lodz Tula New virus 0,88 0,87 0,59 0,8 0,85 0,86 0,81 0,79 0,79 Topografov virus 0,79 0,95 0,59 0,83 0,86 0,88 0,82 0,8 0,81 Khabarovsk virus 0,77 0,82 0,6 0,82 0,85 0,87 0,81 0,79 0,8 Yakeshi virus 0,62 0,62 0,62 0,53 0,58 0,59 0,57 0,57 0,57 Vladivostok virus 0,71 0,73 0,74 0,55 0,78 0,79 0,76 0,74 0,74 Puumala virus Fusong 0,76 0,79 0,78 0,62 0,7 0,95 0,79 0,78 0,77 Puumala virus Kamiiso 0,78 0,76 0,76 0,62 0,71 0,83 0,81 0,8 0,8 Isla vista virus 0,75 0,75 0,75 0,6 0,69 0,74 0,74 0,84 0,84 Hantavirus Lodz 0,74 0,73 0,74 0,61 0,69 0,73 0,72 0,77 0,97 Tula virus 0,75 0,73 0,74 0,6 0,68 0,72 0,72 0,76 0,85

149

Komentovaná práce 7

Tab. XX: Nukleotidová a aminokyselinová sekvenční identita (%) všech tří segment mezi BRNV a dalšími netopýří, kmyzožravčími a hlodavčími hantaviry.

S segment/N M segment/GPC L segment/RdRp Hostitel Hantavirus Země 1272 nt 424 aa 3411 nt 1137 aa 6435 nt 2145 aa Longquan virus Čína 65.9 65 66.3 62.5 78.3* 80.5* Laibin virus Čína 58.7 56.3 55.4 45.6 66 66.7 Huangpi virus Čína 65.6* 64* - - 71.7* 81.7* Xuan Son virus Vietnam 58.5 54.3 61.2* 54.4* 70* 75.1* Netopýři Pobřeží Mouyassue virus - - - - 73.4* 78.9* slonoviny Magboi virus Sierra Leone - - - - 74.2* 75.7* Makokou virus Gabon - - - - 66.8* 67.6* Quezon virus Filipíny 59.2 55.5 54.7 44.5 65.4 66.6 Uluguru virus Tanzanie 50.9 40.9 54.8* 42.9* 64.5 62.7 Altai virus Rusko 56.9* 52.6* 54.8* 48.9* 63.3 62.3 Rejsci Cao Bang virus Vietnam 57.1 51.7 51.9 40.4 63.7 62.1 Seewis virus Švýcarsko 57.8 49.4 54.2* 46.9* 60.7* 60.3* Thottapalayam virus Čína 54 46.5 50.1 38.9 62.8 62.2 Nova virus Belgie 57.5 51.7 54.6 44.2 64.5 63.3 Krtci Asama virus Japonsko 55.6 51 52.2* 40.3* 64.8* 64.1* Puumala virus Finsko 58.3 51.9 51 40.1 63.2 60.3 Sin Nombre virus USA 58.8 53 52.5 41.6 63.4 61.3 Seoul virus Korea 55.4 48.8 51.6 39.1 62.2 60.7 Hlodavci Hantaan virus Korea 56.6 50.1 51 40 62.2 60.6 Dobrava-Belgrade Řecko 55.7 49.8 50.4 40.1 62.5 61.1 virus Tula virus Česká republika 57.2 52.9 51.9 40.9 63.1 61.3

150

7.2 Flaviviry

Komentovaná práce 2

Tab. XXI: Výsledky PRNT testu vyšetřovaných sudokopytníků z jižní Moravy.

Datum Oblast No. Druh Věk Pohlaví sběru sběru WNV TBEV USUV

24 C. capreolus 7 m 10.08.1990 BV-other 80 20 nt 27 C. capreolus 5 m 22.08.1990 BV-other 40 <20 <20 88 O. musimon ng m 29.09.1991 Palava 160 40 nt 161 O. musimon 2 m 07.12.1993 Palava 40 <20 20 277 D. dama 1 ng 08.01.1994 Palava 80 20 nt 297 D. dama 2 ng 13.01.1994 Palava 20 <20 <20 299 D. dama 5 m 13.01.1994 Palava 20 <20 <20 300 O. musimon 1 ng 13.01.1994 Palava 160 <20 40 301 D. dama 5 m 13.01.1994 Palava 80 <20 <20 302 C. elaphus 7 f 15.01.1994 Palava 20 <20 <20 309 D. dama 1 ng 15.01.1994 Palava 40 <20 <20 319 D. dama 4 f 19.01.1994 Palava 20 <20 <20 329 D. dama 8 f 18.01.1994 Palava 320 40 nt 339 D. dama 4 f 03.02.1994 Palava 80 <20 20 350 D. dama 1 ng 22.01.1994 Palava 20 <20 <20 403 C. capreolus 3 f 01.12.1995 Palava 80 20 nt 503 S. scrofa 2 f 01.09.1996 Soutok 40 <20 <20 506 S. scrofa 2 m 28.08.1996 BV-other 80 <20 <20 511 C. elaphus ng m 15.09.1996 Soutok 160 40 <20 512 C. elaphus 3 m 20.09.1996 Soutok 40 <20 <20 515 C. elaphus ng m 14.09.1996 Soutok 80 <20 <20 528 O. musimon 3 m 19.10.1996 Palava 80 20 nt 542 D. dama 7 f 28.10.1996 Palava 80 <20 <20 577 D. dama 7 f 30.12.1996 Palava 20 <20 <20 582 D. dama 8 f 30.12.1996 Palava 40 <20 20 631 O. musimon 1 ng 31.10.1997 Palava 80 40 <20

151

638 C. capreolus 1 ng 07.11.1997 Palava 160 80 <20 642 D. dama 1 ng 07.11.1997 Palava 80 40 <20 643 D. dama 8 m 14.11.1997 Palava 80 20 <20 654 S. scrofa 2 f 16.09.1997 BV-other 40 20 nt 681 D. dama 5 f 21.11.1997 Palava 80 <20 20 689 O. musimon 1 ng 27.11.1997 Palava 80 <20 <20 698 O. musimon 1 ng 05.12.1997 Palava 40 <20 <20 717 D. dama 6 f 18.12.1997 Palava 80 40 <20 795 S. scrofa ng m 05.12.2002 Soutok 20 <20 <20 1039 S. scrofa 1 ng 19.02.2007 Soutok 40 <20 <20 1084 S. scrofa 1 ng 05.11.2007 Soutok 40 <20 nt 1101 S. scrofa 1 ng 22.11.2007 Soutok 40 <20 nt 1104 S. scrofa 3 f 22.11.2007 Soutok 80 <20 nt 1166 S. scrofa 1 ng 12.12.2007 Soutok 160 40 20-40 1169 S. scrofa 1 ng 12.12.2007 Soutok 80 80 nt 1170 S. scrofa 1 ng 12.12.2007 Soutok 160 <20 <20 1193 S. scrofa 1 ng 10.01.2008 Soutok 40 <20 nt 1196 C. elaphus 2 m 12.01.2008 Soutok 160 <20 nt 1204 S. scrofa 2 m 18.01.2008 Soutok 80 <20 <20 1215 S. scrofa 1 ng 20.01.2008 Soutok 160 <20 20 1220 D. dama 4 f 20.01.2008 Soutok 40 <20 <20 1226 C. capreolus ng f 28.01.2008 Soutok 40 <20 <20 1245 S. scrofa 1 ng 09.02.2008 Soutok 160 <20 20 1249 S. scrofa 1 ng 09.02.2008 Soutok 20-40 <20 20 1250 S. scrofa 1 ng 09.02.2008 Soutok 20 <20 <20 1269 D. dama 1 ng 19.02.2008 Soutok 80 20-40 <20

152

7.3 Virus hepatitidy E

Komentovaná práce 1

Tab. XXII: Postup metody ELISA pro detekci specifických protilátek proti viru hepatitidy E. ELISA ID Screen HEV Indirect multi-species

(pro detekci Ab proti HEV u divočáků/prasat/lovné zvěře) 1) Přidat do každé jamky 190 µl Dilution buffer 2

2) Do jamek A1+A2 a B1+B2 – 10 µl Negative control

3) Do jamek C1+C2 a D1+D2 - 10 µl Positive control

4) Do duplikátu (např. E1+E2) napipetovat 10 µl séra

5) Inkubace 45 min 21°C

6) Oklepat destičku a 3x promýt 300 µl Wash solution 1x (připravit čerstvé!!)

7) Připravit konjugát 1x (1:10 v Dilution buffer 3) a napipetovat všude 100 µl

8) Inkubace 30 min 21°C

9) Oklepat destičku a 3x promýt 300 µl Wash solution 1x

10) Přidat 100 µl substrátu do každé jamky

11) Inkubace 15 min 21°C

12) Přidat 100 µl stop solution do každé jamky - > zástava reakce

13) Měření při OD 450 nm

153

8 Příloha – publikace

Příloha I - Vrbovská V., Chalupa P., Straková P., Hubálek Z., Rudolf I. (2015): Onemocnění člověka způsobená hantaviry - stále opomíjené zoonózy? Epidemiol. Mikrobiol. Imunol. 64: 188-196.

Příloha II - Drewes S., Turni H., Rosenfeld U. M., Obiegala A., Straková P., Imholt C., Glatthaar E., Dressel K., Pfeffer M., Jacob J., Wagner-Wiening C., Ulrich R. G. (2016): Reservoir-Driven Heterogeneous Distribution of Recorded Human Puumala virus Cases in South-West Germany. Zoonoses Public Health.

Příloha III - Straková P., Jagdmann S., Balčiauskas L., Balčiauskiené L., Drewes S., Ulrich R.G. (2017): Puumala virus in bank voles, Lithuania. Emerg Infect Dis. 23:158-160.

Příloha IV - Straková P., Dufková L., Širmanová J., Salát J., Bartonička T., Klempa B., Pfaff F., Höper D., Hoffmann B., Ulrich R.G., Růžek D. (2017): Novel hantavirus identified in European bat species Nyctalus noctula. Infection, Genetics and Evolution. 48: 127-130.

Příloha V - Straková P., Šikutová S., Jedličková P., Sitko J., Rudolf I., Hubálek Z. (2015): The common coot as sentinel species for the presence of West Nile and Usutu flaviviruses in Central Europe. Res. Vet. Sci. 102: 159-161.

Příloha VI - Hubálek Z., Juřicová Z., Straková P., Blažejová H., Betášová L., Rudolf I. Retrospective serosurvey of wild ruminants and boars for West Nile virus, Czech Republic, 1990-2008. Vector-borne and Zoonotic Diseases – rukopis v redakčním řízení.

Příloha VII – další publikační aktivita uchazečky

Příloha VIII – účast na konferencích a stážích

Příloha IX – výuka během studia

155

1

www.prolekare.cz | stazeno: 20.3.2017

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

hantavirů, z toho  v souvislosti s klinickými případy Konce ´ a ´ hantavirového RNA genomu jsou rodově HPS . Více než  klinických případů HPS bylo hlá specifické, vysoce konzervované a reverzně komplemen šeno v USA od data objevení syndromu , a četné další tární a jsou tedy schopné tvořit struktury ve tvaru držadla případy z Jižní Ameriky. pánvice znak čeledi Bunyaviridae. Tyto struktury fungují jako promotor a hrají úlohu při regulaci virové replikace a transkripce . Segmentovaný genom relativně snad CHARAKTERISTIKA HANTAVIRŮ (MORFOLOGIE, no podléhá reasortaci a také homologní rekombinaci, což STRUKTURA, GENOM A ZPŮSOB PŘENOSU) jsou klíčové procesy určující jejich bohatou genetickou Morfologie hantavirů je typická pro členy čeledi diverzitu a odrážející se v evoluci hantavirů . Bunyaviridae : jsou to obalené, většinou sférické nebo Na rozdíl od hlodavců s celoživotní perzistentní infekcí ovoidní částice s průměrem  nm. Mohou ale tvořit člověk nehraje zásadní roli při cirkulaci hantavirů v pří i protáhlé útvary, které se u jiných bunyavirů tak často rodním ohnisku nákazy, jde o tzv. konečného hostitele nevyskytují. Na povrchu mají charakteristický šachov deadend host, který se nakazí náhodně při vstupu do nicový vzor složený ze čtvercových, přibližně x nm ohniska po kontaktu s infikovaným hlodavcem. Nákaza velkých morfologických podjednotek. Viriony obsahují se přenáší aerosolem obsahujícím infikované exkrety husté jádro s ribonukleoproteinovými strukturami a po hlodavců sliny, moč, trus. Ačkoliv inhalační cesta pře vrchové glykoproteiny uložené v dvojvrstvém lipidovém nosu hantavirů je klíčová, byla popsána i onemocnění po obalu , . Virové částice jsou inaktivovány teplem kousnutí infikovaným hlodavcem. U viru Andes je navíc  min/ °C, kyselým pH, detergenty, organickými zvažován interhumánní přenos , , . rozpouštědly a UV zářením . Genomy hantavirů sestávají ze tří jednořetězcových RNA segmentů, které jsou převážně negativní polarity  . GEOGRAFICKÉ ROZŠÍŘENÍ HANTAVIRŮ Velký L, „large“ segment je přibližně   nukleo Hlavní geografické rozdělení hantavirů je na hanta tidů dlouhý , kóduje protein L, který slouží jako viry Starého a Nového světa. Hantaviry Starého světa RNAdependentníRNApolymeráza , . Střední M, se vyskytují v mnoha oblastech Evropy a Asie a me „medium“ segment o velikosti   nukleotidů kóduje zi nejdůležitější patogenní zástupce patří hantaviry glykoproteinový prekurzor , který se posttranslač Hantaan, Puumala, DobravaBelgrade a Seoul , . ně štěpí na dva glykoproteiny, G  kD a G  kD. Viry Saaremaa, Kurkino, DobravaBelgrade a Sochi, Proteiny G a G fungují jako antigeny rozpoznávané které podle katalogu ICTV International Committee on neutralizačními protilátkami . Glykoproteiny mají Taxonomy of Viruses byly původně deklarovány jako od N konec vystavený na povrchu virionu a C konec ukot lišné viry, jsou nyní na základě konsenzu expertů řazeny vený v membráně a pravděpodobně se účastní interakce pouze jako čtyři odlišné genotypy viru DobravaBelgrade viru s hostitelskou buňkou při její infekci . Malý . Hantaviry Starého světa jsou přenášeny hlodavci S, „small“ segment kóduje nukleokapsidový protein N z podčeledi Murinae řád Rodentia, podřád Myomorpha, čeleď a je   až   nukleotidů dlouhý . V rámci zástup Muridae . Hantavirus Puumala je členem skupiny ců hantavirů se délka a sekvence S segmentu podstatně hantavirů Starého světa, které jsou přenášeny hlodavci nemění, což naznačuje, že hraje důležitou funkční úlo podčeledi Arvicolinae řád Rodentia, podřád Myomorpha, hu  . N protein se syntetizuje v rané fázi infekce   čeleď Cricetidae. Hantaviry Nového světa se vyskytují a jde o nejhojnější virový protein, který hraje klíčovou v Severní a Jižní Americe a jejich hostiteli jsou křečci roli v některých důležitých procesech životního cyklu podčeledí Neotominae a Sigmodontinae řád Rodentia, podřád viru: zamezuje např. přístupu nukleáz hostitelské buňky Myomorpha, nadčeleď Muroidea, čeleď Cricetidae  , . k virové RNA a podílí se na replikaci viru a sestavování Přehled významných hantavirů Starého i Nového světa virionů . Pravděpodobně interaguje s hostitelskou včetně patogenity, hlodavčích hostitelů a geografického buňkou a ovlivňuje imunitní odpověď na infekci  . rozšíření je uveden v tabulkách  a  .

Tabuľka 1. Přehled patogenních hantavirů Starého světa, včetně rezervoárů a geografického rozšíření [21] Table 1. List of Old World hantaviruses pathogenic for human, including reservoirs and geographic distribution [21] Název viru Onemocnění Rezervoár Geografické rozšíření Hantaan HFRS Apodemus agrarius Čína, Jižní Korea, Rusko, Taiwan Seoul HFRS Rattus norvegicus, R. rattus celosvětové Dobrava- Apodemus flavicollis, A. agrarius, HFRS evropská část Ruska, Estonsko, střední a jihovýchodní Evropa (Balkán) Belgrade A. sylvaticus Puumala HFRS (NE) Myodes glareolus Evropa (včetně západního Ruska) Tula HFRS Microtus arvalis Evropa (včetně Ruska) Thailand HFRS Bandicota indica, B. savile jihovýchodní Asie: Srí Lanka, Indie, jih Číny, Laos, Taiwan, Thajsko, Vietnam Amur HFRS Apodemus peninsulae Rusko, severovýchod Číny, východní ostrovy Sachalin a Hokkaidó Soochong HFRS Apodemus peninsulae Jižní Korea Sangassou * Holomyscus simus centrální Afrika

2015, 64, č. 4 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 189

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

Tabulka 2. Přehled patogenních hantavirů Nového světa, včetně rezervoárů a geografického rozšíření [21]. Table 2. List of New World hantaviruses pathogenic for human, including reservoirs and geographic distribution [21]. Název viru Onemocnění Rezervoár Geografické rozšíření Sin Nombre HPS Peromyscus maniculatus USA (včetně Aljašky), Mexiko, Kanada Bayou HPS Oryzomys palustris jihozápad USA Black Creek Canal HPS Sigmodon hispidus Florida New York HPS Peromyscus leucopus USA, Kanada, Mexiko Monongahela HPS Peromyscus maniculatus západ USA, Kanada Andes HPS Oligoryzomys longicaudatus Jižní Amerika, hlavně Argentina, Chile, Brazílie Araraquara HPS Bolomys lasiurus Brazílie Juquitiba HPS Oligoryzomys nigripes Brazílie, Uruguay Laguna Negra HPS Calomys laucha Brazílie, Paraguay, sever Argentiny, Bolívie Castelo dos Sohos HPS Oligoryzomys moojeni Brazílie Anajatuba HPS Oligoryzomys fornesii Brazílie Choclo HPS Oligoryzomys fulvescens Panama Bermejo HPS Oligoryzomys chacoensis Argentina Lechiguanas HPS Oligoryzomys flavescens Argentina, jihovýchod Brazílie, Uruguay Orán HPS Oligoryzomys longicaudatus Argentina Rio Mamore HPS Oligoryzomys microtis Bolívie, Brazílie, Peru, Argentina, Paraguay Rio Mearim HPS Holochilus sciureus Brazílie

Vysvětlivky: HFRS – hantavirová horečka s renálním selháním; NE – nephropathia epidemica; HPS – hantavirový plicní syndrom. * detegovány protilátky u lidí

Explanations: HFRS – haemorrhagic fever with renal syndrome; NE – nephropathia epidemica; HPS – hantavius pulmonary syndrome * antibodies detected in humans

V poslední době bylo díky progresivním molekulárním sérologicky v České republice popsali Kobzík a Daneš technikám především sekvenování nové generace objeve u farmářů na Břeclavsku . Jednalo se o pacienty s leh no několik nových zástupců hantavirů také u hmyzožrav čí až středně těžkou formou onemocnění. Následně ců Soricomorpha − rejsků, krtků, a u letounů řád Chiroptera bylo v roce   vyšetřeno   lidských sér: protilát , . Dosud však není nic známo o jejich patogenním ky k hantavirům se našly jen u   vyšetřených sér. potenciálu pro obratlovce včetně člověka. Nejvyšší procento pozitivity dosahovala séra ze skupi Důležitou roli pro udržování ohnisek hantavirů Starého ny zemědělců z jižní Moravy  . Pejčoch a Kříž dále světa v přírodě hrají místa, kde jsou ideální podmínky zkoumali přítomnost protilátek v krevních sérech  pro přemnožení hlodavců stohy slámy, seníky nebo náhodně vybraných osob starších  let . Protilátky rozptýlená lidská obydlí. Hantaviry Nového světa, re některých osob reagovaly s antigenem viru Hantaan spektive hlodavci, kteří je přenášejí, upřednostňují spíše  osob, séropozitivita , u jiných s antigenem viru aridní oblasti  . Puumala  osob, prevalence , , u některých s oběma antigeny. K podobným výsledkům došla ve své starší studii i L. Matyášová u obyvatel Prahy, Severočeského, HANTAVIRY V ČESKÉ REPUBLICE Východočeského a Západočeského kraje   vyšetřených Při hloubkové rešerši domácí literatury za posledních osob, séropozitivita ,  . Přítomnost protilátek třicet jsme kriticky vyhodnotili asi  prací zabývajících v krevním séru v populaci nasvědčuje, že organismus se hantaviry, na základě kterých analyzujeme výzkum se s virem setkal, avšak infekce mohla mít mírný nebo na našem území. asymptomatický průběh, nebo byla chybně diagnosti První česká přehledná práce o hantavirech byla uveřej kována, což je u hantaviróz bohužel běžný jev. Dále je něna dokonce až v roce   . Ovšem z historického nutné zmínit, že protilátky detegované v testu ELISA hlediska pocházejí nejstarší údaje týkající se výskytu proti viru Hantaan v séru vyšetřovaných osob reagují hantavirů ve střední Evropě z roku  z východního zkříženě s virem DobravaBelgrade. V posledních dvou Slovenska z oblasti Ruské Poruby, místa první epide dekádách bylo u nás publikováno několik důležitých mie HFRS v bývalém Československu v . letech . studií zabývajících se séroprevalencí hantavirových pro století, kde byl detegován antigen HFRS u hlodavců tilátek v lidské populaci. V rozsáhlé retrospektivní studii Myodes glareolus, Apodemus flavicollis a Apodemus agrarius  Státního zdravotního ústavu v Praze séra získaná ze a následně i u hlodavců z Česka spolu s potvrzeným sérologických přehledů z let    bylo vyšetřeno nálezem protilátek u lidí , . Vůbec první tři lidské celkem    osob z jižních a jihozápadních Čech bývalé případy způsobené infekcí virem Puumala a potvrzené okresy Klatovy, Strakonice, Prachatice, Český Krumlov,

190 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 2015, 64, č. 4

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

České Budějovice, Jindřichův Hradec, Tábor a  osob přenášený hrabošem polním Microtus arvalis a také nově ze Vsetínska, kdy ve  vzorcích vyšetřených kitem ELISA popsaný virus Seewis, přenášený rejskem obecným Sorex byly prokázány protilátky k virům Puumala  osob araneus a rejskem malým S. minutus , , . Virus a Hantaan  osoba, tedy průměrná promořenost ,. Tula je nejčastěji se vyskytujícím hantavirem u našich Vyšší přítomnost IgG protilátek byla zjištěna především hlodavců, s prevalencí pohybující se kolem   . v okrajových věkových skupinách, tedy u nejmladších Poprvé byl izolován na jižní Moravě z hraboše M. arvalis a nejstarších sledovaných osob . Zelená a Januška a je považován za nepatogenní , . V roce  byla vyšetřili séra  pacientů z Moravskoslezského regio však popsána infekce tímto virem u imunokompromito nu a zjistili prevalenci   osob reagovalo proti viru vaného jedince z Ostravska . Hantaan a  proti viru Puumala, osoby proti obě ma antigenům  . Klinické symptomy kompatibilní s hantavirózou byly zjištěny u  z těchto séropozitivních ONEMOCNĚNÍ osob. V jiné studii  hemodialyzovaných pacientů ze U člověka hantaviry primárně infikují buňky endotelu západočeského regionu z celkového počtu  vyšetře v plicích nebo ledvinách a také makrofágy, i když virový ných séropozitivita , vykazovalo protilátky proti antigen je přítomný i v dalších tkáních . Klinický antigenům Puumala a Hantaan, což naznačuje možnou průběh infekce se liší v závislosti na druhu viru a jeho ge souvislost mezi chronickým postižením ledvin a pří notypu jednotlivé genotypy viru DobravaBelgrade mají tomností patogenních hantavirů  . Výskyt protilátek různě závažný průběh, důležitou roli hraje genetická celková séropozitivita , proti virům Hantaan  je predispozice zejména HLA systém, pohlaví, věk, virová dinci, Puumala  jedinci a Seoul  jedinci byl zjištěn nálož anebo imunokompetence člověka, který se s virem u   zdravých vojáků v letech  . Vyšší výskyt setkal  . Onemocnění spojené s hantaviry Starého protilátek k hantavirům u vojáků ve srovnání s běžnou světa, tj. hemoragická horečka s renálním syndromem populací lze vysvětlit častým pobytem příslušníků armá HFRS, postihuje hlavně ledviny, zatímco hantavirový dy ve volné přírodě především ve výcvikových prostorech plicní syndrom HPS, jehož původci jsou hantaviry a tedy vyšší expozicí aerosolové infekci  . Nového světa, je spojený se selháním kardiopulmo Během let  se podle databáze EPIDAT na na nálního systému . V současnosti přibývá důkazů šem území vyskytlo  hlášených případů HFRS  ,  poukazujících na určitou podobnost mezi těmito dvěma a jeden popsaný importovaný případ u vojáka složek syndromy. Jak HFRS tak i HPS mohou vést ke zhoršené UNPROFOR, který se nakazil při misi na Balkáně  . funkci ledvin, krvácení a kardiopulmonálnímu postižení Klinická onemocnění způsobená hantaviry byla dia v důsledku zvýšené propustnosti kapilár a sníženého gnostikována v Čechách i na Moravě, a to především počtu krevních destiček trombocytopenie . na Ostravsku respektive na československém pomezí a v jižních Čechách  , . V České republice byly po Hemoragická horečka s renálním syndromem HFRS, psány lidské infekce hantaviry především u dospělých, „Haemorrhagic Fever with Renal Syndrome“ ale vyskytlo se i několik případů onemocnění u dětí. HFRS je akutní horečnaté onemocnění v začátcích při V podstatě jde vždy o ojedinělé případy. V roce  byly pomínající chřipku, které může vést až k závažným popsány první tři případy infekce nephropathia epidemica krvácivým stavům a k selhání ledvin  . Typický průběh u dětí hospitalizovaných s intersticiální nefritidou HFRS se skládá z pěti stadií: fáze horečky, fáze hypoten  . Děti nevykazovaly typické příznaky infekce virem ze, fáze oligurie, diuretická fáze a fáze rekonvalescence Puumala, kterou pravděpodobně získaly vdechnutím in . Jednotlivé fáze se dají zřetelně odlišit v průběhu těžké fikovaného aerosolu na víkendové chatě při svých opako formy onemocnění způsobeného hantaviry Hantaan vaných návštěvách. V srpnu  byl hlášen případ le nebo DobravaBelgrade. tého chlapce, který se infikoval u obce Ostravice poblíž hranic se Slovenskem. Vyvinula se u něho těžká forma Infekce viry Hantaan a DobravaBelgrade HFRS způsobená virem DobravaBelgrade  . Případy Viry Hantaan a DobravaBelgrade způsobují těžkou těžké formy HFRS původce opět virus DobravaBelgrade formu HFRS  . Inkubační doba činí  týdnů u vi byly dokumentovány u dvou imunokompetentních ru DobravaBelgrade, poté nastupuje febrilní fáze mužů po pobytu na horské chatě na slovenskočeském  dní s příznaky připomínajícími chřipku vysoká pomezí. Rizikovým faktorem zde byl úklid chaty těsně horečka, zimnice, bolesti hlavy a svalů a intenzivní před návštěvou  . Jediná popsaná epidemie hantaviry bolest zad  , . Často se vyskytuje bolest v dutině u nás se odehrála na Prachaticku, kde bylo mezi roky břišní, žaludeční obtíže, nevolnost, zvracení, malát  až  popsáno  případů nephropatia epidemica, nost a poruchy vizu , ,  . Dochází ke zvýšení způsobené virem Puumala. Pejčoch et al. zde provedli propustnosti kapilár, která vede k zarudnutí tváří, geobotanický průzkum spojený s odchytem drobných krku, objevují se petechie a krvácení do spojivek. Po hlodavců a charakterizovali vhodný biotop pro výskyt  dnech vysoká horečka ustoupí a pacient se dostane hantavirů: smíšený les s predominancí buku Fagus do fáze hypotenze , která může trvat hodiny až dny sylvatica  . většinou  dny. Pokles tlaku bývá někdy prudký  může Ve střední Evropě v současnosti cirkulují mezi hlodavci dojít až k šoku, objevuje se trombocytopenie, leuko a hmyzožravci hantaviry: virus DobravaBelgrade je cytóza, zvýšený hematokrit a je výrazná proteinurie. přenášený jak myšicí temnopásou A. agrarius  genotyp S trombocytopenií souvisí krvácivé projevy  po těle se Kurkino klinicky lehčí průběh infekce, tak myšicí lesní objevují hematomy, může být hematemeza, epistaxe, A. flavicolis  genotyp Dobrava doprovázený těžším prů hematurie, meléna, případně i krvácení do centrálního během infekce. Dalším hantavirem je virus Puumala, nervového systému, které je mnohdy smrtelné ,  . přenášený norníkem rudým Myodes glareolus, virus Tula, Z laboratorních ukazatelů lze zmínit zvýšené hladiny

2015, 64, č. 4 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 191

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

transamináz, sérového kreatininu nad  µmol/l, vážného průběhu HPS je zvýšená permeabilita plicních laktátdehydrogenázy, urey, Creaktivního proteinu či kapilár, která může vyvolat hypoxémii až rychlý rozvoj Ddimerů. Většinou kolem osmého dne se krevní tlak těžkého respiračního selhání s kardiogenním šokem normalizuje, ale onemocnění pokračuje oligurgickou a selháním srdečním  ,  . Nejvíc onemocnění HPS fází, v trvání  dnů . Zhoršuje se funkce ledvin, je způsobeno virem Sin Nombre s jasnými klinickými což vede k oligurii až anurii. Asi polovina úmrtí na příznaky a minimálními projevy mimo dutinu hrudní stává právě v této fázi. Krvácivé projevy souvisejí ne  . Naopak případy, u kterých nastane porucha funkce jen s extrémní trombocytopenií, ale také se zvýšenou ledvin, bývají často spojené s infekcí viry Bayou nebo propustností kapilár a rozvojem DIC diseminované Black Creek Canal . intravaskulární koagulace. DIC s šokem a multiorgá Klinický průběh HPS je rozdělen do fází s odchylkami novým selháním také bývá nejčastější příčinou úmrtí v závažnosti a výskytu mezi pacienty: fáze horečky, ,  . Průběh této fáze může zhoršit krvácení do kardiopulmonální fáze, fáze diuretická a zotavovací gastrointestinálního traktu nebo hemoptýza. Pacienti, fáze  . Inkubační doba bývá   dní a počáteční pří kteří přežijí oligurickou fázi, se dostanou do diuretic znaky zahrnují náhlý vzestup teploty, bolesti hlavy, ké fáze, která může trvat několik týdnů a nástup této svalů a žaludeční obtíže nauzea, zvracení  , . fáze znamená pro pacienta pozitivní prognózu ,  , Objevuje se také trombocytopenie. Febrilní stadium trvá  . Ledviny totiž začínají regenerovat, produkce moči přibližně  dní a postupně se přidává kašel, dušnost, stoupá až na několik litrů denně  litrů za den, pocit sevřeného hrudníku, tachykardie a hypotenze, a pokud ztráty tekutin nejsou nahrazeny, pacienti jsou jež jsou prvními příznaky nástupu kardiopulmonální ohroženi dehydratací . Rekonvalescence je konečnou fáze, u které se rozvíjí těžké respirační selhání  , . fází onemocnění a obvykle trvá týdny až měsíce  . Často dojde ke kardiogennímu šoku, laktátové acidó Letalita na infekci způsobenou těmito viry se pohybuje ze a srdeční arytmii  . Právě prvních   hodin od   do    ,  . po nástupu šoku je pro přežití pacienta kritických. Nezbytná bývá plicní ventilace včetně monitorování Infekce virem Seoul a podpory základních životních funkcí, přesto letalita Onemocnění způsobené virem Seoul se liší od průběhu může dosáhnout až   , . Pacienti, kteří toto předchozí infekce závažností a tím, že může postihnout období přežijí, se dostávají do diuretické fáze, ve které i játra . U pacienta nelze s jistotou rozlišit pět typic dochází ke zvýšení produkce moče a stav se postupně kých fází pro HFRS . Výzkum ukázal, že onemocnění se zlepšuje  . Poté nastává zdlouhavá rekonvalescence, vyskytuje převážně u  letých mužů   stejně jako provázená zvýšenou slabostí a únavou. u infekcí způsobených jinými hantaviry a mezi hlavní příznaky patří zvracení, horečka, bolesti svalů a bři cha, postižení spojivek a petechie. Na rozdíl od infekcí DIAGNOSTIKA HANTAVIRÓZ způsobených ostatními hantaviry bývá často přítomna Prvotní příznaky infekce hantaviry nejsou specifické, hepatitida. Letalita je pod   ,  . a jejich diagnostika bývá složitá. V diagnostické praxi se nejčastěji využívá kombinace klinických a sérologických Infekce virem Puumala nálezů, někdy doplněné o molekulární analýzu . Virus Puumala způsobuje mírnou formu HFRS, kte rá se nazývá „nephropathia epidemica“ NE . Podobá se Přímá diagnostika HFRS, ale symptomy tohoto onemocnění jsou mírnější. Na přímou izolaci hantavirů lze použít buňky Vero Jednotlivá stadia nejsou výrazně odlišena a ledviny jsou E, ve kterých viry replikují bez tvorby cytopatického relativně málo postižené. Při infekci virem Puumala se efektu. Hantaviry také infikují linie buněk Huh a A běžně objevují příznaky jako kašel, přítomnost plicního získané z lidského karcinomu jater a plic  . Obecným infiltrátu a snížená funkce plic  . Tyto příznaky jsou problémem při izolačních pokusech bývá skutečnost, ale většinou málo závažné a často bývají přehlédnuty. že virémie je u člověka poměrně krátkodobá. Poslední Typicky se u pacientů vyskytuje horečka, bolesti svalů, slovinská studie však překvapivě udává průměrnou dél břicha a zad. V případě postižení ledvin se okolo třetího ku virémie u člověka  dní pro virus DobravaBelgrade nebo čtvrtého dne objeví oligurie až anurie. Dialýzu a  dní pro virus Puumala . Izolační pokusy jsou vyžaduje méně než   pacientů. Hemoragické příznaky navíc pracné, časově náročné a pro personál rizikové petechie, hematurie nebo meléna se vyskytnou asi u   . Molekulární metody založené na amplifikaci nuk  případů , . Často se také objeví mlhavé vidění, leových kyselin viru, jako jsou polymerázová řetězová akutní myopie a popsán byl i glaukom ,  . Během reakce s využitím reverzní transkriptázy RTPCR nebo druhého týdne onemocnění se pacienti začínají zotavo realtime RTPCR, které jsou vysoce citlivé, specifické vat, ale plná úzdrava vyžaduje vždy delší dobu. Letalita a rychlé, umožňují druhovou identifikaci hantavirů po je v rozmezí od , Finsko po ,  Ural. Závažný sekvenaci vybraných úseků genomu a dají se použít klinický průběh infekce virem Puumala je silně vázán pro vyšetření ještě před rozvojem onemocnění. Virový na přítomnost haplotypu HLAB , zatímco u lehkých materiál RNA pro tyto testy bývá purifikován z krve průběhů je to haplotyp HLAB. nebo slin pacienta během akutní fáze infekce, případně z autopsie vzorků infikovaných tkání nejlépe ve vire Hantavirový plicní syndrom HPS, „Hantavirus mické fázi onemocnění  . Úspěšnost molekulární Pulmonary Syndrome“, také označovaný HCPS, identifikace také závisí na výběru vhodných primerů „Hantavirus CardioPulmonary Syndrome“ primery a sondy se v případě Realtime PCR vážou HPS představuje mnohem závažnější onemocnění než na vysoce konzervativní oblasti v rámci L segmentu HFRS  letalita dosahuje   . Primární příčinou hantavirového genomu nebo vysoce homologní oblasti

192 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 2015, 64, č. 4

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

Ssegmentu a náloži virové RNA ve vzorku  , . infekcí  . Intravenózně podávaný ribavirin má an Pro rozlišení různých kmenů hantavirů lze také využít tivirovou aktivitu proti hantavirům způsobujících plakredukční neutralizační test PRNT. HFRS v časných fázích, ale jeho podávání zůstává stále na experimentální úrovni. Například u pacientů Nepřímá diagnostika v Číně se prokázala snížená úmrtnost v případě, kdy Z imunologických metod se pro diagnostiku hantaviro byl ribavirin podáván během prvních  dní po nástupu vých infekcí využívají ELISA enzymelinked immunosor prvotních příznaků , . Dokáže zabránit i progresi bent assays, imunofluorescenční test IF, a imunoblo onemocnění do oligurické fáze a zpomaluje selhávání tové nebo imunohistochemické testy  . V současnosti funkce ledvin. Jeho použití je omezené především na jsou vyvinuté vysoce citlivé a specifické IgM a IgG ELISA těžké a rychle rozpoznané formy onemocnění, např. testy např. diagnostické sety firem Progen, Focus nebo během epidemie  ,  . Bohužel zůstává neúčinný Euroimmun. Jako diagnostické antigeny se využívají při léčbě HPS, kde vhodné antivirotikum je třeba teprve přirozené nebo rekombinantní N proteiny viru, které jsou vyvinout  . významné svou vlastností vyvolávat brzkou a dlouhotrva Imunoterapie je jedna z dalších perspektiv pro léčbu han jící imunitní odpověď. Problémem však může být nízká tavirových infekcí. Podání lidských neutralizačních pro senzitivita či zkřížená reaktivita  , , . Metoda IF tilátek během akutní fáze HPS by mohlo vést k poklesu je populární metodou díky jednoduchosti provedení, ne virémie a podpořit rekonvalescenci. Studie na hlodavcích výhodou tohoto testu jsou však problémy se specificitou ukázala, že pasivní transfer neutralizačních monoklonál testu ovlivněnou zkříženými reakcemi protilátek proti ních protilátek nebo polyklonálního séra dokáže ochránit různým zástupcům hantavirů, a také nezkušenost uži zvířata před infekcí  . Imunoterapie se jeví být slibnou vatelů při mikroskopickém hodnocení  . Nedávno byl metodou, avšak na léčbu hantavirových infekcí by bylo vyvinut vysoce specifický a citlivý imunofluorescenční zapotřebí udržovat přiměřené koncentrace protilátek po test navržený na podkladě biočipu, který dokáže dete dostatečně dlouhou dobu, což se dosud nedaří. V sou govat protilátky ke všem známým hantavirům Starého časné době se testují také speciální imunoterapeutika, a Nového světa . Imunoblotové testy využívají také která by inhibovala zvýšenou propustnost kapilár, jež je rekombinantní antigen a patří mezi specifické a cit důsledkem hantavirové infekce . livé metody, které slouží ke konfirmaci pozitivního ELISA testu např. sety Mikrogen. Imunohistochemické metody umožňují obarvení hantavirových antigenů ve VAKCINACE vzorcích tkání, a stávají se tak ideálním nástrojem pro V Asii se využívají inaktivované monovalentní vakcíny retrospektivní diagnózu infekcí hantaviry v konzervo např. Hantavax v Koreji byť s krátkodobou protektivní vaných biopsiích  . Pro detekci akutních infekcí viry odpovědí a nutností častého dávkování , . Žádná DobravaBelgrade, Hantaan a Puumala byl nedávno vy z nich se však neosvědčila pro používání v Evropě či vinut pětiminutový imunochromatografický IgM test . USA neexistuje zkřížená protektivita. Je potřeba vyvi Neutralizační test se využívá i na detekci neutralizačních nout takovou vakcínu, která by byla bezpečná, účinná protilátek vyvolaných infekcí a je díky své vysoké specifi a multivalentní, zároveň však adaptovaná na místní citě a senzitivitě považován za zlatý standard sérologické podmínky . Zatím byly vyrobeny pouze kandidátní diagnostiky , . Test je však časově náročný trvá rekombinantní vakcíny na podkladě replikačních kom dny až týdny a ne vždy je dostupný živý antigen. Kvůli ponent viru vakcinie nebo rekombinantních bakterií, aerosolům, které mohou vznikat během laboratorních které kódují jeden nebo více virových proteinů. V Evropě procedur se izolační, molekulární a sérologické meto byla vyvinuta kandidátní vakcína proti viru Puumala, dy s živým materiálem provádějí pouze v laboratořích která obsahuje proteinové komplexy s mnoha žádanými s úrovní zabezpečení BSL nebo BSL  . vlastnostmi, jako imunogeny prezentující N protein viru, a která vyvolává silnou imunitní odpověď , . V současnosti se v USA pracuje na vakcíně, která využívá LÉČBA M segment virů Hantaan a Puumala . Specifickou Aktuálně proti hantavirovým nákazám nemáme k dis imunitní odpověď dokáží vyvolat i hantavirové protei pozici žádnou specifickou terapii . Léčba je proto ny získané biotechnologickou cestou z transgenních symptomatická a podpůrná. U těžkých případů je ne rostlin . Jako užitečný nástroj pro vývoj vakcín se zbytné umístit pacienta na jednotku intenzivní péče, ukázaly např. také kvasinky Sacharomyces cerevisiae po kde je zajištěno monitorování základních životních skytující vysoký výtěžek nukleokapsidových proteinů funkcí, korekce příjmu a výdeje tekutin, minerální hantaviru . ho metabolismu a acidobazické rovnováhy , ,  . Taktéž zavedení umělé plicní ventilace anebo mimotělní okysličování v případě HPS a hemodialýza PREVENCE u HFRS jsou u kritických nemocných nezbytné  . Možnosti léčby hantaviróz jsou nedostatečné, proto Velmi důležitá je schopnost lékařů rozpoznat počáteční je velmi důležitá prevence vzniku onemocnění . příznaky hantavirové infekce. V diferenciální diagnos Nejefektivnějším způsobem prevence infekcí způsobe tice hantaviróz je nejdůležitější myslet zejména na ných hantaviry nebo jinými hlodavci přenosnými viry leptospirózu, při plicním postižení na řadu infekcí, např. arenavirus lymfocytární choriomeningitidy je které mohou způsobit postižení dolních cest dýchacích potlačení kontaktu s hlodavci a jejich exkrety sliny, a obdobně i u renálního postižení přichází v úvahu také moč, trus. Člověk by se měl vyhýbat místům, kde žijí řada možností  . V současné době nemáme žádné početné populace volně žijících synantropních hlodav účinné antivirové preparáty pro léčbu hantavirových ců a dochází k hromadění jejich exkretů např. staré

2015, 64, č. 4 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 193

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

budovy, sklepy, půdy. Je důležité aktivně omezovat dočasně, protože příroda a přírodní ohniska se vyvíjejí počet jejich úkrytů a zdrojů potravy v okolí lidských a mění dál, i když velmi pomalu“ . obydlí. Dále je vhodné uzavřít vstupy do domů a budov a zamezit přístup těmto živočichům, popř. vydenzifi Poděkování kovat již potenciálně kontaminované úseky  ,  , . Autoři děkují Evropské komisi za podporu projektu . rám Prevence ve formě osvěty by také měla směřovat k rizi cového programu EU grant FP EDENext http:// kovým skupinám, kterým hrozí vystavení volně žijícím www.edenext.eu, který se zabývá biologií a kontrolou hlodavcům pracovníci v lesnictví a zemědělství, zoolo infekcí přenášených vektory v Evropě. Publikace je v rámci gové, vojáci, trampové stejně jako imunokompromito tohoto programu katalogizována jako EDENext. Věcný vaným jedincům těhotné ženy, staří lidé, onkologičtí obsah publikace podléhá zodpovědnosti autorů a nere pacienti, pacienti po transplantaci, chronicky nemocní flektuje nutně pohled Evropské komise. Dále děkujeme lidé. Žádoucí by bylo vyšetřovat osoby s akutním či Operačnímu programu Ministerstva školství Vzdělání pro chronickým postižením ledvin na možnou souvislost konkurenceschopnost projektu CEB CZ../../. s výskytem hantavirového onemocnění, mj. za účelem a projektu Specifického výzkumu MU MUNI/A// lokalizace přírodních ohnisek nákazy. a MUNI/A//.

ZÁVĚR LITERATURA Relevantní údaje o výskytu hantavirů v hlodavcích, 1. Vapalahti O, Mustonen J, Lundkvist A, et al. Hantavirus infections in stejně jako o klinických případech, jsou na našem Europe. Lancet Inf Dis, 2003; 3:653–661. území stále spíše kusé a nedávají opravdový vhled do 2. Gratz N. Vector- and Rodent-borne Diseases in Europe and North problematiky rozšíření potažmo emergence této závaž America: Their Distribution and Public Health. Cambridge: Cambridge né zoonózy v rámci České republiky. Data o klinických Univ. Press; 2006. případech hantavirových nákaz z poslední doby jsou 3. Lee HW, Lee PW, Johnson KM. Isolation of etiologic agent of Korean publikována takřka výlučně ze severní Moravy, kde se hemorrhagic fever. J Infect Dis, 1978; 137:298–308. nachází virologické pracoviště Zdravotního ústavu se 4. Jonsson CB, Figueiredo LTM, Vapalahti O. A global perspective on sídlem v Ostravě, které danou problematiku dlouho hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev, době sleduje a region diagnosticky pokrývá. Na základě 2010; 23:412–441. distribuce hantavirů např. v sousedním Německu se 5. Avsic-Zupanc T, Saksida A, Korva M. Hantavirus infections. Clin lze domnívat, že hantaviry se vyskytují ve více pří Microbiol Infect, 2013; doi: 10.1111/1469-0691.12291. rodních ohniscích i na našem území, avšak jejich 6. Jenison S, Yamada T, Morris C, et al. Characterization of human anti- přesný výskyt dosud nebyl podrobně zmapován. Nálezy body responses to Four Corners hantavirus infections among patients antigenů u hlodavců z jižní Moravy, Krušných hor, with hantavirus pulmonary syndrome. J Virol, 1994; 68:3000–3006. jižních Čech anebo Ostravska jsou patrně jen střípky 7. Nichol ST, Spiropoulou CF, Morzunov S, et al. Genetic identification reálné distribuce tohoto agens na našem území. Řada of a hantavirus associated with an outbreak of acute respiratory ill- infekcí je asymptomatických anebo zůstává nerozpo ness. Science, 1993; 262:914–917. znána, takže je v budoucnu třeba zlepšit diagnostiku 8. Maupin G, Gage K, Childs JE, et al. Isolation of the causative agent of hantaviróz na všech klinických pracovištích v rámci hantavirus pulmonary syndrome. Am J Trop Med Hyg, 1994; 5:102–108. celé České republiky. Dále bychom měli prozkoumá 9. Childs JE, Ksiazek TG, Spiropoulou CF, et al. Serologic and genetic vat a cíleně podle výskytu onemocnění vyhledávat identification of Peromyscus maniculatus as the primary rodent reser- nová ohniska hantavirů v populacích drobných hlo voir for a new hantavirus in the southwestern United States. J Infect davců především M. glareolus, A. flavicolis, A. agrarius Dis, 1994; 169:1271–1280. a propojovat tyto údaje s výskytem klinických případů 10. Hjelle B, Torres-Perez F. Hantaviruses in the Americas and their role u člověka. Kvalitní surveillance hantavirových nákaz as emerging pathogens. Viruses-Basel, 2010; 2:2559–2586. je dnes dostupná jen v malé části evropských zemí 11. CDC, MMWR. Annual U.S. HPS Cases and Case-fatality, 1993–2013. např. Německo, Finsko, Belgie, a to jen díky integ Dostupné na www: http://www.cdc.gov/hantavirus/surveillance/an- rované spolupráci přírodovědců a lékařů. Hantavirózy nual-cases.html. jsou sice vzácná, ale svým průběhem a následky velmi 12. Charrell RN, Coutard B, Baronti C, et al. and hantavi- nebezpečná onemocnění, a proto by se studiu jejich ruses: From epidemiology and genomics to antivirals. Antiviral Res, ekologie a epidemiologie měla věnovat dostatečná po 2011; 90:102–114. zornost. Z poslední doby lze dokumentovat zajímavý 13. Peters CJ, Mills JN, Spiropoulou C, et al. Hantavirus infections. případ infekce virem Seoul u těhotné ženy v Belgii  In: Guerrant RL, Walker DH, Weller PF. Tropical Infectious Diseases: nebo infekci způsobenou zástupcem tzv. nepatogenních Principles, Pathogens & Practice Philadelphia: Elsevier; 2006. hantavirů u imunokompromitovaného jedince dokonce 14. Lednicky JA. Hantaviruses: A short review. Arch Pathol Lab Med, na našem území . Na základě údajů v EPIDAT a při 2003; 127:30–35. srovnání s ostatními zeměmi středoevropského regionu 15. Kruger DH, Schonrich G, Klempa B. Human pathogenic hantaviru- se lze domnívat, že řada asymptomatických infekcí ses and prevention of infection. Hum Vaccines, 2011; 7:685–693. podobně jako u ostatních zoonóz dnes uniká pozornosti 16. Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure-mo- specialistů. Jak ve své knize Přírodní ohniskovost nákaz lecular interactions behind the scene. J Gen Virol, 2012; 93:1631–1644. konstatuje významný český epidemiolog Luděk Daneš: 17. Safronetz D, Zivcec M, LaCasse R, et al. Pathogenesis and host res- „Viry, které jsou dnes málo významné, se mohou stát ponse in Syrian hamsters following intranasal infection with Andes velkými patogeny, mohou měnit svá působiště, hostite virus. PLoS Pathog, 2011; 7:1–15. le i přenašeče. Je na místě skromnost a zapotřebí smířit 18. Plyusnin A, Vapalahti O, Vaheri A. Hantaviruses: Genome structure, se s tím, že všechny vědecké poznatky mohou platit jen expression and evolution. J Gen Virol, 1996; 77:2677–2687.

194 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 2015, 64, č. 4

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

19. Taylor SL, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS. Hantaan 43. Petrů K, Pejčoch M, Monhart V, et al. Hemoragická horečka s renál- virus nucleocapsid protein binds to import in | proteins and inhibits ním selháním. Čas Lék čes, 1997;136:739–740. tumor necrosis factor alpha-induced activation of nuclear factor kap- 44. Papa A, Zelená H, Barnetová D, Petroušová L. Genetic detection of pa B. J Virol, 2009; 83:1271–1279. Dobrava/Belgrade virus in a Czech patient with haemorrhagic fever 20. Wells RM, Sosa Estani S, Yadon ZE, et al. An unusual hantavirus with renal syndrome. Clin Microbiol Infect, 2010;16:1187–1190. outbreak in southern Argentina: Person-to-person transmission? 45. Pejčoch M, Unar J, Kříž B, et al. Characterization of a natural focus Emerg Infect Dis, 1997; 3:171–174. of Puumala hantavirus infection in the Czech Republic, Cent Eur J Publ 21. Hubálek Z, Rudolf I. Microbial Zoonoses and Sapronoses. Dordrecht: Health, 2010;18:116–118. Springer; 2011. 46. Dušek J, Pejčoch M, Kolský A, et al. Mild course of Puumala ne- 22. Klempa B, Avsic-Zupanc T, Clement J, et al. Complex evolution phropathy in children in an area with sporadic occurrence hantavirus and epidemiology of Dobrava-Belgrade hantavirus: definition of geno- infection. Pediatr Nephrol, 2006, 21;1889–1992. types and their characteristics. Arch Virol, 2013;158: 521–529. 47. Zelená H, Zvolánková V, Zuchnická J, et al. Hantavirus infection 23. Maes P, Klempa B, Clement J, et al. A proposal for new criteria for during a stay in a mountain hut in northern Slovakia. J Med Virol, the classification of hantaviruses, based on S and M segment protein 2011;83:496–500. sequences. Infect Genet Evol, 2009; 9:813–820. 48. Kruger DH, Figueiredo LTM, Song JW, Klempa B. Hantaviruses – 24. Young JC, Mills JN, Enria DA, et al. New World hantaviruses. Brit globally emerging pathogens. J Clin Virol, 2015;64:128–136. Med Bull, 1998;54:659–673. 49. Schlegel M, Radosa L, Rosenfeld UM, et al. Broad geographical dis- 25. Kang HJ, Bennett SN, Hope AG, et al. Shared ancestry between tribution and high genetic diversity of shrew-borne Seewis hantavirus a newfound mole-borne hantavirus and hantaviruses harbored by cri- in Central Europe. Virus Genes, 2012;45:48–545. cetid rodents. J Virol, 2011;85:7496–7503. 50. Heroldová M, Pejčoch M, Bryja J, et al. Tula virus in populations of 26. Guo WP, Lin XD , Wang W, et al. Phylogeny and origins of hanta- small terrestrial mammals in a rural landscape. Vector-Borne Zoonotic viruses harbored by bats, insectivores, and rodents. PLoS Pathogens, Dis, 2010;10:599–603. 2013;9:1–13. 51. Plyusnin A, Cheng Y, Vapalahti O, et al. Genetic variation in Tula 27. Ling J, Sironen T, Voutilainen L, et al. Hantaviruses in finnish sorico- hantaviruses: Sequence analysis of the S and M segments of strains morphs: evidence for two distinct hantaviruses carried by Sorex ara- from Central Europe. Virus Res, 1995;39:237–250. neus suggesting ancient host switch. Infect Genet Evol, 2014;27:51–61. 52. Vapalahti O, Lundkvist A, Kukkonen SKJ, et al. Isolation and cha- 28. Vacková M, Jebavý L, Beran J, et al. Febrilní stavy způsobené han- racterization of Tula virus, a distinct serotype in the genus Hantavirus, taviry. Prakt. lékař, 2002; 82: 84–86. family Bunyaviridae. J Gen Virol, 1996;77:3063–3067. 29. Pejčoch M. Hantaviry a nákazy jimi vyvolané. Klin mikrobiol inf lék 53. Zelená H, Mrázek J, Kuhn T. Tula hantavirus infection in immunocom- 2003,1: 4–9. promised host, Czech Republic. Emerg Infect Dis, 2013;19:1873–1876. 30. Grešíková M, Rajčáni J, Sekeyová M, et al. Hemorrhagic fever virus 54. Schönrich G, Rang A, Lutteke N, et al. Hantavirus-induced immuni- with renal syndrome in small rodents in Czechoslovakia. Acta Virol, ty in rodent reservoirs and humans. Immunol Rev, 2008;225:163–189. 1984;28:416–421. 55. Rasmuson J, Andersson C, Norrman E, et al. Time to revise the 31. Daneš L, Tkachenko EA, Ivanov AP, et al. Hemorrhagic fever with paradigm of hantavirus syndromes? Hantavirus pulmonary syndrome renal syndrome in Czechoslovakia: detection of antigen in small caused by European hantavirus. Eur J Clin Microbiol, 2011;30:685–690. terrestrial mammals and specific serum antibodies in man. J Hyg 56. Chandy S, Abraham, P, Sridharan G. Hantaviruses: an emer- Epidemiol Microbiol Immunol, 1986;30:79–85. ging public health threat in India? A review. J Biosciencies, 32. Daneš L, Pejčoch M, Hubálek Z, et al. Hantaviruses in small wild 2008;33:495–504. living mammals in Czechoslovakia. J Hyg Epidem 1991;35:281–288. 57. Courouble P, Vanpee D, Delgrange E, et al. Hantavirus infections: 33. Kobzík J, Daneš L. Laboratory confirmed cases of hemorrha- clinical presentations in the emergency room. Eur J Emerg Med, gic fever with renal syndrome which occured in Breclav 1989–1990. 2001;8:17–20. Epidemiol Microbiol Immunol, 1992;41:65–68. 58. Pejčoch M, Kříž B. Hantaviry a jimi vyvolávaná onemocnění v České 34. Pejčoch M. Co to jsou hantaviry. Vesmír, 1995;74:446. republice. Prakt lékař, 2007;87:545–549. 35. Pejčoch M, Kříž B. Hantaviruses in the Czech Republic. Emerg 59. Park SC, Pyo HJ, Soe JB, et al. A clinical study of hemorrhagic fever Infect Dis, 2003;9:756–757. with renal syndrome caused by Seoul virus infection. Korean J Intern 36. Matyášová L. Sérologický přehled hantavirových nákaz. Zprávy Med, 1989;4:130–135. CEM, 1998;7:37. 60. MacNeil A, Nichol ST, Spiropoulou CF. Hantavirus pulmonary syn- 37. Pejčoch M, Kříž B, Malý M. Promořenost hantaviry ve dvou oblas- drome. Virus Res, 2011;162:138–147. tech s přírodními ohnisky hantavirů. Prakt lékař, 2010; 90:167–170. 61. Korva M, Saksida A, Kejzar N, et al. Viral load and immune response 38. Zelená H, Januška J. Serological characteristics of hantavirus dynamics in patients with haemorrhagic fever with renal syndrome. from clinical specimens analyzed in 1998–2008 in the Department of Clin Microbiol Infect, 2013;19:358–366. Virology, Public Health Institute, Ostrava. Epidemiol Microbiol Imunol, 61. Aitichou M, Saleh SS, McElroy AK, et al. Identification of Dobrava, 2009;58:115–120. Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR. J 39. Pejčoch M, Pazdiora P, Eiselt J, et al. Seroprevalence of hantavirus Virol Methods, 2005;124:21–26. antibodies among chronic hemodialysis atients in the Czech Reublic. 62. De Souza WM, Machado AM, Figueiredo LTM, et al. Serosurvey of Epidemiol Microbiol Imunol, 2010;59:48–51. hantavirus infection in humans in the border region between Brazil 40. Vacková M, Douda P, Beran J, et al. Serologic detection of hantavi- and Argentina. Rev Soc Bras Med Trop, 2011;44:131–135. rus antibodies. Epidemiol Mikrobiol Imunol, 2002;51:74–77. 63. Clement J, Maes P, Van Ranst M. Hantaviruses in the Old and 41. EPIDAT (2014). Vybrané infekční nemoci v ČR v letech 2004–2014. New world. In: Tabor E. Emerging Viruses in Human Populations. Dostupné na www: http://www.szu.cz/publikace/data/vybrane-in- Amsterdam: Elsevier; 2007. fekcni-nemoci-v-cr-v-letech-2003-2012-absolutne. 64. Lederer S, Lattwein E, Hanke M, et al. Indirect immunofluorescence 42. Heyman P, Ceianu C, ChristovaI, et al. A five-year perspective on the si- assay for the simultaneous detection of antibodies against clinical- tuation of haemorrhagic fever with renal syndrome and status of the han- ly important old and new world hantaviruses. Plos Neglect Trop Dis, tavirus reservoirs in Europe, 2005–2010. Eurosurveillance, 2011;16:15–22. 2013;7:e2157.

2015, 64, č. 4 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 195

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni www.prolekare.cz | stazeno: 20.3.2017

SOUHRNNÉ SDĚLENÍ

65. Maes P, Keyaerts E, Li S, et al. Replication reduction neutraliza- 73. Maes P, Clement J, Gavrilovskaya I, et al. Hantaviruses: Immunology, tion test, a quantitative RT-PCR-based technique for the detection of treatment, and prevention. Viral Immunol, 2004;17:481–497. neutralizing hantavirus antibodies. J Virol Methods, 2009;159:295–299. 74. Vacková M, Beran J, Douda P, et al. Epidemiologická problematika 66. Bi ZQ, Formenty PBH, Roth CE. Hantavirus Infection: A review and hantavirových nákaz. Epidemiol Mikrobiol Imunol, 2000; 49:11–15. global update. J Infect Dev Ctries, 2008;2:3–23. 75. Mace G, Feyeux C, Mollard N, et al. Severe Seoul hantavirus in- 67. Hartline J, Mierek C, Knutson T, et al. Hantavirus infection in North fection in a pregnant woman, France, October 2012. Eurosurveillance, America: a clinical review. Am J Emerg Med, 2013;31:978–982. 2013;18:14–17. 68. Dolgin E. Hantavirus treatments advance amidst outbreak in US 76. Daneš L. Přírodně ohniskové nákazy. Praha: Karolinum; 2003. park. Nat Med, 2012;18:1448. 69. Chu YK, Jennings GB, Schmaljohn CS. A vaccinia-virus vectored Do redakce došlo dne . .  . Hantaan and Seoul virus but not Puumala virus. J Virol, 1995;69:6417– 6423. 70. Ulrich R, Koletzki D, Lachmann S, et al. New chimaeric hepatitis core particles carrying hantavirus (serotype Puumala) epitopes: Immunogenicity and protection against virus challenge. J Biotechnol, 1999;73:141–153. Adresa pro korespondenci: 71. Khattak S, Darai G, Sule S, et al. Characterization of expression of Puumala virus nucleocapsid protein in transgenic plants. Intervirology, RNDr. Ivo Rudolf, Ph.D. 2002;45:334–339. Ústav biologie obratlovců AVČR, v. v. i. 72. Razanskiene A, Schmidt J, Geldmacher A, et al. High yields of Klášterní 212 stable and highly pure nucleocapsid proteins of different hantaviruses 691 42 Valtice e-mail: [email protected] can be generated in the yeast Saccharomyces cerevisiae. J Biotechnol, 2004;111:319–333.

196 EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE 2015, 64, č. 4

Tento clanek podleha autorskemu zakonu a jeho vyuziti je mozne v souladu s pravnim prohlasenim: www.prolekare.cz/prohlaseni

2

1

Zoonoses and Public Health

ORIGINAL ARTICLE Reservoir-Driven Heterogeneous Distribution of Recorded Human Puumala virus Cases in South-West Germany S. Drewes1, H. Turni2, U. M. Rosenfeld1, A. Obiegala3, P. Strakova1,4,5, C. Imholt6, E. Glatthaar7, K. Dressel8, M. Pfeffer3, J. Jacob6, C. Wagner-Wiening9 and R. G. Ulrich1

1 Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald – Insel Riems, Germany 2 Stauss & Turni Gutachterburo,€ Tubingen,€ Germany 3 Veterinarmedizinische€ Fakultat,€ Institut fur€ Tierhygiene und Offentliches€ Veterinarwesen,€ University Leipzig, Leipzig, Germany 4 Institute of Vertebrate Biology v.v.i., Academy of Sciences, Masaryk University, Brno, Czech Republic 5 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic 6 Julius Kuhn-Institute,€ Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Munster,€ Germany 7 Forstzoologisches Institut, Arbeitsbereich Wildtierokologie€ und Wildtiermanagement, Universitat€ Freiburg, Freiburg, Germany 8 sine-Institut gGmbH, Munich, Germany 9 Landesgesundheitsamt Baden-Wurttemberg,€ Referat 95 – Epidemiologie und Gesundheitsberichterstattung, Sachgebietsleitung: Infektionsepidemiologische Meldesysteme (SG4), Stuttgart, Germany

Impacts • The heterogeneous geographical distribution of recorded hantavirus disease cases is related to the abundance of Puumala virus (PUUV)-infected bank voles. • The effect of beech mast on human incidences is higher in districts with high proportional coverage of beech/oak woodland. • Local early warning modules for PUUV infections should include the preva- lence of PUUV in the host which requires multiannual bank vole monitor- ing as well as information about mast and beech/oak woodland cover.

Keywords: Summary Hantavirus; endemic region; incidence; bank vole; prevalence; Germany Endemic regions for Puumala virus (PUUV) are located in the most affected federal state Baden-Wuerttemberg, South-West Germany, where high numbers Correspondence: of notified human hantavirus disease cases have been occurring for a long time. Rainer G. Ulrich. Friedrich-Loeffler-Institut, The distribution of human cases in Baden-Wuerttemberg is, however, heteroge- Institute for Novel and Emerging Infectious neous, with a high number of cases recorded during 2012 in four districts (H dis- Diseases, 17493 Greifswald – Insel Riems, tricts) but a low number or even no cases recorded in four other districts (L Germany. Tel.: +49 38351 7 1159; Fax: +49 38351 7 1192; districts). Bank vole monitoring during 2012, following a beech (Fagus sylvatica) E-mail: rainer.ulrich@fli.de mast year, resulted in the trapping of 499 bank voles, the host of PUUV. Analyses indicated PUUV prevalences of 7–50% (serological) and 1.8–27.5% (molecular) Received for publication January 14, 2016 in seven of eight districts, but an absence of PUUV in one L district. The PUUV prevalence differed significantly between bank voles in H and L districts. In the doi: 10.1111/zph.12319 following year 2013, 161 bank voles were trapped, with reduced bank vole abun- dance in almost all investigated districts except one. In 2013, no PUUV infections were detected in voles from seven of eight districts. In conclusion, the linear modelling approach indicated that the heterogeneous distribution of human PUUV cases in South-West Germany was caused by different factors including the abundance of PUUV RNA-positive bank voles, as well as by the interaction of beech mast and the proportional coverage of beech and oak (Quercus spec.) forest per district. These results can aid developing local public health risk management measures and early warning models.

© 2016 Blackwell Verlag GmbH 1 Heterogeneous Distribution of Puumala virus S. Drewes et al.

et al., 2012; Faber et al., 2013; Ali et al., 2015; Castel et al., Introduction 2015). Recent studies in the district Osnabruck,€ Lower Sax- Puumala virus (PUUV), genus Hantavirus, family Bunya- ony, North-West Germany, and in Konnevesi, Central Fin- viridae, is causing the vast majority of human hantavirus land, confirmed oscillations in the prevalence of PUUV disease cases in Germany and surrounding countries infections in the bank vole populations, but also a long- (Ulrich et al., 2004; Heyman et al., 2011). Nephropathia term presence of selected PUUV strains (Razzauti et al., epidemica (NE), the hantavirus disease caused by PUUV, is 2013; Weber de Melo et al., 2015). usually characterized by a mild to moderate course with The disease incidence varied between the federal states of abrupt onset of fever, headache, myalgia, chills, conjunc- Germany, with the highest total number of cases recorded tivitis, abdominal pain, nausea, vomiting and in severe in Baden-Wuerttemberg (n = 5351), South-West Germany cases with microhaemorrhages and renal failure (Brum- (Pilaski et al., 1991; Zoller€ et al., 1995; Boone et al., 2012; mer-Korvenkontio et al., 1980; Kruger€ et al., 2013). Mild Robert Koch-Institute: SurvStat@RKI 2.0, https://surv-stat. and unspecific symptoms result in underreporting of rki.de, accessed: 21 April 2016). During the years 2007, human cases (Brummer-Korvenkontio et al., 1999; Cle- 2010 and 2012, much larger numbers of human hantavirus ment et al., 2007; Klempa et al., 2013). The reservoir host disease cases were notified with a simultaneous increase in of PUUV, the bank vole Myodes glareolus, is present in Baden-Wuerttemberg and other regions of Germany (Hof- almost entire Europe, but human cases of PUUV infection mann et al., 2008; Ettinger et al., 2012). However, even are heterogeneously distributed there (Linard et al., 2007; within this highly endemic federal state, a heterogeneous Boone et al., 2012; Ali et al., 2014; Clement et al., 2014; distribution of human PUUV cases has been observed Castel et al., 2015). Further, bank vole populations erupt (Fig. 1, Table 1). occasionally resulting in a massive increase in abundance in The objective of this study was to test potential associa- some years. Such outbreaks seem to be driven by mast of tions of bank vole abundance and serological and molec- beech (Fagus sylvatica) and oak (Quercus spec.) in Germany ular PUUV detection in bank voles with the reported and other Central European countries; predator-driven frequency of human infections and beech mast intensity processes matter in northern boreal Europe (Hansson, as well as beech/oak forest occurrence per district for dis- 1985; Hanski et al., 1991; Tersago et al., 2009; Clement tricts with a historically high number of recorded human et al., 2010; Imholt et al., 2015; Reil et al., 2015). cases (H) and for additional districts with no or low A recent study identified certain landscape and environ- numbers of recorded human cases (L) in Baden- mental factors, such as forest connectivity, winter and sum- Wuerttemberg. mer temperatures and soil water content, as drivers for the spatial distribution of NE cases in Europe (Zeimes et al., Materials and Methods 2015). Climate conditions might not only influence the virus viability and transmission directly, but indirectly by Bank voles were trapped at four H (H1, district influencing the behaviour of the human population at risk Stuttgart – site Busnau;€ H2, Tubingen€ – Mossingen;€ H3, for infection. Further, the awareness of the physicians has Goppingen€ – Geislingen; H4, Heidenheim – Steinheim) been discussed as a reason for apparent disease absence or and four L (L1, Schw€abisch Hall – Crailsheim; L2, underreporting. Thus, the detection of a novel PUUV strain Emmendingen – Kenzingen; L3, Freiburg im Breisgau – in the western part of Thuringia during the outbreak in Landwasser; L4, Waldshut – Stuhlingen)€ locations in 2012 2010 indicated that the virus may have been present but and 2013 using live traps (Fig. 1). Sites were characterized unrecognized, suggesting low awareness of physicians due by deciduous broad-leaved forest dominated by beech. Fifty to a very low number of disease cases before the 2010 out- traps were set at each site in suitable habitats for bank voles break (Faber et al., 2013). in order to maximize trapping success. Traps were baited Human PUUV infections in Germany are known since with a mix of nuts, sunflower seed, apples and mealworms the 1980s (Pilaski et al., 1991). Since the introduction of and emptied every 12 h for 36 h covering two nights and the Protection against Infection Act in 2001, in total 10 164 one day. Hay was provided for bedding and a cotton wool human hantavirus disease cases were recorded in Germany pad soaked with water for moisture. Trapping was con- (Robert Koch-Institute: SurvStat@RKI 2.0, https://survstat. ducted three times per year (May/June; July/August; rki.de, accessed: 21 April 2016). A large number of molecu- September/October). Rodent individuals were caught alive, lar epidemiological studies in bank vole reservoirs and their sex and weight determined, killed through cervical patients resulted in the demonstration of a high level of dislocation and immediately frozen and stored at À20°C PUUV sequence divergence (Pilaski et al., 1994; Heiske for subsequent laboratory analysis. Data are stated as bank et al., 1999; Asikainen et al., 2000; Essbauer et al., 2006, voles trapped per 100 trap nights (TN) reflecting maximum 2007; Schilling et al., 2007; Hofmann et al., 2008; Ettinger population abundance.

2 © 2016 Blackwell Verlag GmbH S. Drewes et al. Heterogeneous Distribution of Puumala virus

Fig. 1. Hantavirus incidences in districts with high incidences (H) and low incidences (L) of Baden-Wuerttemberg, South-West Germany, during 2012 and 2013, and location of the bank vole trapping sites H1 (Stuttgart), H2 (Tubingen),€ H3 (Goppingen)€ and H4 (Heidenheim), and L1 (Schwabisch€ Hall), L2 (Emmendingen), L3 (Freiburg) and L4 (Waldshut). Background maps: Nicole Neumann, Friedrich-Loeffler-Institut; human PUUV incidences: Robert Koch-Institute: SurvStat@RKI 2.0, https://survstat.rki.de, accessed: 21 April 2016.

Table 1. Incidences of recorded human Puumala virus cases per 100 000 inhabitants in eight districts of Baden-Wuerttemberg from 2001 to 2015

Year

District 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

SK Stuttgart (H1) 1.02 3.57 1.19 1.19 1.69 0.84 5.19 2.00 1.50 22.26 0.82 19.73 0.00 0.83 1.32 LK Tubingen€ (H2) 0.47 3.29 0.93 2.78 1.39 0.00 13.33 0.00 1.36 11.75 1.35 40.02 0.00 6.93 10.62 LK Goppingen€ (H3) 1.16 3.09 1.16 3.09 2.33 0.78 32.84 0.78 2.76 17.42 5.56 56.09 0.40 4.42 14.47 LK Heidenheim (H4) 0.00 10.95 0.00 4.42 1.48 0.75 90.67 2.26 3.03 16.78 3.82 58.77 1.56 1.56 6.25 LK Schwabisch€ Hall (L1) 0.00 0.00 0.53 1.59 0.53 0.00 3.17 1.06 1.06 5.84 1.06 7.49 1.07 2.66 2.13 LK Emmendingen (L2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00 0.00 0.00 SK Freiburg (L3) 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 LK Waldshut (L4) 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LK, rural district; SK, urban district. Source: Robert Koch-Institute: SurvStat@RKI 2.0, https://survstat.rki.de, accessed: 21 April 2016.

Dissection and sample collection as well as morphologi- determine the serological reactivity following a previously cal and molecular species determination for shrews, Apode- published decision tree (Mertens et al., 2009). mus spp. and Microtus spp. followed standard protocols For molecular detection of PUUV, RNA was isolated â (Angermann and Hackethal, 1999; Parson et al., 2000; from lung tissue by QIAzol Lysis Reagent (Qiagen, Hil- Schlegel et al., 2012; Nainys et al., 2015). Three age groups den, Germany) treatment following an in-house protocol of bank voles were defined based on the weight: <15, 15– (Schmidt et al., 2016). Reverse transcription polymerase 19.5 and >19.5 g (Bajer et al., 2002). chain reaction (RT-PCR) using S segment-specific primers PUUV-reactive antibodies were detected in thoracic Pu342F and Pu1102R followed a previously described stan- cavity lavage by IgG ELISA using a recombinant nucleocap- dard protocol (Essbauer et al., 2006). Amplification prod- sid protein of PUUV strain Bavaria (Mertens et al., 2011). ucts of the expected size of ca. 700 bp were sequenced by â ELISA-positive or equivocal sera were tested again to the usage of BigDye Terminator version 1.1 Cycle

© 2016 Blackwell Verlag GmbH 3 Heterogeneous Distribution of Puumala virus S. Drewes et al.

Sequencing Kit (Applied Biosystems, Darmstadt, Ger- many). – Fisher’s exact test with a type I error a of 0.05 and asso- ciated odds ratios were used to test the independence of 1 13 compared prevalences between H and L districts, season Waldshut (L4) and individual weight. To analyse determining factors for human infection, two backward multiple linear regression – models were developed. For both models, the ln-trans- formed number of human cases standardized to 100 000 inhabitants (PUUV incidence) was the dependent variable 1 (Robert Koch-Institute: SurvStat@RKI 2.0, https://survstat. Freiburg (L3) rki.de). The first model was designed to test which predic- tor was correlated best to human PUUV cases in the out- break year of 2012 in all eight districts. The mean bank vole abundance index, the antibody prevalence determined –––––– by ELISA and the RNA prevalence detected using RT-PCR –– were used as potential predictors. ELISA results were cor- Emmendingen (L2) rected for the potential influence of maternal antibodies in young voles. Individuals below the cut-off value of 16 g (Kallio et al., 2010) that carried antibodies but were RT-

PCR negative were treated as carrying maternal antibodies € abisch Hall and assigned to the negative ELISA category. The second 21 Schw (L1) analysis focused on potential environmental factors deter- mining the marked differences in human PUUV incidence among districts (n = 8). Here, the ln-transformed propor- ––––––– tional cover of beech and oak forest per district and the categorical variable of beech mast in the previous year 1 1535

(yes/no) were determined for each district for the years Heidenheim (H4) 2007–2014. Values for forest cover were obtained from the federal forest census (http://www.fva-bw.de/monitoring/)

by calculating average values from the censuses in 2002 – and 2012. For the city districts H1 and L3, no forest data were available and therefore the districts closest to the € oppingen 1 trapping sites where forest data were available were chosen G (H3) (Boblingen€ and Breisgau im Hochschwarzwald, respec- tively). All analyses were performed in R (R Core Team, 2015) using the lm function. Model simplification was done using drop1 and the final model was chosen based on lowest corrected Akaike’s information criterion (Hurvich . ) and other small mammals collected at the eight trapping sites during 2012 and 2013 € ubingen T and Tsai, 1989). (H2) ––– Results ––––––– . Sorex minutus 122 108 105 90 110 38 87 76 During 2012, the number of recorded human hantavirus Myodes glareolus and 1 disease cases and incidences was higher in the districts H1 1 Stuttgart (H1) (n = 118/19.73), H2 (n = 86/40.02), H3 (n = 139/56.09) 201287 2013 2012 12 2013 80 2012 2013 15 2012 80 2013 2012 9 2013 68 2012 2013 15 2012 55 2013 2012 44 2013 32 6 40 46 57 14 and H4 (n = 75/58.77) than in the districts L1 (n = 14/ Microtus agrestis 7.49), L2 (n = 1/0.64), L3 (n = 1/0.46) and L4 (n = 0/0.00) and Sorex coronatus

(Table 1, Fig. 1). , During 2012, 499 bank voles were trapped with a range † Numbers of bank voles ( of 32–87 animals per site (Table 2). Mean trap success ran- spp. spp.* 6 15 2 11 6 9 ged from 9.5 ind./100TN in L4 to 29 ind./100TN in the city Sorex araneus Microtus arvalis † * Total Apodemus flavicollis Table 2. Small mammal species Microtus district H1 (Table 3). In addition, bycatches of four Myodes glareolus Sorex

4 © 2016 Blackwell Verlag GmbH S. Drewes et al. Heterogeneous Distribution of Puumala virus

Table 3. Abundance indices and results of serological and RT-PCR investigations of bank voles trapped at the eight districts during 2012 and 2013

Mean Abundance PUUV ELISA PUUV RT-PCR

District and trapping site Year Ind./100TN SE Absolute* Per cent Absolute* Per cent

Stuttgart (H1) 2012 29.0 4.6 26/87 29.89 20/87 22.99 2013 4.0 3.6 0/12 0.00 0/12 0.00 Total 26/99 26.26 20/99 20.20

Tubingen€ (H2) 2012 26.7 10.3 19†/80 23.75 14/80 17.50 2013 5.0 1.0 0/15 0.00 0/15 0.00 Total 19/95 20.00 14/95 14.74

Goppingen€ (H3) 2012 26.7 10.2 24/80 30.00 22/80 27.50 2013 3.0 2.0 0/9 0.00 0/9 0.00 Total 24/89 26.97 22/89 24.72

Heidenheim (H4) 2012 22.7 1.5 13†/68 19.12 15/68 22.06 2013 5.0 7.0 0/15 0.00 0/15 0.00 Total 13/83 15.66 15/83 18.07

Schwabisch€ Hall (L1) 2012 18.3 17.2 13/55‡ 23.64 6/55 10.91 2013 14.7 6.7 2/44‡ 4.55 5/44 11.36 Total 15/99 15.15 11/99 11.11

Emmendingen (L2) 2012 10.7 9.7 16/32 50.00 6/32 18.75 2013 2.0 1.0 0/6 0.00 0/6 0.00 Total 16/38 42.11 6/38 15.79

Freiburg (L3) 2012 13.0 6.9 0/40 0.00 0/40 0.00 2013 15.3 7.5 0/46 0.00 0/46 0.00 Total 0/86 0.00 0/86 0.00

Waldshut (L4) 2012 19.0 2.6 4/57§ 7.02 1/57 1.75 2013 4.7 4.2 0/14 0.00 0/14 0.00 Total 4/71 5.63 1/71 1.41

Ind., individuals; TN, trap nights; SE, standard error. *Number of positive/total number of bank voles tested. †One juvenile, antibody-positive animal was excluded. ‡Total number includes one equivocal sample. §Total number includes five equivocal samples.

Microtus spp., three yellow-necked mice (Apodemus flavi- significantly higher in districts H1–H4 compared to L1–L4 collis) and 20 shrews were collected (Table 2). in IgG ELISA [P = 0.037; two tailed Fisher’s exact test Serological investigations indicated the presence of with a = 0.05, odds ratio 1.64 (1.05–2.59)] and RT-PCR PUUV infections in bank voles in seven of eight districts (P < 0.001, odds ratio 3.77 (2.02–7.04)). That year adult with prevalences of 7–50% (Table 3). RT-PCR investiga- bank voles (weight class 3, >19.5 g) showed significantly tions confirmed PUUV infections for the same seven higher prevalences compared to juvenile individuals districts with prevalences of 1.8–27.5% (Table 3). In two (weight class 1, <15.5 g) (ELISA: odds ratio 21.19 (2.92– juvenile voles (weight < 16 g), one each from sites H2 163.86), Fisher’s test P < 0.001; RT-PCR: odds ratio 6.38 and H4, exclusively PUUV-reactive antibodies, but no (1.47–27.64), Fisher’s test P < 0.008) (see Table S1 in Sup- viral RNA were detected (Table 3). Therefore, these two porting information). In addition, there was a trend that animals were regarded as harbouring maternal antibodies. RNA prevalences decreased in autumn (Season 3) com- The voles from the four H districts showed serological and pared to spring (Season 1 versus Season 3; see Table S1 in molecular prevalences of 17.5–30.0%. At the districts L1, Supporting information; RT-PCR: odds ratio 2.48 (1.28– L2 and L4 seroprevalence reached 23.6%, 50% and 7%, 4.79), Fisher’s test P = 0.007; ELISA: odds ratio 1.60 respectively, whereas the molecular prevalence ranged (0.94–2.72), Fisher’s test P = 0.08). One field vole (Micro- from 1.8% (L4), to 10.9% (L1) and 18.8% (L2). In district tus agrestis) from trapping site H1 was found to be PUUV L3, none of the bank voles was positive for PUUV. In positive in RT-PCR, but none of the yellow-necked mice 2012, the prevalence of PUUV infection in bank voles was (data not shown).

© 2016 Blackwell Verlag GmbH 5 Heterogeneous Distribution of Puumala virus S. Drewes et al.

Table 4. Results of multiple linear regression analysis for the suitability antibodies in the population was not significantly corre- of methodological and environmental predictors regarding human lated with the number of human PUUV cases. Neither the PUUV cases. Categorical variable Mast [1] indicates differences com- percentage of beech and oak woodland per district nor pared to the reference category Mast [0] representing no beech mast beech mast alone predicted the existing gradient in human Model B SE B b P-value Adj R2 AICc PUUV cases among districts. However, the interaction term between both predictors was positively correlated with the Methodological number of human PUUV cases (F = 22.11, adj. Step 1 3,36 2 = < Intercept À0.47 2.37 0.00 0.86 0.56 50.47 R 0.62, P 0.001), demonstrating that after beech mast Abundance 0.06 0.14 0.25 0.69 more human PUUV infections occurred in districts with RNA prevalence 0.16 0.12 1.00 1.30 higher cover of woodland than in districts with little beech Antibody À0.07 0.09 À0.42 À0.75 and oak forest. prevalence Step 2 Intercept À1.37 1.89 0.00 0.52 0.62 33.30 Discussion Abundance 0.08 0.13 0.32 0.57 RNA prevalence 0.10 0.08 0.59 0.33 We determined the presence of PUUV in bank voles from Step 3 (final) four H districts with a high number of recorded human Intercept À0.30 0.78 0.00 0.72 0.68 24.72 cases and further four L districts with no or a low number RNA prevalence 0.14 0.04 0.86 0.03* of recorded human cases during outbreak year 2012 and Environmental the following year. The serological and RT-PCR investiga- Step 1 tions in bank voles trapped during the outbreak year 2012 Intercept 2.65 1.96 0.00 0.18 0.62 confirmed the presence of PUUV at all four H districts, but Perc. Woodland À0.94 0.74 À0.16 0.21 Mast [1] À5.80 3.13 À1.92 0.07 also for three of four L districts. In line with previous inves- Perc. Woodland: 3.08 1.19 2.70 0.01* tigations (Bernshtein et al., 1999; Olsson et al., 2002; Augot Mast [1] et al., 2008), adult individuals showed a significantly higher RNA and seroprevalence. The average antibody and RNA B, regression coefficient; SE B, standard error B; b, standardized coeffi- prevalence was about 12.1% higher in H districts than in L cient; P-value, significance level; Adj. R2, adjusted r-squared; AICc, cor- rected Akaike’s information criterion. districts. *Significance level P < 0.05. The RNA prevalence in bank voles drove human PUUV infections in South-West Germany at the spatial scale of In 2013, a total of 161 bank voles were trapped at the districts. This was most likely governed by the interaction eight sites (Table 2). Trap success ranged from 2.0 ind./ of beech mast and the forest coverage per district because 100TN in L2 to 15.3 ind./100TN in the city district L3 more human PUUV infections occurred in districts with (Table 3). At seven sites the number of voles was lower higher cover of woodland. Such a relation seems plausible compared to the year 2012, except at site L3 (Table 2). One as bank vole abundance in temperate Germany is highly yellow-necked mouse and 48 shrews were collected as dependent on beech mast (Hansson et al., 2000; Clement bycatch at seven of the eight sites. et al., 2010). The importance of woodland is clearly linked There were no PUUV-positive bank voles in seven of to local human infection risks, as Reil et al. (2015) could eight districts in 2013 (Table 3). Only at site L1, PUUV- not detect any significant influence of woodland on human seropositive and RT-PCR-positive animals were detected incidences at the scale of federal states. The finding indi- with prevalences of 4.6% and 11.4%, respectively (Table 3). cates that variation in human PUUV infection at small spa- There was no statistically significant difference in the tial district scale can be explained by variation of PUUV PUUV infection rate between L and H districts (P = 1 for presence in host rodents and related environmental factors ELISA and P = 0.1798 for RT-PCR). such as beech mast and presence of forest. This can help to The average prevalence in 2012 and 2013 differed signifi- improve forecast systems that help to raise awareness cantly between bank voles from trapping sites L1–L4 and regarding human PUUV infections. H1–H4 (P < 0.001, odds ratio 2.14 (1.39–3.28) for IgG Another explanation for small-scale variation in the fre- ELISA and P < 0.001, odds ratio 3.69 (2.14–6.35) for RT- quency of human PUUV cases is a reduced awareness of PCR). medical personnel where human cases are rare. This Linear regression modelling revealed that the PUUV assumption is supported by reports of participants of focus RNA prevalence in bank voles was closely correlated with groups, which were conducted in PUUV endemic areas of the number of human PUUV infections (F1,4 = 11.5, adj. Germany (Dressel, 2014). In these groups, formerly severely R2 = 0.68, P < 0.001; Table 4). The trapping index of bank affected NE patients described the problem of being one of voles per district as well as the prevalence of PUUV-specific the first cases in a newly emerging area of the hantavirus

6 © 2016 Blackwell Verlag GmbH S. Drewes et al. Heterogeneous Distribution of Puumala virus disease, where it took several days before the medical staff In conclusion, this investigation indicates that the was able to diagnose the disease correctly. In addition, it heterogeneous geographical distribution of recorded takes 50–100 cases of an emerging vector-borne infection human PUUV cases in Baden-Wuerttemberg might be before it is recognized by the local general practitioners and caused by reduced presence or even absence of PUUV in eventually receives sufficient attention from the public local bank vole populations possibly mediated by the inter- health system (Schmidt et al., 2013). action of beech mast intensity and the extent of forested In the district L3, PUUV was not detected in bank voles area. It remains imperative to establish long-term rodent during the study period. An investigation of 40 bank voles and PUUV monitoring investigations (Jacob et al., 2014) collected during December 2009 at a site in the neighbour- that provide a solid database to test such hypotheses and ing district Breisgau-Hochschwarzwald, approx. 12 km may shed light on the stability of PUUV presence/absence, away from the trapping site L3, also failed to detect any the molecular evolution of PUUV strains and their fitness PUUV RNA- and antibody-positive bank voles (our consequences for bank voles as well as their virulence to unpublished data). The two recorded human PUUV infec- humans. Awareness of local physicians should be systemati- tions in this district may originate from patients who have cally raised by dedicated information campaigns released contracted the disease outside the district, as human cases by local public health authorities. This is especially impor- are recorded by place of residence (Robert Koch-Institut, tant for areas close to endemic regions where human cases 2015). have been rare. The findings can help to develop and vali- The promotion of bank vole populations by beech mast date early warning modules for hantavirus outbreaks and is one of the reasons for increased numbers of human associated human infection risk. PUUV infections in temperate Europe (Tersago et al., 2009; Clement et al., 2010; Reil et al., 2016). Indeed, the Acknowledgements high bank vole abundance in 2012 might be explained by the beech mast reported in 2011 for all eight districts of The support of Hans-Werner Maternowski, Brigitte Baden-Wuerttemberg. Additional factors might be Pehlke, Ewa Paliocha, Thomas Kuss, Michael Stauss, Katja involved, such as habitat or climatic factors enhancing or Wallmeyer and Jochen Blank in small mammal trapping impairing virus stability outside the reservoir host (Kallio and the excellent technical assistance of Dorte€ Kaufmann et al., 2006) and/or host and human behaviour. In addi- in serological and RT-PCR investigations are kindly tion, strong interactions between landscape features, acknowledged. We are very grateful to Dorte€ Kaufmann, immune gene expression and co-infections of bank voles Kathrin Baumann, Samuel Bernstein, Stefan Fischer, Nas- with the nematode Heligmosomum mixtum have been iden- tasja Kratzmann, Mathias Schlegel, Sabrina Schmidt, Julia tified previously (Guivier et al., 2014). Additional patho- Schneider, Hanan Sheikh Ali, Kerstin Tauscher and Chris- gens have been detected in bank voles from Germany, such tin Trapp for their help in dissection of the rodents. as herpesviruses (Ehlers et al., 2007), paramyxoviruses Beech mast data of the Staatsklenge Nagold, ForstBW, (Drexler et al., 2012), hepacivirus (Drexler et al., 2013), were kindly provided by Thomas Ebinger. The risk per- polyomavirus (Nainys et al., 2015), cowpox virus (Kin- ception study in Germany was assisted by Steffen Schule.€ nunen et al., 2011), tick-borne encephalitis virus (Achazi The investigations were funded in part by the German et al., 2011) and Leptospira spp. (Mayer-Scholl et al., Federal Ministry of Education and Research (BMBF) 2014), that might impact the fitness or susceptibility of the through the German Research Platform for Zoonoses bank vole for PUUV infection. (projects ‘Monitoring sylvatischer Zoonosen’, FKZ In a previous study, a high proportion of individuals car- 01KI1101, to CWW, and ‘Netzwerk “Nagetier-ubertragene€ rying maternal antibodies were found to constrain trans- Pathogene”’, FKZ 01KI1018 and 01KI1303, to RGU) and mission during cycle peak years of bank voles in Finland the Deutsche Forschungsgemeinschaft (SPP 1596 ‘Ecology (Voutilainen et al., 2016). In our study, the results of the and Species Barriers in Emerging Viral Diseases’, UL 405/ serological and RT-PCR investigations indicated the pres- 1-1 to RGU). This study was partially funded by EU grant ence of maternal antibodies only for two juvenile voles. FP7-261504 EDENext and is catalogued by the EDENext However, the average prevalence of PUUV infections in Steering Committee as EDENext461 (http://www.edenext.eu). bank voles detected by serology alone was mostly slightly The contents of this publication are the sole responsibility higher than prevalence detected by RT-PCR, despite the of the authors and do not necessarily reflect the views of fact that we corrected for maternal antibodies. This discrep- the European Commission. Collection of samples in ancy might be therefore explained by a lower viral load at district Breisgau-Hochschwarzwald were done in the the time of investigation, a lower sensitivity of the RT-PCR frame of the UFOPLAN project 3709 41 401 granted to assay or virus clearance. Jens Jacob.

© 2016 Blackwell Verlag GmbH 7 Heterogeneous Distribution of Puumala virus S. Drewes et al.

Castel, G., M. Couteaudier, F. Sauvage, J. B. Pons, S. Murri, A. References Plyusnina, D. Pontier, J. F. Cosson, A. Plyusnin, P. Marian- Achazi, K., D. Ruzek, O. Donoso-Mantke, M. Schlegel, H. S. neau, and N. Tordo, 2015: Complete genome and phylogeny Ali, M. Wenk, J. Schmidt-Chanasit, L. Ohlmeyer, F. Ruhe, of Puumala hantavirus isolates circulating in France. Viruses T. Vor, C. Kiffner, R. Kallies, R. G. Ulrich, and M. Nie- 7, 5476–5488. drig, 2011: Rodents as sentinels for the prevalence of tick- Clement, J., P. Maes, and M. Van Ranst, 2007: Acute kidney borne encephalitis virus. Vector Borne Zoonotic Dis. 11, injury in emerging, non-tropical infections. Acta Clin. Belg. 641–647. 62, 387–395. Ali, H. S., S. Drewes, E. T. Sadowska, M. Mikowska, M. H. Clement, J., P. Maes, C. van Ypersele de Strihou, G. van der Groschup, G. Heckel, P. Koteja, and R. G. Ulrich, 2014: First Groen, J. M. Barrios, W. W. Verstraeten, and M. van Ranst, molecular evidence for Puumala hantavirus in Poland. Viruses 2010: Beechnuts and outbreaks of nephropathia epidemica 6, 340–353. (NE): of mast, mice and men. Nephrol. Dial. Transplant. 25, Ali, H. S., S. Drewes, V. Weber de Melo, M. Schlegel, J. Freise, 1740–1746. M. H. Groschup, G. Heckel, and R. G. Ulrich, 2015: Complete Clement, J., M. Van Esbroeck, K. Lagrou, J. Verschueren, N. P. genome of a Puumala virus strain from Central Europe. Virus Sunil-Chandra, and M. Van Ranst, 2014: Leptospirosis versus Genes 50, 292–298. hantavirus infections in the Netherlands and in Belgium, 2000 Angermann, R., and H. Hackethal, 1999: S€augetiere – Mammalia. to 2014. Euro Surveill. 19, pii 20912. In: Senglaub, K., B. Klausnitzer, and H. J. Hannemann (eds), Dressel, K., 2014: Deliverable 16.1, Report of Public Risk Percep- Stresemann – Exkursionsfauna von Deutschland. Band 3: Wir- tion. EDENext Project, unpublished. beltiere, pp. 358–448. Springer Spektrum, Heidelberg, Berlin. Drexler, J. F., V. M. Corman, M. A. Muller,€ G. D. Maganga, Asikainen, K., T. H€anninen, H. Henttonen, J. Niemimaa, J. P. Vallo, T. Binger, F. Gloza-Rausch, V. M. Cottontail, Laakkonen, H. K. Andersen, N. Bille, H. Leirs, A. Vaheri, and A. Rasche, S. Yordanov, A. Seebens, M. Knornschild, S. A. Plyusnin, 2000: Molecular evolution of Puumala hantavirus Oppong, Y. Adu Sarkodie, C. Pongombo, A. N. Lukashev, in Fennoscandia: phylogenetic analysis of strains from two J. Schmidt-Chanasit, A. Stocker,€ A. J. Carneiro, S. Erbar, A. recolonization routes, Karelia and Denmark. J. Gen. Virol. 81, Maisner, F. Fronhoffs, R. Buettner, E. K. Kalko, T. Kruppa, C. 2833–2841. R. Franke, R. Kallies, E. R. Yandoko, G. Herrler, C. Reusken, Augot, D., F. Sauvage, F. Boue, M. Bouloy, M. Artois, J. M. A. Hassanin, D. H. Kruger,€ S. Matthee, R. G. Ulrich, E. M. Demerson, B. Combes, D. Coudrier, H. Zeller, F. Cliquet, and Leroy, and C. Drosten, 2012: Bats host major mammalian D. Pontier, 2008: Spatial and temporal patterning of bank vole paramyxoviruses. Nat. Commun. 3, 796. demography and the epidemiology of the Puumala hantavirus Drexler, J. F., V. M. Corman, M. A. Muller,€ A. N. Lukashev, in northeastern France. Epidemiol. Infect. 136, 1638–1643. A. Gmyl, B. Coutard, A. Adam, D. Ritz, L. M. Leijten, D. Bajer, A., M. Bednarska, A. Pawelczyk, J. M. Behnke, F. S. Gil- van Riel, R. Kallies, S. M. Klose, F. Gloza-Rausch, T. Binger, bert, and E. Sinski, 2002: Prevalence and abundance of Cryp- A. Annan, Y. Adu-Sarkodie, S. Oppong, M. Bourgarel, D. tosporidium parvum and Giardia spp. in wild rural rodents Rupp, B. Hoffmann, M. Schlegel, B. M. Kummerer,€ D. H. from the Mazury Lake District region of Poland. Parasitology Kruger,€ J. Schmidt-Chanasit, A. A. Setien, V. M. Cottontail, 125, 21–34. T. Hemachudha, S. Wacharapluesadee, K. Osterrieder, R. Bernshtein, A. D., N. S. Apekina, T. V. Mikhailova, Y. A. Myas- Bartenschlager, S. Matthee, M. Beer, T. Kuiken, C. Reusken, nikov, L. A. Khlyap, Y. S. Korotkov, and I. N. Gavrilovskaya, E. M. Leroy, R. G. Ulrich, and C. Drosten, 2013: Evidence 1999: Dynamics of Puumala hantavirus infection in naturally for novel hepaciviruses in rodents. PLoS Pathog. 9, infected bank voles (Clethrinomys glareolus). Arch. Virol. 144, e1003438. 2415–2428. Ehlers, B., J. Kuchler,€ N. Yasmum, G. Dural, S. Voigt, J. Sch- Boone, I., C. Wagner-Wiening, D. Reil, J. Jacob, U. M. Rosen- midt-Chanasit, T. J€akel, F. R. Matuschka, D. Richter, S. Ess- feld, R. G. Ulrich, D. Lohr, and G. Pfaff, 2012: Rise in the bauer, D. J. Hughes, C. Summers, M. Bennett, J. P. Stewart, number of notified human hantavirus infections since Octo- and R. G. Ulrich, 2007: Identification of novel rodent her- ber 2011 in Baden-Wurttemberg, Germany. Euro Surveill. 17, pesviruses, including the first gammaherpesvirus of Mus mus- pii 20180. culus. J. Virol. 81, 8091–8100. Brummer-Korvenkontio, M., A. Vaheri, T. Hovi, C. H. von Essbauer, S., J. Schmidt, F. J. Conraths, R. Friedrich, J. Koch, Bonsdorff, J. Vuorimies, T. Manni, K. Penttinen, N. Oker- W. Hautmann, M. Pfeffer, R. Wolfel,€ J. Finke, G. Dobler, and Blom, and J. L€ahdevirta, 1980: Nephropathia epidemica: R. Ulrich, 2006: A new Puumala hantavirus subtype in detection of antigen in bank voles and serologic diagnosis of rodents associated with an outbreak of Nephropathia epidem- human infection. J. Infect. Dis. 141, 131–134. ica in South-East Germany in 2004. Epidemiol. Infect. 134, Brummer-Korvenkontio, M., O. Vapalahti, H. Henttonen, P. 1333–1344. Koskela, P. Kuusisto, and A. Vaheri, 1999: Epidemiological Essbauer, S. S., J. Schmidt-Chanasit, E. L. Madeja, W. Wegener, study of nephropathia epidemica in Finland 1989–96. Scand. R. Friedrich, R. Petraityte, K. Sasnauskas, J. Jacob, J. Koch, G. J. Infect. Dis. 31, 427–435. Dobler, F. J. Conraths, M. Pfeffer, C. Pitra, and R. G. Ulrich,

8 © 2016 Blackwell Verlag GmbH S. Drewes et al. Heterogeneous Distribution of Puumala virus

2007: Nephropathia epidemica in metropolitan area. Prolonged survival of Puumala hantavirus outside the host: Germany. Emerg. Infect. Dis. 13, 1271–1273. evidence for indirect transmission via the environment. J. Ettinger, J., J. Hofmann, M. Enders, F. Tewald, R. M. Oehme, Gen. Virol. 87, 2127–2134. U. M. Rosenfeld, H. S. Ali, M. Schlegel, S. Essbauer, A. Kallio, E. R., M. Begon, H. Henttonen, E. Koskela, T. Mappes, Osterberg, J. Jacob, D. Reil, B. Klempa, R. G. Ulrich, and A. Vaheri, and O. Vapalahti, 2010: Hantavirus infections in D. H. Kruger,€ 2012: Multiple synchronous outbreaks of fluctuating host populations: the role of maternal antibodies. Puumala virus, Germany, 2010. Emerg. Infect. Dis. 18, 1461– Proc. Biol. Sci. 277, 3783–3791. 1464. Kinnunen, P. M., H. Henttonen, B. Hoffmann, E. R. Kallio, C. Faber, M., T. Wollny, M. Schlegel, K. M. Wanka, J. Thiel, Korthase, J. Laakkonen, J. Niemimaa, A. Palva, M. Schlegel, C. Frank, D. Rimek, R. G. Ulrich, and K. Stark, 2013: Puumala H. S. Ali, P. Suominen, R. G. Ulrich, A. Vaheri, and O. Vapa- virus outbreak in Western Thuringia, Germany, 2010: epi- lahti, 2011: Orthopox virus infections in Eurasian wild demiology and strain identification. Zoonoses Public Health rodents. Vector Borne Zoonotic Dis. 11, 1133–1140. 60, 549–554. Klempa, B., L. Radosa, and D. H. Kruger,€ 2013: The broad spec- Guivier, E., M. Galan, H. Henttonen, J. F. Cosson, and N. Char- trum of hantaviruses and their hosts in Central Europe. Acta bonnel, 2014: Landscape features and helminth co-infection Virol. 57, 130–137. shape bank vole immunoheterogeneity, with consequences for Kruger,€ D. H., R. G. Ulrich, and J. Hofmann, 2013: Hantaviruses Puumala virus epidemiology. Heredity (Edinb) 112, 274–281. as zoonotic pathogens in Germany. Dtsch. Arztebl. Int. 110, Hanski, I., L. Hansson, and H. Henttonen, 1991: Specialist 461–467. predators, generalist predators, and the microtine rodent Linard, C., P. Lamarque, P. Heyman, G. Ducoffre, V. Luyasu, cycle. J. Anim. Ecol. 60, 353–367. K. Tersago, S. O. Vanwambeke, and E. F. Lambin, 2007: Hansson, L., 1985: Clethrionomys food: generic, specific and Determinants of the geographic distribution of Puumala virus regional characteristics. Ann. Zool. Fennici 22, 315–318. and Lyme borreliosis infections in Belgium. Int. J. Health Hansson, L., B. Jezdrzejewska, and W. Jezdrzejewski, 2000: Regio- Geogr. 6, 15. nal differences in dynamics of bank vole populations in Eur- Mayer-Scholl, A., J. A. Hammerl, S. Schmidt, R. G. Ulrich, ope. Pol. J. Ecol. 48, 163–177. M. Pfeffer, D. Woll, H. C. Scholz, A. Thomas, and K. Nockler,€ Heiske, A., B. Anheier, J. Pilaski, V. E. Volchkov, and H. Feld- 2014: Leptospira spp. in rodents and shrews in Germany. Int. mann, 1999: A new Clethrionomys-derived hantavirus from J. Environ. Res. Public Health 11, 7562–7574. Germany: evidence for distinct genetic sublineages of Puu- Mertens, M., R. Wolfel,€ K. Ullrich, K. Yoshimatsu, J. Blumhardt, mala viruses in Western Europe. Virus Res. 61, 101–112. I. Romer,€ J. Esser, J. Schmidt-Chanasit, M. H. Groschup, Heyman, P., C. S. Ceianu, I. Christova, N. Tordo, M. Beersma, G. Dobler, S. S. Essbauer, and R. G. Ulrich, 2009: Seroepi- M. Jo~ao Alves, A. Lundkvist, M. Hukic, A. Papa, A. Tenorio, demiological study in a Puumala virus outbreak area in H. Zelena, S. Essbauer, I. Visontai, I. Golovljova, J. Connell, South-East Germany. Med. Microbiol. Immunol. 198, L. Nicoletti, M. Van Esbroeck, S. Gjeruldsen Dudman, S. W. 83–91. Aberle, T. Avsic-Zupanc, G. Korukluoglu, A. Nowakowska, Mertens, M., E. Kindler, P. Emmerich, J. Esser, C. Wagner- B. Klempa, R. G. Ulrich, S. Bino, O. Engler, M. Opp, and A. Wiening, R. Wolfel,€ R. Petraityte-Burneikiene, J. Schmidt- Vaheri, 2011: A five-year perspective on the situation of Chanasit, A. Zvirbliene, M. H. Groschup, G. Dobler, M. Pfef- haemorrhagic fever with renal syndrome and status of the fer, G. Heckel, R. G. Ulrich, and S. S. Essbauer, 2011: Phyloge- hantavirus reservoirs in Europe, 2005–2010. Euro Surveill. 16, netic analysis of Puumala virus subtype Bavaria, 977–986. characterization and diagnostic use of its recombinant nucleo- Hofmann, J., H. Meisel, B. Klempa, S. M. Vesenbeckh, R. Beck, capsid protein. Virus Genes 43, 177–191. D. Michel, J. Schmidt-Chanasit, R. G. Ulrich, S. Grund, Nainys, J., A. Timinskas, J. Schneider, R. G. Ulrich, and G. Enders, and D. H. Kruger,€ 2008: Hantavirus outbreak, A. Gedvilaite, 2015: Identification of two novel members of Germany, 2007. Emerg. Infect. Dis. 14, 850–852. the tentative genus Wukipolyomavirus in wild rodents. PLoS Hurvich, C. M., and C. L. Tsai, 1989: Regression and time-series One 10, e0140916. model selection in small samples. Biometrika 76, 297–307. Olsson, G. E., N. White, C. Ahlm, F. Elgh, A. C. Verlemyr, Imholt, C., D. Reil, J. A. Eccard, D. Jacob, N. Hempelmann, and P. Juto, and R. T. Palo, 2002: Demographic factors associated J. Jacob, 2015: Quantifying the past and future impact of cli- with hantavirus infection in bank voles (Clethrionomys glareo- mate on outbreak patterns of bank voles (Myodes glareolus). lus). Emerg. Infect. Dis. 8, 924–929. Pest Manag. Sci. 71, 166–172. Parson, W., K. Pegoraro, H. Niederst€atter, M. Foger,€ and Jacob, J., R. G. Ulrich, J. Freise, and E. Schmolz, 2014: Monitor- M. Steinlechner, 2000: Species identification by means of the ing von gesundheitsgef€ahrdenden Nagetieren, Projekte, Ziele cytochrome b gene. Int. J. Legal Med. 114, 23–28. und Ergebnisse. Bundesgesundheitsblatt Gesundheitsforschung Pilaski, J., C. Ellerich, T. Kreutzer, A. Lang, W. Benik, A. Pohl- Gesundheitsschutz 57, 511–518. Koppe, L. Bode, E. Vanek, I. B. Autenrieth, K. Bigos, and Kallio, E. R., J. Klingstrom,€ E. Gustafsson, T. Manni, A. Vaheri, H. W. Lee, 1991: Haemorrhagic fever with renal syndrome in H. Henttonen, O. Vapalahti, and A. Lundkvist, 2006: Germany. Lancet 337, 111.

© 2016 Blackwell Verlag GmbH 9 Heterogeneous Distribution of Puumala virus S. Drewes et al.

Pilaski, J., H. Feldmann, S. Morzunov, P. E. Rollin, S. L. Ruo, Tersago, K., R. Verhagen, A. Servais, P. Heyman, G. Ducoffre, B. Lauer, C. J. Peters, and S. T. Nichol, 1994: Genetic and H. Leirs, 2009: Hantavirus disease (nephropathia epidem- identification of a new Puumala virus strain causing severe ica) in Belgium: effects of tree seed production and climate. hemorrhagic fever with renal syndrome in Germany. J. Infect. Epidemiol. Infect. 137, 250–256. Dis. 170, 1456–1462. Ulrich, R. G., H. Meisel, M. Schutt,€ J. Schmidt, A. Kunz, R Core Team, 2015: R: A Language and Environment for Statis- B. Klempa, M. Niedrig, G. Pauli, D. H. Kruger,€ and J. Koch, tical Computing. Available at: https://www.R-project.org/. 2004: Prevalence of hantavirus infections in Germany. Bun- Razzauti, M., A. Plyusnina, H. Henttonen, and A. Plyusnin, desgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47, 2013: Microevolution of Puumala hantavirus during a com- 661–670. plete population cycle of its host, the bank vole (Myodes glare- Voutilainen, L., E. R. Kallio, J. Niemimaa, O. Vapalahti, and olus). PLoS One 8, e64447. H. Henttonen, 2016: Temporal dynamics of Puumala Reil, D., C. Imholt, J. A. Eccard, and J. Jacob, 2015: Beech fructi- hantavirus infection in cyclic populations of bank voles. Sci. fication and bank vole population dynamics – combined anal- Rep. 6, 21323. yses of promoters of human Puumala virus infections in Weber de Melo, V., H. Sheikh Ali, J. Freise, D. Kuhnert,€ S. Ess- Germany. PLoS One 10, e0134124. bauer, M. Mertens, K. M. Wanka, S. Drewes, R. G. Ulrich, Reil,D.,C.Imholt,S.Drewes,R.G.Ulrich,J.A.Eccard,and and G. Heckel, 2015: Spatiotemporal dynamics of Puumala J. Jacob, 2016: Environmental conditions in favour of a han- hantavirus associated with its rodent host, Myodes glareolus. tavirus outbreak in 2015 in Germany? Zoonoses Public Health Evol. Appl. 8, 545–559. 63, 83–88. Zeimes, C. B., S. Quoilin, H. Henttonen, O. Lyytik€ainen, Robert Koch-Institut, 2015: Infektionsepidemiologisches Jahr- O. Vapalahti, J. M. Reynes, C. Reusken, A. N. Swart, K. Vai- buch meldepflichtiger Krankheiten fur€ 2014, pp. 23–24. nio, M. Hjertqvist, and S. O. Vanwambeke, 2015: Landscape Robert Koch-Institut, Berlin. and regional environmental analysis of the spatial distribution Schilling, S., P. Emmerich, B. Klempa, B. Auste, E. Schnaith, H. of hantavirus human cases in Europe. Front. Public Health 3, Schmitz, D. H. Kruger,€ S. Gunther,€ and H. Meisel, 2007: Han- 54. tavirus disease outbreak in Germany: limitations of routine Zoller,€ L., M. Faulde, H. Meisel, B. Ruh, P. Kimmig, U. Schel- serological diagnostics and clustering of virus sequences of ling, M. Zeier, P. Kulzer, C. Becker, M. Roggendorf, E. K. F. human and rodent origin. J. Clin. Microbiol. 45, 3008–3014. Bautz, D. H. Kruger,€ and G. Darai, 1995: Seroprevalence of Schlegel, M., H. S. Ali, N. Stieger, M. H. Groschup, R. Wolf, and hantavirus antibodies in Germany as determined by a new R. G. Ulrich, 2012: Molecular identification of small mammal recombinant enzyme immunoassay. Eur. J. Clin. Microbiol. species using novel cytochrome B gene-derived degenerated Infect. Dis. 14, 305–313. primers. Biochem. Genet. 50, 440–447. Schmidt, K., K. M. Dressel, M. Niedrig, M. Mertens, S. A. Supporting Information Schule,€ and M. H. Groschup, 2013: Public health and vector- borne diseases – a new concept for risk governance. Zoonoses Additional Supporting Information may be found in the Public Health 60, 528–538. online version of this article: Schmidt, S., M. Saxenhofer, S. Drewes, M. Schlegel, K. M. Table S1. Abundance indices and results of serological Wanka, R. Frank, S. Klimpel, F. von Blanckenhagen, D. Maaz, and RT-PCR investigations of bank voles trapped at the C. Herden, J. Freise, R. Wolf, M. Stubbe, P. Borkenhagen, eight districts during 2012 and 2013 presented per trapping H. Ansorge, J. A. Eccard, J. Lang, E. Jourdain, J. Jacob, P. season and age/maturity groups according to Bajer et al. Marianneau, G. Heckel, and R. G. Ulrich, 2016: High genetic (2002). structuring of Tula hantavirus. Arch. Virol. 161, 1135–1149.

10 © 2016 Blackwell Verlag GmbH

3

1

RESEARCH LETTERS

This case highlights 2 issues: the unknown epidemiol- Puumala Virus in Bank Voles, ogy of CHIKV in Africa and the difficulty of diagnosing one arboviral infection during an outbreak of another ar- Lithuania boviral infection. Further research is necessary to elucidate the true extent of CHIKV in African countries and to un- Petra Straková, Sandra Jagdmann, derstand the public health implications of co-infection and Linas Balčiauskas, Laima Balčiauskienė, co-distribution of multiple arboviruses. Stephan Drewes, Rainer G. Ulrich

This work was supported by a grant from the National Center for Author affiliations: Academy of Sciences, Brno, Czech Republic Global Health and Medicine (27-6001). (P. Straková); Masaryk University, Brno (P. Straková); Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany Dr. Takaya is a medical doctor at the National Center for Global (P. Straková, S. Jagdmann, S. Drewes, R.G. Ulrich); Nature Health and Medicine, Disease Control and Prevention Center. Research Centre, Vilnius, Lithuania (L. Balčiauskas, Her main research interest is tropical infectious diseases. L. Balčiauskienė)

DOI: http://dx.doi.org/10.3201/eid2301.161400 References 1. Filipe AF, Pinto MR. Arbovirus studies in Luanda, Angola. 2. Little is known about the presence of human pathogenic Virological and serological studies during an outbreak of dengue- like disease caused by the chikungunya virus. Bull World Health Puumala virus (PUUV) in Lithuania. We detected this virus Organ. 1973;49:37–40. in bank voles (Myodes glareolus) in a region of this country 2. World Health Organization. Situation report: in which previously PUUV-seropositive humans were identi- outbreak in Angola W30, 29 July 2016 [cited 2016 Aug 18]. fied. Our results are consistent with heterogeneous distribu- http://www.afro.who.int/en/yellow-fever/sitreps/item/8866-situation- tions of PUUV in other countries in Europe. report-yellow-fever-outbreak-in-angola-29-july-2016.html 3. World Health Organization. in China [cited 2016 Aug 18]. http://www.who.int/csr/don/02-august-2016-rift-valley- uumala virus (PUUV) (family Bunyaviridae) is an fever-china/en/ 4. Ross RW. The Newala epidemic. III. The virus: isolation, Penveloped hantavirus that contains a single-stranded pathogenic properties and relationship to the epidemic. J trisegmented RNA genome of negative polarity (1). PUUV Hyg (Lond). 1956;54:177–91. http://dx.doi.org/10.1017/ harbored by the bank vole (Myodes glareolus) is the most S0022172400044442 prevalent human pathogenic hantavirus in Europe (2). A 5. Moyen N, Thiberville SD, Pastorino B, Nougairede A, Thirion L, Mombouli JV, et al. First reported chikungunya fever outbreak in high population density of bank voles can lead to disease the republic of Congo, 2011. PLoS One. 2014;9:e115938. clusters and possible outbreaks of nephropathia epidemica, http://dx.doi.org/10.1371/journal.pone.0115938 a mild-to-moderate form of hantavirus disease (3). 6. Ochieng C, Ahenda P, Vittor AY, Nyoka R, Gikunju S, In contrast to the Fennoscandian Peninsula and parts Wachira C, et al. Seroprevalence of infections with dengue, Rift Valley fever and chikungunya viruses in Kenya, 2007. PLoS One. of central Europe (4,5), little is known about the epidemi- 2015;10:e0132645. http://dx.doi.org/10.1371/journal.pone.0132645 ology of PUUV in Poland and the Baltic States. Recent 7. Gudo ES, Pinto G, Vene S, Mandlaze A, Muianga AF, Cliff J, investigations confirmed the presence of PUUV in certain et al. Serological evidence of chikungunya virus among acute parts of Poland (5,6). A molecular study of bank voles in febrile patients in southern Mozambique. PLoS Negl Trop Dis. 2015;9:e0004146. http://dx.doi.org/10.1371/journal.pntd.0004146 Latvia identified 2 PUUV lineages (Russian and Latvian) 8. Centers for Disease Control and Prevention. Geographic (7). In Estonia, serologic and molecular screening provided distribution. Where has chikungunya virus been found? [cited 2016 evidence of the Russian PUUV lineage (8). For Lithuania, Aug 18]. https://www.cdc.gov/chikungunya/geo/index.html a previous serosurvey indicated the presence of PUUV- 9. Furuya-Kanamori L, Liang S, Milinovich G, Soares Magalhaes RJ, Clements AC, Hu W, et al. Co-distribution and co-infection of specific antibodies in humans from 3 counties (online chikungunya and dengue viruses. BMC Infect Dis. 2016;16:84. Technical Appendix Figure 1, http://wwwnc.cdc.gov/EID/ http://dx.doi.org/10.1186/s12879-016-1417-2 article/23/1/16-1400-Techapp1.pdf). However, molecular 10. Parreira R, Centeno-Lima S, Lopes A, Portugal-Calisto D, evidence of PUUV in humans or in voles is lacking (9). Constantino A, Nina J. serotype 4 and chikungunya virus coinfection in a traveller returning from Luanda, We report a molecular survey of rodent populations in Angola, January 2014. Euro Surveill. 2014;19:20730. Lithuania at 5 trapping sites, including 2 sites in counties http://dx.doi.org/10.2807/1560-7917.ES2014.19.10.20730 where PUUV-specific antibodies were previously detected in humans (online Technical Appendix Figure 1). A total Address for correspondence: Satoshi Kutsuna or Saho Takaya, Disease of 134 bank voles, 72 striped field mice (Apodemus agrar- Control and Prevention Center, National Center for Global Health and ius), and 59 yellow-necked field mice A.( flavicollis) were Medicine, 1-21-1, Toyama, Shinjuku, Tokyo 162-8655, Japan; email: captured during 2015. Three trapping sites (Juodkrantė, [email protected] or [email protected] Elektrėnai, and Lukštas) were located in forests at or near

158 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 1, January 2017 RESEARCH LETTERS a cormorant colony, and 2 trapping sites (Žalgiriai and Rusnė) were located in a wet forest and flooded meadows. All applicable institutional and national guidelines for the care and use of animals were followed. For PUUV detection, we extracted RNA from bank vole lung tissue samples by using the Qiazol Protocol (QIAGEN, Hilden, Germany) and conducting screening by using a small segment RNA–specific reverse transcrip- tion PCR (RT-PCR) and primers Pu342F and Pu1102R (6). We detected PCR products for 5 (LT15/164, LT15/165, LT15/166, LT15/174, and LT15/201) of 45 bank voles from the Lukštas trapping site. All 9 striped field mice and 2 yellow-necked field mice from Lukštas showed negative results for the PUUV RT-PCR. We amplified the complete nucleocapsid protein– Figure. Phylogenetic tree based on complete nucleocapsid gene encoding region for 3 of the 5 samples positive by sequences of Puumala virus (PUUV) strains from Lithuania (LT), RT-PCR with 3 primer pairs: PuNCRS (5′-TAGTAG- Latvia (Jelgava1), and other PUUV clades. Tula virus (TULV) TAGACTCCTTGAA-3′)/Pu255R (5′-TGGACACAG- was used as the outgroup. The tree was generated by Bayesian CATCTGCCA-3′), Pu40F (5′-CTGGAATGAGTGACTTA- and maximum-likelihood analysis using MrBayes 3.2.6 (http:// AC-3′)/Pu393R (5′-TATGGTAATGTCCTTGATGT-3′), and mrbayes.sourceforge.net/download.php) and MEGA6 software (http://www.megasoftware.net/). The optimal substitution Pu1027F (5′-ATGGCAGAGTTAGGTGCA-3′)/Pu1779R model was calculated by using jModelTest 2.1.4 (https://code. (5′-TCAGCATGTTGAGGTAGT-3′). RT-PCR products google.com/p/jmodeltest2). The Bayesian tree was based on were directly sequenced by using the BigDye Terminator transition model 2 with invariant sites and gamma distribution Version 1.1 Cycle Sequencing Kit (Applied Biosystems, and 4 million generations. For maximum-likelihood analysis, the Darmstadt, Germany). We deposited the sequences of the Kimura 2-parameter model and 1,000 bootstrap replicates were used. Posterior probabilities are indicated before slashes, and 5 samples in GenBank under accession nos. KX757839, bootstrap values are indicated after slashes. Scale bar indicates KY757840, KX 757841, KX751706, and KX751707 (Fig- nucleotide substitutions per site. ALAD, Alpe-Adrian lineage; CE, ure; online Technical Appendix Figure 2). Central European lineage; DAN, Danish lineage; FIN, Finnish The 3 nucleocapsid protein–encoding nucleotide se- lineage; HOKV, Hokkaido virus; LAT, Latvian lineage; N-SCA, quences showed identities of 98.2%–99.8%, and the 3 de- North-Scandinavian lineage; RUS, Russian linage; S-SCA, South- Scandinavian lineage. duced nucleocapsid protein amino acid sequences showed identities of 99.8%–100% (online Technical Appendix Table). We found the highest similarity of the 3 nucleotide under accession nos. KX769843 (LT15/164), KX769844 and corresponding amino acid sequences for the PUUV (LT15/165), KX769845 (LT15/166), KX769846 strain from Latvia (Jelgava1/Mg149/2008; JN657228): nu- (LT15/174), and KX769847 (LT15/201), and compared cleotide sequence 89.8%–90.4% and amino acid sequence them with cytochrome b prototype sequences of evolution- 99.8%–100% (online Technical Appendix Table). ary lineages. Consistent with results for northern Poland We generated phylogenetic trees by using MrBayes (6), we identified 2 bank vole lineages at Lukštas, and the 3.2.6 software (http://mrbayes.sourceforge.net/download. PUUV sequences were detected in 4 bank voles of the Car- php) and MEGA6 software (http://www.megasoftware. pathian phylogroup and in 1 vole of the Eastern lineage. net/) for complete (1,302 nt; Figure) and partial (465 nt; In conclusion, we detected PUUV in bank voles at 1 online Technical Appendix Figure 2) nucleocapsid pro- site (Lukštas) in Lithuania (prevalence of 11.1%). This site tein–encoding sequences. Phylogenetic analysis confirmed is located in a region where PUUV-seropositive persons results of pairwise nucleotide sequence divergence analy- were identified 9( ) and near the border with Latvia (online sis, which indicated clustering of PUUV sequences from Technical Appendix Figure 1). The absence of PUUV in Lithuania with sequences from northern Poland (online bank voles at 4 other sites might have been caused by the Technical Appendix Figure 2) and the Jelgava 1 strain from small number of voles tested. However, our results are con- Latvia (Figure). These sequences of the Latvian clade are sistent with heterogeneous distributions of PUUV in other well separated from the Russian and all other European countries (10). PUUV clades. Detection of this novel PUUV strain by using a spe- To evaluate a potential association of PUUV with evo- cific RT-PCR confirms the reliability of this assay for -mo lutionary lineages of the bank vole, we determined vole lecular diagnostic and epidemiologic studies of this virus in cytochrome b gene sequences, deposited them in GenBank Lithuania. Future large-scale monitoring studies are needed

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 1, January 2017 159 RESEARCH LETTERS to evaluate the geographic distribution and temporal fluc- Loiasis in US Traveler tuation of PUUV in bank vole populations in Lithuania. Returning from Bioko Island, Acknowledgment Equatorial Guinea, 2016 We thank Nicole Reimer for generating Technical Appendix Figure 1. David H. Priest, Thomas B. Nutman P.S. was supported by a stipend from the Erasmus Programme. Author affiliations: Novant Health, Winston-Salem, North Carolina, USA (D.H. Priest); National Institute of Allergy and Infectious Ms. Straková is a doctoral student at Masaryk University, Brno, Diseases, National Institutes of Health, Bethesda, Maryland, USA Czech Republic. Her research interests are zoonotic viruses, (T.B. Nutman) vectorborne diseases, and molecular diagnostics. DOI: http://dx.doi.org/10.3201/eid2301.161427

References 1. Plyusnin A, Beaty BJ, Elliot RM, Goldbach R, Kormelink R, The filarial parasite Loa loa overlaps geographically with Lundkvist A, et al. Family Bunyaviridae. In: King AM, Adams MJ, Onchocera volvulus and Wuchereria bancrofti filariae in Carstens EB, Lefkowitz EJ, editors. Virus taxonomy: ninth report central Africa. Accurate information regarding this overlap of the international committee on taxonomy of viruses. San Diego: is critical to elimination programs targeting O. volvulus and Elsevier Academic Press; 2012. p. 725–41. W. bancrofti. We describe a case of loiasis in a traveler 2. Heyman P, Ceianu CS, Christova I, Tordo N, Beersma M, returning from Bioko Island, Equatorial Guinea, a location João Alves M, et al. A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the heretofore unknown for L. loa transmission. hantavirus reservoirs in Europe, 2005-2010. Euro Surveill. 2011;16:19961. 3. Clement J, Maes P, van Ypersele de Strihou C, van der Groen G, oiasis (African eye worm disease) is caused by infec- Barrios JM, Verstraeten WW, et al. Beechnuts and outbreaks of Ltion with Loa loa, a parasitic vector-borne filarial worm nephropathia epidemica (NE): of mast, mice and men. Nephrol endemic to 10 countries in central and western Africa, in- Dial Transplant. 2010;25:1740–6. http://dx.doi.org/10.1093/ndt/ cluding Equatorial Guinea (1). The worm, spread by the gfq122 4. Klempa B, Radosa L, Krüger DH. The broad spectrum of bite of Chrysops dimidiata and C. silacea flies, is of public hantaviruses and their hosts in central Europe. Acta Virol. health concern because of its geographic overlap with On- 2013;57:130–7. http://dx.doi.org/10.4149/av_2013_02_130 chocerca volvulus and Wuchereria bancrofti worms, which 5. Michalski A, Niemcewicz M, Bielawska-Drózd A, Nowakowska cause onchocerciasis and lymphatic filariasis, respectively A, Gaweł J, Pitucha G, et al. Surveillance of hantaviruses in Poland: a study of animal reservoirs and human hantavirus disease (2). Mass drug administration programs for onchocercia- in Subcarpathia. Vector Borne Zoonotic Dis. 2014;14:514–22. sis and lymphatic filariasis often include ivermectin, which http://dx.doi.org/10.1089/vbz.2013.1468 can cause serious and occasionally fatal adverse neurologic 6. Ali HS, Drewes S, Sadowska ET, Mikowska M, Groschup MH, reactions in persons with high levels of circulating L. loa Heckel G, et al. First molecular evidence for Puumala hantavirus in Poland. Viruses. 2014;6:340–53. http://dx.doi.org/10.3390/ microfilariae (3). To avoid such reactions, an accurate pic- v6010340 ture of the geographic distribution of L. loa infection is 7. Razzauti M, Plyusnina A, Niemimaa J, Henttonen H, Plyusnin A. needed. Given the importance of epidemiologic data in the Co-circulation of two Puumala hantavirus lineages in Latvia: a management of filarial infections, we report a case of loia- Russian lineage described previously and a novel Latvian lineage. J Med Virol. 2012;84:314–8. http://dx.doi.org/10.1002/jmv.22263 sis in a US woman who had traveled to Equatorial Guinea. 8. Golovljova I, Sjölander KB, Lindegren G, Vene S, Vasilenko V, In May 2016, a 25-year-old woman sought care in Plyusnin A, et al. Hantaviruses in Estonia. J Med Virol. Winston-Salem, North Carolina, USA, for fatigue, swelling 2002;68:589–98. http://dx.doi.org/10.1002/jmv.10231 of her left ankle, right knee pain, and intensely pruritic skin 9. Sandmann S, Meisel H, Razanskiene A, Wolbert A, Pohl B, Krüger DH, et al. Detection of human hantavirus infections in lesions on her lower extremities. She had lived on Bioko Lithuania. Infection. 2005;33:66–72. http://dx.doi.org/10.1007/ Island, Equatorial Guinea, during October 2015–March s15010-005-4058-8 2016 while studying local wildlife. On Bioko Island, she 10. Drewes S, Turni H, Rosenfeld UM, Obiegala A, Strakova P, frequented local water sources to bathe and wash clothes Imholt C, et al. Reservoir-driven heterogeneous distribution of recorded human Puumala virus cases in South-West Germany. and consistently took atovaquone/proguanil for malaria Zoonoses and Public Health. In press 2016. prophylaxis. She did not spend time on Equatorial Guinea’s mainland or travel to other nations in central or western Address for correspondence: Rainer G. Ulrich, Friedrich-Loeffler- Africa. Her flight from the United States to Bioko Island Institut, Federal Research Institute for Animal Health, Institute for Novel connected in Ethiopia; she did not leave the airport. and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Symptoms developed soon after her return to North Riems, Germany, email: [email protected] Carolina in late March 2016. Laboratory evaluations

160 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 1, January 2017

4

1

Infection, Genetics and Evolution 48 (2017) 127–130

Contents lists available at ScienceDirect

Infection, Genetics and Evolution

journal homepage: www.elsevier.com/locate/meegid

Short communication Novel hantavirus identified in European bat species Nyctalus noctula

Petra Straková a,b,c,d, Lucie Dufkova a,JanaŠirmarová a,Jiří Salát a,Tomáš Bartonička b,BorisKlempae,f, Florian Pfaff g,DirkHöperg, Bernd Hoffmann g,RainerG.Ulrichd,DanielRůžek a,h,⁎ a Department of Virology, Veterinary Research Institute, Brno, Czech Republic b Faculty of Science, Masaryk University, Brno, Czech Republic c Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic d Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany e Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia f Charité Medical School, Berlin, Germany g Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany h Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic article info abstract

Article history: Hantaviruses are emerging RNA viruses that cause human diseases predominantly in Asia, Europe, and the Received 27 September 2016 Americas. Besides rodents, insectivores and bats serve as hantavirus reservoirs. We report the detection and ge- Received in revised form 21 December 2016 nome characterization of a novel bat-borne hantavirus isolated from insectivorous common noctule bat. The Accepted 22 December 2016 newfound virus was tentatively named as Brno virus. Available online 23 December 2016 © 2016 Elsevier B.V. All rights reserved.

Keywords: Hantavirus Bat Phylogenetic analysis Emerging virus Bat-borne virus

1. Introduction report the detection of a novel hantavirus, tentatively named Brno virus (BRNV), in the European insectivorous bat species Nyctalus noctula Hantaviruses (genus Hantavirus, family Bunyaviridae) are responsi- collected in the Czech Republic, Central Europe. For genetic characteri- ble for life-threatening human diseases: hantavirus cardiopulmonary zation, the three genome segments were sequenced by high-through- syndrome (HCPS) in the Americas and hemorrhagic fever with renal put sequencing (HTS). syndrome (HFRS) in Asia and Europe (Krüger et al., 2011). Rodents are natural reservoirs of hantaviruses; however, recent studies have 2. The study demonstrated that insectivores and bats also represent hosts for diver- gent hantaviruses (Xu et al., 2015; Zhang, 2014; Witkowski et al., 2016). A total of 53 bats were collected during the years 2008–2013 in the Bats are considered the natural reservoir of a large variety of zoonotic vi- South Moravia region in the Czech Republic. The sample collection ruses causing serious human diseases, such as lyssaviruses, contained bats that died accidentally or were found dead in the field. henipaviruses, severe acute respiratory syndrome coronavirus, and Bats represented 14 different species from two families: Eptesicus Ebola virus (Li et al., 2010). Genetically divergent bat-borne hantavi- nilssonii (n = 1), E. serotinus (n = 1), Hypsugo savii (n = 4), Myotis ruses have been identified in Africa – Mouyassue virus (MOYV) in bechsteinii (n = 1), M. daubentonii (n = 3), M. emarginatus (n = 1), Cote d'Ivoire (Sumibcay et al., 2012), Magboi virus (MGBV) in Sierra M. mystacinus (n = 1), M. myotis (n = 1), Nyctalus noctula (n = 12), Leone (Weiss et al., 2012), and Makokou virus (MAKV) in Gabon Pipistrellus pipistrellus (n = 15), Plecotus auritus (n = 2), Pl. austriacus (Witkowski et al., 2016)andinAsia– Xuan Son virus (XSV) in Vietnam (n = 2), Vespertilio murinus (n = 6) of the family Vespertilionidae and (Arai et al., 2013), Huangpi virus (HUPV), Longquan virus (LQUV), Rhinolophus hipposideros (n = 3) of the family Rhinolophidae. Laibin virus (LBV) in China (Xu et al., 2015; Guo et al., 2013), and Total RNA was extracted from the lungs, kidneys and livers of all an- Quezon virus (QZNV) in the Philippines (Arai et al., 2016). Here we imals using QIAamp viral RNA Mini Kit (QIAGEN) or QIAZOL/TRIZOL method and screened for the presence of hantavirus RNA by a broad- spectrum RT-PCR targeting the large (L) genome segment of hantavi- ⁎ Corresponding author at: Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, fi Czech Republic. ruses (Klempa et al., 2006). Hantavirus RNA was identi ed in two E-mail address: [email protected] (D. Růžek). noctule bats (N. noctula – the species was determined morphologically

http://dx.doi.org/10.1016/j.meegid.2016.12.025 1567-1348/© 2016 Elsevier B.V. All rights reserved. 128 P. Straková et al. / Infection, Genetics and Evolution 48 (2017) 127–130 and confirmed by HTS-based results of three host genes) collected in the 6528 nt, respectively, encoding nucleocapsid protein (N), glycoprotein city of Brno. The obtained sequences (369 base pairs, bp) were designat- precursor (GPC) and viral RNA-dependent RNA polymerase (L) proteins ed as Brno 7/2012/CZE (amplified from liver tissue) and Brno 11/2013/ of 423, 1136 and 2145 amino acids in length, respectively (GenBank ac- CZE (identical sequences were obtained from liver and kidney samples) cession numbers: KX845678, KX845679, KX845680). Sequence com- and deposited in GenBank (accession numbers KR920359 and parison revealed that the three genome segments and the encoded KR920360, respectively). proteins of BRNV showed 54.7–78.3% nucleotide and 44.5–81.7% Attempts to isolate the virus were done in Vero cells and in suckling amino acid sequence identity with other bat-borne hantaviruses while mice, but were negative. sequence identity with hantaviruses from rodents, shrews and moles In order to determine the whole genome sequence of BRNV, ranged between 50.1 and 64.8%at the nucleotide and between 38.9 IonTorrent HTS was conducted. The sample Brno 7/2012/CZE was select- and 64.1% at amino acid level (Table 1). ed as most suitable for sequencing based on high viral loads in a novel The observed amino acid sequence differences clearly exceed one of BRNV-specific real-time RT-qPCR (qScript XLT 1-step RT-PCR Kit (Quan- the current species demarcation criteria of the current International ta/VWR)). Briefly, RNA was extracted from the liver tissue (QIAamp Committee on Taxonomy of Viruses (ICTV) for the genus Hantavirus, RNeasy mini Kit, Qiagen) and its concentration was measured with a 7% difference in amino acid sequences of the N and GPC proteins. The Nanodrop 1000 photometer (RNA concentrations in the two samples current ICTV criteria also include serological differences in virus neutral- were of 1545.91 ng/μl and 896.98 ng/μl). A purification and concentration ization, preventing virus classification without a cell culture isolate. step with RNA clean beads (Beckman Coulter) followed. Synthesis of However, a new proposal for species demarcation criteria (assigned cDNA was performed with a cDNA Synthesis kit (Roche) and resulting code of the proposal: 2016.023a,bM; available for download at https:// cDNA was fragmented by M220 Focused-ultrasonicator (Corvaris). This talk.ictvonline.org), submitted by the ICTV Bunyaviridae Study Group, fragmented cDNA with an average length of about 500 bp was used for li- is currently under consideration which allows the classification solely brary preparation (Gene Read Library Prep Kit, Qiagen). The library was based on genetic data. It is based on a concatenated multiple sequence purified and size selected using AMPure XP Beads (Beckman Coulter). Op- alignment of complete amino acid sequences of the N and GPC proteins timal size distribution and quality of the resulting library were verified on which is used to calculate PED (pairwise evolutionary distances) values a Bioanalyzer in combination with a DNA High Sensitivity Chip (Agilent). using WAG amino acid substitution matrix. A species of the genus Han- The library was quantified with the Ion Library Taqman Quantitation Kit tavirus is defined by a PED value greater than 0.1. According to this cri- (ThermoFisher). Sequencing was performed on an Ion Personal Genome terion, BRNV clearly represents a new hantavirus species because the Machine (ThermoFisher) according to manufacturer's guidelines. lowest PED value, observed for the most closely related LQUV, is 0.5. A metagenomics analysis of the complete dataset was conducted The obtained BRNV sequences were subjected to phylogenetic anal- using RIEMS software (Scheuch et al., 2015). Reads classified as related yses within the Maximum Likelihood framework using MEGA7 (Kumar to the family Bunyaviridae were extracted and de-novo assembled into et al., 2016). Unfortunately, only partial L segment sequences are avail- contigs using 454 Sequencing System Software (version 3.0). Resulting able for the majority of bat-borne hantaviruses. Therefore, we first contigs were subsequently analyzed using the BioEdit software 7.2.5 based our analysis on a short L segment dataset (352 nt) which contains (Hall, 1999)andGeneious9.0.5(Kearse et al., 2012). The lengths of all currently recognized bat-borne hantaviruses (Fig. 1). BRNV clustered the sequences of S, M and L gene segments were 1441, 3575 and within the clade containing all bat-borne hantaviruses and shared the

Table 1 Nucleotide and amino acid sequence identities (%) of three genome segments and corresponding encoded nucleocapsid protein (N), glycoprotein precursor (GPC) and RNA-dependent RNA polymerase (RdRp) between Brno virus (BRNV) and other representative bat-, insectivore- and rodent-borne hantavirusesa.

Host Virus strain Country S segment/N M segment/GPC L segment/RdRp

1272 nt 424 aa 3411 nt 1137 aa 6435 nt 2145 aa

Bats Longquan virus China 65.9 65 66.3 62.5 78.3b 80.5b Laibin virus China 58.7 56.3 55.4 45.6 66 66.7 Huangpi virus China 65.6b 64b ––71.7b 81.7b Xuan Son virus Vietnam 58.5 54.3 61.2b 54.4b 70b 75.1b Mouyassue virus Côte d'Ivoire ––––73.4b 78.9b Magboi virus Sierra Leone ––––74.2b 75.7b Makokou virus Gabon ––––66.8b 67.6b Quezon virus Philippines 59.2 55.5 54.7 44.5 65.4 66.6 Shrews Uluguru virus Tanzania 50.9 40.9 54.8b 42.9b 64.5 62.7 Altai virus Russia 56.9b 52.6b 54.8b 48.9b 63.3 62.3 Cao Bang virus Vietnam 57.1 51.7 51.9 40.4 63.7 62.1 Seewis virus Switzerland 57.8 49.4 54.2b 46.9b 60.7b 60.3b Thottapalayam virus India 54 46.5 50.1 38.9 62.8 62.2 Moles Nova virus Belgium 57.5 51.7 54.6 44.2 64.5 63.3 Asama virus Japan 55.6 51 52.2b 40.3b 64.8b 64.1b Rodents Puumala virus Finland 58.3 51.9 51 40.1 63.2 60.3 Sin Nombre virus USA 58.8 53 52.5 41.6 63.4 61.3 Seoul virus Korea 55.4 48.8 51.6 39.1 62.2 60.7 Hantaan virus Korea 56.6 50.1 51 40 62.2 60.6 Dobrava-Belgrade virus Greece 55.7 49.8 50.4 40.1 62.5 61.1 Tula virus Czech Republic 57.2 52.9 51.9 40.9 63.1 61.3

– no sequence available. a Viral sequences used to generate sequence identities: Bat-borne hantaviruses: Longquan virus (JX465415, JX465397, JX465381), Laibin virus (KM102247, KM102248, KM102249), Huangpi virus (JX473273, JX465369), Xuan Son virus (KF704710, KJ000539, KF704715), Mouyassue virus (JQ287716), Magboi virus (JN037851), Makokou virus (KT316176), Quezon vi- rus (KU950713, KU950714, KU950715); Shrew-borne hantaviruses: Uluguru virus (JX193695, JX193696, JX193697), Altai virus (KM361048, KM361053, KM361061), Cao Bang virus (EF543524, EF543526, EF543525), Thottapalayam virus (NC_010704, NC_010708, NC_010707), Seewis virus (EF636024, EF636025, EF636026); Mole-borne hantaviruses: Nova virus (KT004445, KT004446, KT004447), Asama virus (EU929072, EU929075, EU929078); Rodent-borne hantaviruses: Puumala virus (NC_005224, NC_005223, NC_005225), Sin Nombre virus (NC_005216, NC_005215, NC_005217), Seoul virus (NC_005236, NC_005237, NC_005238), Hantaan virus (NC_005218, NC_005219, NC_005222), Dobrava-Belgrade virus (NC_005233, NC_005234, NC_005235), Tula virus (NC_005227, NC_005228, NC_005226). b Comparison based on shorter sequences. P. Straková et al. / Infection, Genetics and Evolution 48 (2017) 127–130 129

Fig. 1. Maximum-Likelihood phylogenetic tree showing the phylogenetic position of Brno virus (BRNV; marked by black arrow and bold face) constructed on the basis of partial L segment nucleotide sequences (352 nt). Evolutionary analysis was conducted in MEGA7 (15). The evolutionary history was inferred by using the Maximum-Likelihood method based on the General Time Reversible (GTR) model with using a discrete Gamma distribution (+G) with 5 rate categories and by assuming that a certain fraction of sites are evolutionarily invariable (+I) which was estimated to be the Best-Fit substitution model according to Bayesian Information Criterion. The scale bars indicate an evolutionary distance in substitutions per position in the sequence. Bootstrap values ≥70%, calculated from 500 replicates, are shown at the tree branches. The insert shows the phylogenetic group containing all bat-borne hantaviruses (marked by bat pictogram) in greater detail. Rodent-borne hantaviruses associated with members of the families Muridae or Cricetidae are indicated by grey-shaded background. The list of the accession numbers used in the analysis is available from the authors upon request. Abbreviations: ALTV, Altai virus; ANDV, Andes virus; ARRV, Ash River virus; ARTV, Artybash virus; ASAV, Asama virus; ASIV, Asikkala virus; AZGV, Azagny virus; BAYV, Bayou virus; BCCV, Black Creek Canal virus; BOGV, Boginia virus; BOWV, Bowé virus; BRNV, Brno virus; CBNV, Cao Bang virus; CDV, Cano Delgadito virus; CHOV, Choclo virus; DOBV, Dobrava-Belgrade virus; HOKV, Hokkaido virus; HUPV, Huanqpi virus; HTNV, Hantaan virus; JEJV, Jeju virus; JMSV, Jemez Springs virus; KILV, Kilimanjaro virus; KKMV, Kenkeme virus; LAIV, Laibin virus; LHEV, Lianghe virus; LNV, Laguna Negra virus; LQUV, Longquan virus; MAKV, Makokou virus; MAPV, Maporal virus; MGBV, Magboi virus; MJNV, Imjin virus; MONV, Montano virus; MOUV, Mouyassué virus; MUJV, Muju virus; NVAV, Nova virus; OXBV, Oxbow virus; PHV, Prospect Hill virus; PUUV, Puumala virus; QDLV, Qiandao Lake virus; QZNV, Quezon virus; RIOMV, Rio Mamore virus; RKPV; Rockport virus; RPLV, Camp Ripley virus; SANGV, Sangassou virus; SEOV, Seoul virus; SERV, Serang virus; SNV, Sin Nombre virus; SWSV, Seewis virus; TANGV, Tanganya virus; TIGV, Tigray virus; THAIV, ; TPMV, Thottapalayam virus; TULV, Tula virus; ULUV, Uluguru virus; VLAV, Vladivostok virus; XSV, Xuan Son virus. In cases of HTNV, PUUV, SWSV, and XSV, several sequences of the same virus were marked by grey curve to allow unambiguous designation of the taxa. most recent common ancestor with LQUV found in insectivorous acid sequences for all three segments (phylogenetic trees based on Rhinolophus sp. bats in China. This pattern has been consequently ob- partial sequences of S and M segments are shown in Supplementary served in all other phylogenetic analyses including complete amino Figs. 1 and 2). 130 P. Straková et al. / Infection, Genetics and Evolution 48 (2017) 127–130

3. Conclusions Arai, S., Taniguchi, S., Aoki, K., Yoshikawa, Y., Kyuwa, S., Tanaka-Taya, K., et al., 2016. Mo- lecular phylogeny of a genetically divergent hantavirus harbored by the Geoffroy's rousette (Rousettus amplexicaudatus), a frugivorous bat species in the Philippines. In- In the present study a novel bat-borne hantavirus has been identi- fect. Genet. Evol. 45:26–32. http://dx.doi.org/10.1016/j.meegid.2016.08.008. fied and its complete sequence of all coding genomic regions of has Guo, W.P., Lin, X.D., Wang, W., Tian, J.H., Cong, M.L., Zhang, H.L., et al., 2013. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog. been determined. The successful determination of the genome segment 9, e1003159. http://dx.doi.org/10.1371/journal.ppat.1003159. sequences of BRNV provide reference data for improving detection Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis methods and determining the genome sequences of further European program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. bat-borne hantaviruses. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the or- Its phylogenetic relatedness to other bat-borne hantaviruses, high ganization and analysis of sequence data. Bioinformatics 25:1647–1649. http://dx. genetic distance to other known hantaviruses, and its independent de- doi.org/10.1093/bioinformatics/bts199. tection in two distinct animals of the same species and in two organs Klempa, B., Fichet-Calvet, E., Lecompte, E., Auste, B., Aniskin, V., Meisel, H., et al., 2006. Hantavirus in African wood mouse, Guinea. Emerg. Infect. Dis. 12:838–840. http:// led us to conclude that BRNV is an indigenous bat-borne hantavirus as- dx.doi.org/10.3201/eid1205.051487. sociated with common noctule bat (N. noctula). This study provided a Krüger, D.H., Schönrich, G., Klempa, B., 2011. Human pathogenic hantaviruses and pre- missing molecular proof that bat-borne hantaviruses occur in Europe vention of infection. Hum. Vaccin. 7:685–693. http://dx.doi.org/10.4161/hv.7.6. 15197. too, and need to be considered as putative public health threat. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. http://dx.doi.org/. 10. Acknowledgments 1093/molbev/msw054. Li, L., Victoria, J.G., Wang, C., Jones, M., Fellers, G.M., Kunz, T.H., et al., 2010. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mamma- This study was funded by grant no. LO1218 of the MEYS of the Czech lian viruses. J. Virol. 84:6955–6965. http://dx.doi.org/10.1128/JVI.00501-10. Republic under the NPU I program (to D.R.), Ministry of Agriculture of Scheuch, M., Höper, D., Beer, M., 2015. RIEMS: a software pipeline for sensitive and com- prehensive taxonomic classification of reads from metagenomics datasets. BMC the Czech Republic (RO0516 to D.R.), by the contract-research-project Bioinf. 16:69. http://dx.doi.org/10.1186/s12859-015-0503-6. for the Bundeswehr Medical Service FV E/U2AD/CF512/DF557 META- Sumibcay, L., Kadjo, B., Gu, S.H., Kang, H.J., Lim, B.K., Cook, J.A., et al., 2012. Divergent lin- InfRisk (to R.G.U.) and partially funded by the Slovak Scientific Grant eage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Cote Agency VEGA, grant number 2/0174/15 (to B.K.). The continuous sup- d'Ivoire. Virol. J. 9:34. http://dx.doi.org/10.1186/1743-422X-9-34. Weiss, S., Witkowski, P.T., Auste, B., Nowak, K., Weber, N., Fahr, J., et al., 2012. Hantavirus port of Martin Beer is kindly acknowledged. Petra Straková acknowl- in bat, Sierra Leone. Emerg. Infect. Dis. 18:159–161. http://dx.doi.org/10.3201/ edges support by Erasmus + stipendium. eid1801.111026. Witkowski, P.T., Drexler, J.F., Kallies, R., Ličková, M., Bokorová, S., Mananga, G.D., et al., 2016. Phylogenetic analysis of a newfound bat-borne hantavirus supports a Appendix A. Supplementary data laurasiatherian host association for ancestral mammalian hantaviruses. Infect. Genet. Evol. 41:113–119. http://dx.doi.org/10.1016/j.meegid.2016.03.036. Supplementary data to this article can be found online at http://dx. Xu, L., Wu, J., He, B., Qin, S., Xia, L., Qin, M., et al., 2015. Novel hantavirus identified in black-bearded tomb bats, China. Infect. Genet. Evol. 31:158–160. http://dx.doi.org/ doi.org/10.1016/j.meegid.2016.12.025. 10.1016/j.meegid.2015.01.018. Zhang, Y.Z., 2014. Discovery of hantaviruses in bats and insectivores and the evolution of References the genus Hantavirus. Virus Res. 187:15–21. http://dx.doi.org/10.1016/j.virusres. 2013.12.035. Arai, S., Nguyen, S.T., Boldgiv, B., Fukui, D., Araki, K., Dang, C.N., et al., 2013. Novel bat- borne hantavirus, Vietnam. Emerg. Infect. Dis. 19:1159–1161. http://dx.doi.org/10. 3201/eid1907.121549.

5

1

Research in Veterinary Science 102 (2015) 159–161

Contents lists available at ScienceDirect

Research in Veterinary Science

journal homepage: www.elsevier.com/locate/yrvsc

Short Communication The common coot as sentinel species for the presence of West Nile and Usutu flaviviruses in Central Europe

Petra Straková a,b, Silvie Šikutová a, Petra Jedličková a, Jiljí Sitko c, Ivo Rudolf a,b,⁎,ZdenekHubáleka,b a Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic b Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic c Comenius Museum, Ornithological Station, Přerov, Czech Republic article info abstract

Article history: We examined 146 common coots (Fulica atra)onfishponds in central Moravia, Czech Republic, for antibodies to Received 23 March 2015 West Nile (WNV) and Usutu (USUV) flaviviruses. Eighteen birds reacted in the plaque-reduction neutralization Received in revised form 20 July 2015 test against WNV; these WNV seropositive samples were then titrated in parallel against USUV and tick-borne Accepted 2 August 2015 encephalitis virus (TBEV) to exclude flavivirus cross-reactivity. Two birds (1.4% overall) had the highest titers against WNV while 9 birds (6.2% overall) were seropositive for USUV, and in 7 birds the infecting flavivirus Keywords: could not be differentiated with certainty. Our results indicate that both WNV and USUV infections occur in West Nile virus ‘ ’ fi Usutu virus common coots; these birds might serve as a sentinel species indicating the presence of these viruses at shpond Common coot and wetland habitats in Central Europe. Fulica atra © 2015 Elsevier Ltd. All rights reserved. Surveillance Mosquito-borne viruses Culex spp.

West Nile virus (WNV) and Usutu virus (USUV) belong to the genus In a previous study, we found that among 391 wild birds in Moravia Flavivirus (family Flaviviridae)(Hubálek, 2008). Both viruses circulate in (Czechland, i.e. territory of the Czech Republic), 13 had specific antibod- nature between birds and bird-feeding mosquitoes. Migratory birds ies to WNV — including several common coots (Fulica atra), and one may be infected with WNV or USUV in their African wintering grounds coot had specific antibodies also against USUV (Hubálek et al., 2008a). and could carry the virus during spring migrations northward We decided to assess prevalence of antibodies against WNV and USUV to European sites (Hannoun et al., 1972; Watson et al., 1972; Calistri in this particular bird species in Moravia by examining a greater number et al., 2010). of individuals. Usutu virus is an African virus but in 2001 it emerged surprisingly in The birds were legally shot by fishermen and gamekeepers (they Austria, causing fatal outbreaks in blackbirds (Turdus merula)andsome received a permit from Přerov and Kojetín municipalities) at fishponds other avian species (Weissenböck et al., 2002). In the following years, it in Záhlinice (49°17′ N, 17°29′ E) near Přerov in central Moravia, Czech spread to Hungary, Italy, Switzerland, Germany, Spain and Czechland Republic, during September to October 2011. The serum samples were (Bakonyi et al., 2007; Calzolari et al., 2010, 2012; Manarolla et al., maintained at −20 °C. 2010; Steinmetz et al., 2011; Jost et al., 2011; Becker et al., 2012; All serum samples were inactivated at 56 °C for 30 min and diluted Vazquez et al., 2011; Hubálek et al., 2014). WNV and USUV can circulate 1:5 in Leibowitz L-15 medium. In a plaque-reduction neutralization together in certain ecosystems (Calzolari et al., 2010). In contrast to microtest (PRNT: Hubálek et al., 2008a), the diluted serum samples WNV, USUV has rarely caused human disease — only in immunocom- (30 µl) were mixed in the microtiter plate wells with test dose of promised persons (Vazquez et al., 2011). However, neutralizing virus (30 µl, containing about 20 to 40 PFU) and incubated at 37 °C for antibodies against Usutu virus were documented recently in sera of 3 60 min. Three viruses were used for neutralization tests – WNV Eg- patients with neuroinvasive disease (one patient presented with men- 101, TBEV Hypr, and USUV 939 – all prepared as infected suckling ingitis and two with meningoencephalitis) in Croatia (Vilibic-Cavlek mouse brain suspension in L-15 medium with 2% of fetal calf serum. et al., 2014). During an initial screening (all sera diluted 1:5 and 1:10, i.e. final dilu- tions were 1:10 and 1:20), only WNV was used. Vero E6 cells grown at 37 °C for 3 days in L-15 medium with 10% fetal calf serum and antibi- otics were added to each well and incubated at 37 °C for 4 h. After incu- ⁎ Corresponding author at: Institute of Vertebrate Biology, v.v.i., Academy of Sciences of μ the Czech Republic, Kvetna 8, CZ-603 65 Brno, Czech Republic. bation, 120 l of carboxymethylcellulose overlay was poured into each E-mail address: [email protected] (I. Rudolf). well, and after 3 to 5 days at 37 °C, the cells were stained with 0.1%

http://dx.doi.org/10.1016/j.rvsc.2015.08.002 0034-5288/© 2015 Elsevier Ltd. All rights reserved. 160 P. Straková et al. / Research in Veterinary Science 102 (2015) 159–161 solution of naphthalene black. The controls were titrations of test doses dead bird (mostly blackbirds) cases appeared in 2011 (Jost et al., of the Eg-101 strain of WNV, immune mouse WNV reference serum, 2011; Becker et al., 2012). In the same year, several blackbirds killed control negative bird serum and the cells without viruses (to reveal po- by USUV were reported in Czechland (Hubálek et al., 2014). Recent tential cytotoxic effect of individual avian sera). A 90% reduction of evidence of USUV RNA in Culex modestus in South Moravian fishponds plaque-forming units (PFU) was used in this study as a measure of neu- indicates possible establishment of this virus in that country (Rudolf tralization (PRNT90), and reciprocal serum titers 20 or higher were con- et al., in preparation). It is interesting that USUV strains from sidered positive. All WNV positive sera were then titrated in parallel Germany, Switzerland, Austria, Hungary, Italy and Czechland are nearly with two other flaviviruses present in Czechland, i.e. USUV and TBEV, identical in nucleotide sequence. Serological surveys sporadically to exclude serological cross reactions. detected antibodies to USUV in wild and game birds in additional Serum samples from 146 common coots (F. atra)werefirst examined European countries — Great Britain (Buckley et al., 2003, 2006), Spain for the presence of WNV antibodies. During this initial screening, 18 (Llorente et al., 2013) and Poland (Hubálek et al., 2008b). coots were positive for WNV. However, when these sera were titrated Reports on mosquito-borne viruses in the target bird of this study – against all three viruses in parallel, 9 tested birds were found to have spe- the common coot – are sporadic. In India, Mishra et al. (2012) did a cific antibodies against USUV, two birds had specific antibodies against serosurvey of 1058 wild birds for WNV: 26 samples (2.5%) were positive WNV, while the prevalence of antibodies in 7 birds could not be differen- (including common coots). In southern Spain, a total of 1213 birds tiated by PRNT with certainty (Table 1). Local circulation of WNV in belonging to 72 species were examined during preliminary screening Czechland was first proved indirectly in 1985 and then in 1990 by for antibodies against WNV and 43 common coots reached positive hemagglutination-inhibition test in free-living wetland birds and senti- WNV titres ranging from 1:20 to 1:640 (Figuerola et al., 2008). On the nel ducks on South Moravian fishponds (Hubálek et al., 1989; Juřicová basis of this finding they focused on coots in Doñana NP, Spain, and de- and Halouzka, 1993; Juřicová et al., 1993). After a big flood in Moravia tected WNV seroconversion in nine birds during the 2004–2005 season in 1997, a higher prevalence rate of arboviruses in local mosquitoes (Figuerola et al., 2007). They also did parallel neutralization against was observed, and WNV-3 (Rabensburg) was isolated in that area re- USUV but all titers of 47 serum samples from the coots were higher to peatedly (Hubálek et al., 2000; Bakonyi et al., 2005). Moreover, WNV-2 WNV than to USUV. According to an experimental study, American was detected in south Moravia recently (Rudolf et al., 2014). In another coots (Fulica americana) have very low competence to WNV (but only study, 13 WNV specifically seroreactive birds were found, including 5 one bird was tested) and therefore another transmission mechanism common coots (Hubálek et al., 2008a). These common coots came should be taken into account, such as fecal–oral transmission of WNV from fishponds at Zahlinice near Přerov. Interestingly, WNV antibodies (Komar et al., 2003). A very interesting finding is that of Alkhovskij were detected in coots also in other countries — Spain (Figuerola et al., et al. (2003) who detected RNA of WNV in 15% of coots examined in 2007), southern Russia (Lvov et al., 2008), Iran (Fereidouni et al., 2011) the Volga delta which might indicate significant role of common coots and India (Mishra et al., 2012). in circulation and spread of WNV in that region. There are not enough data on the prevalence of USUV and antibodies Detection of antibodies in migratory birds such as the common coot against it because USUV is relatively new to Europe. Weissenböck et al. need not mean that the bird was infected at the place of sampling. For (2013) did a retrospective analysis of archived bird tissue samples and instance, the coots occurring in central Moravia during autumn found USUV to be present in northern Italy as early as 1996. In migration (this study) breed in Czechland, but also in Poland and Baltic Austria, USUV is endemic since its first occurrence in 2001 (Chvala countries, while the coots breeding in Czechland usually migrate south- et al., 2007; Meister et al., 2008). Bakonyi et al. (2007) tested dead west to Austria, Switzerland, Italy, France and Spain (Cepák et al., 2008), birds in Hungary between years 2003 and 2006: they found one positive where USUV might occur. This fact must be taken into account at inter- blackbird in 2005 and six positive blackbirds in 2006. Llorente et al. pretation of findings. Herein we examined serum samples obtained (2013) tested in parallel antibodies against WNV, Bagaza virus and from 146 common coots in central Moravia for the specific WNV and

USUV in partridges and pheasants in South Spain and recorded overall USUV antibodies by PNRT90. Two birds (1.4%) had specific antibodies prevalence 10% against USUV. Steinmetz et al. (2011) noticed a mass against WNV and nine birds (6.2%) had specific antibodies against mortality due to USUV in wild and captive songbirds and owls around USUV. the Zurich Zoo in Switzerland. In 2010, a strain of USUV was isolated In conclusion, common coots might serve as a ‘sentinel’ species indi- from mosquitoes Culex pipiens pipiens in Germany where the first cating the presence of WNV and USUV at fishpond and wetland habitats in Central Europe and serological examinations of this species could be a potentially useful tool for surveillance of mosquito-borne viruses in Table 1 Europe. Antibody reciprocal titers (PRNT90) of 18 bird sera tested against three flaviviruses (West Nile, tick-borne encephalitis, Usutu). Specific reactions for particular viruses are printed in bold. Conflicts of interest Bird no. WNV TBEV USUV 42 20 b20 80 The authors declare that they have no competing interests. 43 40 40 80 45 40 b20 40 46 40 20 80 Acknowledgments 47 40 20 40 50 40 80 80 56 40 40 80 This study was funded by the EU grant FP7-261504 EDENext and is 57 20 b20 80 cataloged as EDENext313. 60 20 b20 40 155 20 20 40 175 40 b20 40 References 176 40 40 80 178 40 b20 80 Alkhovskij, S.V., Lvov, D.N., Samokhvalov, E.I., Prilipov, A.G., Lvov, D.K., Aristova, V.A., 179 20 b20 20 Gromashevskiĭ, V.L., Dzharkenov, A.F., Kovtunov, A.I., Deriabin, P.G., Odolevskiĭ, E.I., 182 40 20 40 Ibragimov, R.M., 2003. Screening of birds in the Volga delta (Astrakhan region, 184 160 20 20 2001) for the West Nile virus by reverse transcription-polymerase chain reaction. – 186 20 b20 20 Vopr. Virusol. 48, 14 17 (in Russian). Bakonyi, T., Hubálek, Z., Rudolf, I., Nowotny, N., 2005. Novel flavivirus or new lineage of 187 80 20 20 West Nile virus, Central Europe. Emerg. Infect. Dis. 11, 225–231. P. Straková et al. / Research in Veterinary Science 102 (2015) 159–161 161

Bakonyi, T., Erdelyi, K., Ursu, K., Ferenczi, E., Csorgo, T., Lussy, H., Chvala, S., Bukovsky, C., Juřicová, Z., Halouzka, J., 1993. Serological examination of domestic ducks in southern Meister, T., Weissenbock, H., Nowotny, N., 2007. Emergence of Usutu virus in Moravia for antibodies against arboviruses of the groups A, B, California and Hungary. J. Clin. Microbiol. 45, 3870–3874. Bunyamwera. Biologia (Bratislava) 48, 481–484. Becker, N., Jost, H., Ziegler, U., Eiden, M., Hoper, D., Emmerich, P., Fichet-Calvet, E., Juřicová, Z., Hubálek, Z., Halouzka, J., Macháček, P., 1993. Virological examination of cor- Ehichioya, D.D., Czajka, C., Gabriel, M., Hoffmann, B., Beer, M., Tenner-Racz, K., Racz, morants for arboviruses. Vet. Med. (Praha) 38, 375–379. P., Gunther, S., Wink, M., Bosch, S., Konrad, A., Pfeffer, M., Groschup, M.H., Schmidt- Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bowen, R., Chanasit, J., 2012. Epizootic emergence of Usutu virus in wild and captive birds in Bunning, M., 2003. Experimental infection of North American birds with the New Germany. PLoS One 7, e32604. York 1999 strain of West Nile virus. Emerg. Infect. Dis. 9, 311–322. Buckley, A., Dawson, A., Moss, S.R., Hinsley, S.A., Bellamy, P.E., Gould, E.A., 2003. Serolog- Llorente, F., Pérez-Ramírez, E., Fernández-Pinero, J., Soriguer, R., Figuerola, J., Jiménez- ical evidence of West Nile virus, Usutu virus and Sindbis virus infection of birds in the Clavero, M.A., 2013. Flaviviruses in game birds, southern Spain, 2011–2012. Emerg. UK. J. Gen. Virol. 84, 2807–2817. Infect. Dis. 19, 1023–1024. Buckley, A., Dawson, A., Gould, E.A., 2006. Detection of seroconversion to West Nile virus, Lvov, D.K., Shchelkanov, M.I., Kolobukhina, L.V., Lvov, D.N., Galkina, I.V., Aristova, V.A., Usutu virus and Sindbis virus in U.K. sentinel chickens. Virol. J. 3, 71. Morozova, T.N., Proshina, E.S., Kulikov, A.G., Kogdenko, N.V., Andronova, O.V., Calistri, P., Giovannini, A., Hubálek, Z., Ionescu, A., Monaco, F., Savini, G., Lelli, R., 2010. Pronin, N.I., Shevkoplias, V.N., Fontanetskiĭ, A.S., Vlasov, N.A., Nepoklonov, E.A., Epidemiology of West Nile in Europe and in the Mediterranean basin. Open Virol. J. 2008. Serological monitoring of arbovirus infections in the estuary of the Kuban 4, 29–37. River (the 2006–2007 data). Vopr. Virusol. 53, 30–35 (in Russian). Calzolari, M., Bonilauri, P., Bellini, R., Albieri, A., Defilippo, F., Mainli, G., 2010. Evidence of Manarolla, G., Bakonyi, T., Gallazzi, D., Crosta, L., Weissenböock, H., Dorrestein, G.M., simultaneous circulation of West Nile and Usutu viruses in mosquitoes samples in Nowotny, N., 2010. Usutu virus in wild birds in northern Italy. Vet. Microbiol. 14, Emilia-Romagna region (Italy) in 2009. PLoS One 5, e14324. 159–163. Calzolari, M., Gaibani, P., Bellini, R., Defilippo, F., Pieroo, A., Albieri, A., Maioli, G., Luppi, A., Meister, T., Lussy, H., Bakonyi, T., Šikutová, S., Rudolf, I., Vogl, W., Winkler, H., Frey, H., Rossini, G., Balzani, A., Tamba, M., Galletti, G., Gelati, A., Bonilauri, P., 2012. Mosquito, Hubálek, Z., Nowotny, N., Weissenböck, H., 2008. Serological evidence of continuing bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna high Usutu virus (Flaviviridae) activity and establishment of herd immunity in wild region (Italy) in 2010. PLoS One 7, e38058. birds in Austria. Vet. Microbiol. 127, 237–248. Cepák, J., Klvaňa, P., Formánek, J., Horák, D., Jelínek, M., Schröpfer, L., Škopek, J., Mishra, N., Kalaiyarasu, S., Nagarajan, S., Rao, M.V., George, A., Sridevi, R., Behera, S.P., Zárybnický, J., 2008. Czech and Slovak Bird Migration Atlas. Aventinum, Praha Dubey, S.C., McCracken, T., Newman, S.H., 2012. Serological evidence of West Nile (608 pp.). virus infection in wild migratory and resident water birds in eastern and northern Chvala, C., Bakonyi, T., Bukovsky, C., Meister, T., Brigger, K., Rubel, F., Nowotny, N., India. Comp. Immunol. Microbiol. Infect. Dis. 35, 591–598. Weissenböck, H., 2007. Monitoring of Usutu virus activity and spread by using dead Rudolf, I., Bakonyi, T., Šebesta, O., Mendel, J., Peško, J., Betášová, L., Blažejová, H., bird surveillance in Austria, 2003–2005.Vet.Microbiol.122,237–245. Venclíková, K., Straková, P., Nowotny, N., Hubálek, Z., 2014. West Nile virus lineage Fereidouni, S.R., Ziegler, U., Linke, S., Niedrig, M., Modirrousta, H., Hoffmann, B., Groschup, 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion M.H., 2011. West Nile virus monitoring in migrating and resident water birds in Iran: of the European WNV endemic area to the North? Eurosurveillance 19, 2–5. are common coots the main reservoirs of the virus in wetlands? Vector Borne Rudolf, I., Bakonyi, T., Šebesta, O., Mendel, J., Peško, J., Betášová, L., Blažejová, H., Zoonotic Dis. 1, 1377–1381. Venclíková, K., Straková, P., Nowotny, N., Hubálek, Z., 2015. Co-occurrence of Usutu Figuerola, J., Soriguer, R., Rojo, G., Gómez Tejedor, C., Jimenez-Clavero, M.A., 2007. Sero- virus and West Nile virus in a reed bed ecosystem (in preparation). conversion in wild birds and local circulation of West Nile virus, Spain. Emerg. Infect. Steinmetz, H.W., Bakonyi, T., Weissenbock, H., Hatt, M., Eulenberger, U., Robert, N., Hoop, Dis. 13, 1915–1917. R., Nowotny, N., 2011. Emergence and establishment of Usutu virus infection in wild Figuerola, J., Jimenez-Clavero, M.A., Lopez, G., Rubio, C., Soriguer, R., Gomez-Tejedor, C., and captive avian species in and around Zurich, Switzerland, genomic and pathologic Tenorio, A., 2008. Size matters: West Nile virus neutralizing antibodies in resident comparison to other central European outbreaks. Vet. Microbiol. 148, 207–212. and migratory birds in Spain. Vet. Microbiol. 132, 39–46. Vazquez, A., Jimenez-Clavero, M., Franco, L., Donoso-Mantke, O., Sambri, V., Niedrig, M., Hannoun, C., Corniou, B., Bouchet, J., 1972. Role of migrating birds in arbovirus transfer Zeller, H., Tenorio, A., 2011. Usutu virus — potential risk of human disease in between Africa and Europe. In: Cherepanov, A.I. (Ed.), Transcontinental Connections Europe. Eurosurveillance 16, 22–26. of Migratory Birds and their Role in the Distribution of Arboviruses. Nauka, Vilibic-Cavlek, T., Kaic, B., Barbic, L., Pem-Novosel, I., Slavic-Vrzic, V., Lesnikar, V., Kurecic- Novosibirsk, pp. 167–172. Filipovic, S., Babic-Erceg, A., Listes, E., Stevanovic, V., Gjenero-Margan, I., Savini, G., Hubálek, Z., 2008. Mosquito-borne viruses in Europe. Parasitol. Res. 103, 29–43. 2014. First evidence of simultaneous occurrence of West Nile virus and Usutu virus Hubálek, Z., Halouzka, J., Juřicová, Z., Pellantová, J., Hudec, K., 1989. Arboviruses associated neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection 42, with birds in southern Moravia, Czechoslovakia. Acta Sci. Nat. Brno 23, 1–50. 689–695. Hubálek, Z., Savage, H.M., Halouzka, J., Juřicová, Z., Sanogo, Y.O., Lusk, S., 2000. West Nile Watson, G.E., Shope, R.E., Kaiser, M.N., 1972. An ectoparasite and virus survey of migrato- virus investigations in South Moravia, Czechland. Viral Immunol. 13, 427–433. ry birds in the eastern Mediterranean. In: Cherepanov, I.A. (Ed.), Transcontinental Hubálek, Z., Halouzka, J., Juřicová, Z., Šikutová, S., Rudolf, I., Honza, M., Janková, J., Chytil, J., Connections of Migratory Birds and their Role in the Distribution of Arboviruses. Marec, F., Sitko, J., 2008a. Serologic survey of birds for West Nile Flavivirus in southern Nauka, Novosibirsk, pp. 176–180. Moravia (Czech Republic). Vector Borne Zoonotic Dis. 8, 659–666. Weissenböck, H., Kolodziejek, J., Url, A., Lussy, H., Rebel-Bauder, B., Nowotny, N., 2002. Hubálek, Z., Wegner, E., Halouzka, J., Tryjanowski, P., Lerzak, J., Šikutová, S., Rudolf, I., Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese Kruszewicz, A.G., Jaworski, Z., Wlodarczyk, R., 2008b. Serologic survey of potential encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652–656. vertebrate hosts for West Nile virus in Poland. Viral Immunol. 21, 247–254. Weissenböck, H., Bakonyi, T., Rossi, G., Mani, P., Nowotny, N., 2013. Usutu virus, Italy, Hubálek, Z., Rudolf, I., Čapek, M., Bakonyi, T., Betášová, L., Nowotny, N., 2014. Usutu virus 1996. Emerg. Infect. Dis. 19, 274–277. in blackbirds (Turdus merula), Czech Republic, 2011–2012. Transbound. Emerg. Dis. 61, 273–276. Jost, H., Bialonski, A., Maus, D., Sambri, V., Eiden, M., Groschup, M., Gunther, S., Becker, N., Schmidt-Chanasit, J., 2011. Isolation of Usutu virus in Germany. Am. J. Trop. Med. Hyg. 85, 551–553.

6

1

For Peer ReviewVector-Borne Only/Not and Zoonotic Diseases for Distribution

VectorBorne and Zoonotic Diseases: http://mc.manuscriptcentral.com/vbz

Serologic survey for West Nile virus in wild artiodactyls, central Europe

Journal: Vector-Borne and Zoonotic Diseases

Manuscript ID Draft

Manuscript Type: Original Research

Date Submitted by the Author: n/a

Complete List of Authors: Hubálek, Zdenek; Institute of Vertebrate Biology, Laboratory of Medical Zoology Juřicová, Zina; Institute of Vertebrate Biology, Academy of Sciences, Brno, Department of Medical Zoology; Strakova, Petra; Ustav Biologie Obratlovcu Akademie Ved Ceske Republiky vvi, Medical Zoology Blazejova, Hana; Ustav Biologie Obratlovcu Akademie Ved Ceske Republiky vvi, Medical Zoology Betášová, Lenka; Institute of Vertebrate Biology, v.v.i., Academy of Sciences, Medical Zoology Rudolf, Ivo; Institute of Vertebrate Biology, v.v.i., Academy of Sciences, Medical Zoology

Keyword: Arbovirus(es), Flaviviridae, Surveillance, West Nile,

Manuscript Keywords (Search wildlife, serosurvey, deer, mouflon, wild boar, mammals Terms):

Antibodies neutralizing West Nile virus (WNV) were tested in 1,023 wild Artiodactyla: 105 roe deer (Capreolus capreolus), 148 red deer (Cervus elaphus), 287 fallow deer (Dama dama), 71 mouflons (Ovis musimon), and 412 wild boars (Sus scrofa). The blood sera, sampled in SouthMoravian district of Břeclav (Czech Republic) in the years 19902008, were examined Abstract: by plaquereduction neutralization test. Specific antibodies to WNV were detected in 5.9% of wild ruminants (4.8% roe deer, 4.1% red deer, 6.3% fallow deer, 9.9% mouflons), and 4.1% of wild boars, with titres between 1:20 and 1:320. The results indicate that WNV has circulated in wild artiodactyls at a variable frequency during the years in the area.

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 Page 1 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 Serologic survey for West Nile virus in wild artiodactyls, central Europe 4 5 6 7 Zdenek Hubálek 1,2 , Zina Juřicová 1, Petra Straková 1,2 , Hana Blažejová 1, Lenka Betášová 1, Ivo 8 9 1,2 10 Rudolf * 11 12 13 14 1Institute of Vertebrate Biology, Academy of Sciences, v.v.i., Brno, Czech Republic 15 16 2Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czech 17 18 Republic 19 20 21 22

23 24 25 26 27 *Corresponding author: 28 29 30 Medical Zoology Laboratory, Institute of Vertebrate Biology ASCR, Klášterní 2, 31 32 691 42 Valtice, Czech Republic 33 34 Fax: 420519352387 35 36 Phone: 420519352961 37 38 Email: [email protected] 39 40 41 42 43 Key words: West Nile virus; Flavivirus ; Moravia; serosurvey; wildlife; mammals; roe deer; 44 45 red deer; fallow deer; mouflon; wild boar 46 47 48 49 50 Running title: West Nile virus antibodies in wild artiodactyls 51

52 53 54 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 Vector-Borne and Zoonotic Diseases Page 2 of 13 For Peer Review Only/Not for Distribution

1 2 3 Abstract 4 5 6 7 Antibodies neutralizing West Nile virus (WNV) were tested in 1,023 wild Artiodactyla : 105 8 9 10 roe deer ( Capreolus capreolus ), 148 red deer ( Cervus elaphus ), 287 fallow deer ( Dama 11 12 dama ), 71 mouflons (Ovis musimon ), and 412 wild boars ( Sus scrofa ). The blood sera, 13 14 sampled in SouthMoravian district of Břeclav (Czech Republic) in the years 19902008, were 15 16 examined by plaquereduction neutralization test. Specific antibodies to WNV were detected 17 18 in 5.9% of wild ruminants (4.8% roe deer, 4.1% red deer, 6.3% fallow deer, 9.9% mouflons), 19 20 21 and 4.1% of wild boars, with titres between 1:20 and 1:320. The results indicate that WNV 22 23 has circulated in wild artiodactyls at a variable frequency during the years in the area. 24 25 26 27 28 29 30 31 32 33 34 Introduction 35 36 37 38 39 The mosquitoborne Flavivirus West Nile (WNV, family Flaviviridae ) is the etiologic 40 41 agent of West Nile fever or encephalitis in humans, certain other mammals (e.g., horse), and 42 43 birds (Kramer et al. 2007). WNV is transmitted to vertebrates through the bite of an infected 44 45 mosquito, usually of the genus Culex but sometimes also by other mosquito genera (Hubálek 46 47 48 and Halouzka 1999). WNV occurs in Africa, Eurasia, Australia and, since 1999, also in the 49 50 Americas. 51 52 In Czechland (Czech Republic), WNV was isolated from Culex pipiens mosquito in the 53 54 district of Břeclav (southern Moravia) after a big flood in 1997; specific antibodies against 55 56 57 this virus were detected in 2.1% of local human population in that year, and five cases of 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot2 Street, New Rochelle, NY 10801 Page 3 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 WNV fever were recorded – two confirmed and three probable (Hubálek et al. 1998, 2000). 4 5 More recently, four strains of WNV lineage 2 were isolated from Culex modestus mosquitoes 6 7 collected in reed beds on the SouthMoravian fishponds during August 2013 (Rudolf et al. 8 9 10 2014). 11 12 WNV was also isolated from Aedes rossicus mosquito during virological examination for 13 14 arboviruses between 2006 −2008 (Hubálek et al. 2010). This mosquito species feeds 15 16 preferably on mammals including man (Becker 2010) whereas a majority of competent 17 18 19 mosquito vectors of WNV are ornithophilic. This raises a question whether WNV might be 20 21 adapted to an alternative mosquitomammal cycle in the SouthMoravian natural focus. 22 23 The aim of the present study was to evaluate retrospectively the activity of WNV in 24 25 southern Moravia in wild mammals prior to the flood year 1997 and later, using serologic 26 27 survey of archived wildlife sera. 28 29 30 31 32 Materials and Methods 33 34 35 36 37 Study sites 38 39 Several hunting areas were surveyed, all situated in the district of Břeclav, South Moravian 40 41 42 region. "Soutok" is an extensive area of floodplain forest with meadows at the confluence of 43 44 the rivers Dyje (Thaya) and Morava (March: 48.6348.74 N, 16.9016.98 E) − a game reserve 45 46 with wild deer (roe, red and fallow) and wild boars. "Palava" (Pavlovske vrchy hills and 47 48 foothills) is a Protected Landcape Area (48.8048.87 N, 16.6516.74 E) that also includes a 49 50 game reserve with deer (roe, red and fallow), mouflons and wild boars. In addition, a number 51 52 53 of smaller, dispersed other hunting grounds were sampled in the district of Břeclav (marked as 54 55 "BVother"). Most of the sampling sites were situated in habitats with abundant mosquito 56 57 populations (Šebesta et al. 2010). 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot3 Street, New Rochelle, NY 10801 Vector-Borne and Zoonotic Diseases Page 4 of 13 For Peer Review Only/Not for Distribution

1 2 3 4 5 Blood sampling 6 7 8 The wild animals were shot by hunters during hunting seasons, and blood samples were 9 10 collected from the heart or from the thoracic cavity. After clotting, the samples were 11 12 centrifuged in the laboratory and the sera stored at 20 ºC until use. 13 14 15 16 17 Plaque-reduction neutralization microtest (PRNT) 18 19 PRNT was originally proposed by Madrid and Porterfield (1969), and later adopted to a 20 21 microtechnique on 96well (flatbottomed) microplates for cell culture (Hubálek et al. 1979). 22 23 24 Briefly, tested sera were thermally inactivated at 56 ºC for 30 min, and diluted 1:10 in L15 25 26 medium for screening; 35 µl of the diluted serum was mixed in a microplate (Sarstedt) well 27 28 with 35µl test dose of the virus (containing 2030 PFU of WNV strain Eg101) in L15 29 30 medium, and incubated at 37 °C for 60 min; 60 µl of Vero E6 cell suspension (in L15 with 31 32 33 3% fetal calf serum FCS) was then added to each test well (20,000 to 30,000 cells), and 120 34 35 µl of carboxymethylcellulose sodium salt (1.5% CMC of medium viscosity) was overlayed 36 37 after an incubation at 37°C for 4 h in each well. The microplates were sealed in plastic bags 38 39 and incubated at 37 °C for 45 days, and the microcultures were then stained with 0.1% acidic 40 41 solution of naphthalene blue black. Sera were tested in duplicate, and controls included the 42 43 44 virus test dose and its titration, immune WNV reference serum; control negative serum; and 45 46 cells without virus. Cytotoxic sera were excluded from the analysis. Sera, revealing 80% or 47 48 greater reduction in the number of WNV plaques at the 1:20 dilution during the screening, 49 50 were titrated by twofold dilutions, and those dilutions corresponding to 80% reduction of 51 52 53 plaque counts were regarded as the serum titres (PRNT 80 ). Reciprocal titres ≥20 were 54 55 considered positive. In addition, those sera reacting with WNV were then also tested in PRNT 56 57 against two other flaviviruses occurring in Central Europe, i.e. tickborne encephalitis virus 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot4 Street, New Rochelle, NY 10801 Page 5 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 (TBEV) strain Hypr and Usutu virus (USUV) strain 939, in order to exclude cross reactions 4 5 with these antigenically related viruses. 6 7 Differences in proportions among positive sera were statistically evaluated by χ 2 test. 8 9 10 11 12 Results 13 14 15 16 17 In total, specific antibodies against WNV were detected in 53 out of the 1,023 wild 18 19 artiodactyls examined (5.2%). Table 1 shows specific WNV seropositivity: no significant 20 21 crossreactions with the two other flaviviruses (TBEV, USUV) in that titres to WNV were in 22 23 all cases higher than those to the other viruses. Specific antibodies to WNV were thus 24 25 detected in 5.9% of wild ruminants (4.8% of 105 roe deer Capreolus capreolus , 4.1% of 148 26 27 28 red deer Cervus elaphus , 6.3% of 287 fallow deer Dama dama , 9.9% of 71 mouflons Ovis 29 30 musimon ), and 4.1% of 412 wild boars Sus scrofa (nonruminant artiodactyl), with titres 31 32 between 1:20 and 1:320. Table 2 compares the WNVseropositivity including titre ranges and 33 34 mean titres in the five artiodactyl species. 35 36 37 Overall differences in proportions among the artiodactyl species did not attain significance 38 2 39 level (χ = 5.21; P = 0.266) but significantly higher frequency of antibodies was detected in 40 41 mouflons (9.9%) than in wild boars (4.1%; χ2 = 4.21; P = 0.040). All the other differences 42 43 among pairs of the five species were insignificant. 44 45 Significant difference (χ2 = 6.05; P = 0.014) in the frequency of WNV seropositive animals 46 47 48 was found between the study sites "Palava" (7.6% of 340 animals examined) and "BV other 49 50 hunting areas" (2.3% of 175 animals), but not between "Palava" and "Soutok" (4.5% of 508 51 52 animals; χ2 = 3.64; P = 0.056). 53 54 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot5 Street, New Rochelle, NY 10801 Vector-Borne and Zoonotic Diseases Page 6 of 13 For Peer Review Only/Not for Distribution

1 2 3 There was considerable fluctuation in seropositivity rate among sampling periods (Table 4 5 3): overall value of χ 2 = 19.80 (P = 0.0005). The high prevalence of antibodies in wild animals 6 7 was found especially in the period 19941997, and then in 2008 (12.5% rate in that year). 8 9 10 11 12 Discussion 13 14 15 16 17 A few WNV serosurveys were published that included wild ruminants and boars in 18 19 Europe. Kozuch et al. (1976) detected WNV neutralizing antibodies in 6.2% of 65 roe deer, 20 21 3.0% of 101 red deer, 8.3% of 24 fallow deer, and 2.6% of 38 wild boars in western Slovakia 22 23 during the years 19691972. Juřicová and Hubálek (1999) found 1315% of 400 wild 24 25 ruminants and 150 boars with WNV hemagglutinationinhibiting (HI) antibodies in South 26 27 28 Moravia, Czechland. However, HI test with flaviviruses (as well as ELISA) is considered less 29 30 specific than neutralization test due to cross reactions among these viruses (Calisher et al. 31 32 1989, Niedrig et al. 2007). In the studied region, Halouzka et al. (2008) detected antibodies 33 34 neutralizing WNV in 6.5% of 93 wild boars, the figure much closer to the data in the present 35 36 37 study. In Spain, the proportion of WNVseropositive (in ELISA) individuals was 4.0% among 38 39 742 wild boars, while only 0.2% of 887 juvenile wild red deer reacted between 2003 and 2011 40 41 (Boadella et al. 2012). The authors suggest that wild boars are potentially useful as sentinel 42 43 animals for the WNV surveillance in southern Europe. Other Spanish serosurveys on WNV in 44 45 wild artiodactyls include those of GutiérrezGuzmán et al. (2012) and GarcíaBocanegra et al. 46 47 48 (2016), with WNV antibody prevalence rates similar to our study. In Serbia, Escribano 49 50 Romero et al. (2015) used ELISA combined with a confirmatory neutralization test, and found 51 52 specific WNV antibodies in 5.5% of 91 roe deer and in 10.4% of 318 wild boars. 53 54 It is worth mentioning that sampling of sera was not homogeneous in our survey due to 55 56 57 inability to collect regularly samples for such a long period, and the results might thus be 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot6 Street, New Rochelle, NY 10801 Page 7 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 biased to certain extent. It is therefore difficult to discuss or explain adequately the differences 4 5 in seroprevalence rates among individual species of artiodactyls or between hunting grounds. 6 7 In conclusion, data of the present retrospective study indicate fluctuating WNV activity in 8 9 10 southern Moravia between the years 1990 and 2008 and they suggest a moderate contact of 11 12 WNV with wild artiodactyls. 13 14 15 16 Acknowledgments 17 18 Technical assistance of L. Ševčíková and J. Peško is gratefully acknowledged. The 19 20 21 USUV strain 939 was generously supplied by Prof. N. Nowotny and Dr. T. Bakonyi from 22 23 Vienna Veterinary University. 24 25 26 27 Author Disclosure Statement 28 29 30 All authors declare that no competing financial interests exist. 31 32 33 34 REFERENCES 35 36 37 38 Becker N, Petrič D, Zgomba M, Boase C, et al. Mosquitoes and Their Control , 2nd ed. 39 40 41 HeidelbergDordrechtLondonNew York: Springer; 2010. 42 43 Boadella M, DiezDelgado I, GutierrezGuzman AV, Hoefle U, et al. Do wild ungulates allow 44 45 improved monitoring of flavivirus circulation in Spain? Vectorborne Zoonot Dis 46 47 2012;12:490495. 48 49 50 Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, et al. Antigenic relationships between 51 52 flaviviruses as determined by crossneutralization tests with polyclonal antisera. J Gen 53 54 Virol 1989;70:37–43. 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot7 Street, New Rochelle, NY 10801 Vector-Borne and Zoonotic Diseases Page 8 of 13 For Peer Review Only/Not for Distribution

1 2 3 EscribanoRomero E, Lupulović D, MerinoRamos T, Blázquey AH, et al. West Nile virus 4 5 serosurveillance in pigs, wild boars, and roe deer in Serbia. Vet Microbiol 2015;176:365 6 7 369. 8 9 10 GarcíaBocanegra I, Paniagua J, GutiérrezGuzmán AV, Lecollinet S, et al. Spatiotemporal 11 12 trends and risk factors affecting West Nile virus and related flavivirus exposure in 13 14 Spanish wild ruminants. BMC Vet Res. 2016;12:249258. 15 16 GutiérrezGuzmán AV, Vicente J, Sobrino R, PerezRamírez E, et al. Antibodies to West Nile 17 18 virus and related flaviviruses in wild boar, red foxes and other mesomammals from 19 20 21 Spain.Vet Microbiol. 2012;159:291297. 22 23 Halouzka J, Juřicová Z, Janková J, Hubálek Z. Serologic survey of the wild boars for 24 25 mosquitoborne viruses in South Moravia (Czech Republic). Vet Med 2008;53:266271. 26 27 Hubálek Z, Chanas AC, Johnson BK, Simpson DIH. Crossneutralization study of seven 28 29 30 California group ( Bunyaviridae ) strains in homoiothermous (PS) and poikilothermous 31 32 (XTC2) vertebrate cells. J Gen Virol 1979;42:357–362. 33 34 Hubálek Z, Halouzka J. West Nile fever a reemerging mosquitoborne viral disease in 35 36 Europe. Emerg Infect Dis 1999;5:643650. 37 38 Hubálek Z, Halouzka J, Juřicová Z. West Nile fever in Czechland. Emerg Infect Dis 1999;5: 39 40 41 594595. 42 43 Hubálek Z, Halouzka J, Juřicová Z, Šebesta O. First isolation of mosquitoborne West Nile 44 45 virus in the Czech Republic. Acta Virol 1998;42:119–120. 46 47 Hubálek Z, Rudolf I, Bakonyi T, Kazdová K, et al. Mosquito (Diptera: Culicidae ) 48 49 50 surveillance for arboviruses in an area endemic for West Nile (lineage Rabensburg) and 51 52 Ťahyňa viruses in Central Europe. J Med Entomol 2010;47:466472. 53 54 Juřicová Z, Hubálek Z. Serological surveys for arboviruses in the game animals of southern 55 56 Moravia (Czech Republic). Folia Zool 1999;48:185189. 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot8 Street, New Rochelle, NY 10801 Page 9 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 Kozuch O, Nosek J, Gresikova M, Ernek E. Surveillance of mosquitoborne natural focus in 4 5 Záhorská Lowland. In: Sixl W. (ed.): 2 International Arbeitskolloquium über die 6 7 Naturherde von Infektionskrankheiten in Zentraleuropa . Hygiene Institut der Universität: 8 9 10 Graz; 1976;115118. 11 12 Kramer LD, Li J, Shi PY. West Nile virus. Lancet Neurol 2007;6(2):171181. 13 14 Madrid AT, Porterfield JS. A simple microculture method for the study of group B 15 16 arboviruses. Bull WHO 1969;40:113–121. 17 18 Niedrig M, Sonnenberg K, Steinhagen K, Paweska JT. Comparison of ELISA and 19 20 21 immunoassays for measurement of IgG and IgM antibody to West Nile virus in human 22 23 sera against virus neutralisation. J Virol Meth 2007;139:103–105. 24 25 Rudolf I, Bakonyi T, Šebesta O, Peško J, et al. West Nile virus lineage 2 isolated from Culex 26 27 modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV 28 29 30 endemic area to the North? EuroSurveill 2014;19 (31):pii=20867. 31 32 Šebesta O., Halouzka J., Hubálek Z., Juřicová Z., et al. Mosquito (Diptera: Culicidae) fauna in 33 34 an area endemic for West Nile virus. J Vector Ecol 2010;35:156162. 35 36 37 38 39 40 41 Correspondence address: Dr. Ivo Rudolf, Institute of Vertebrate Biology Acad. Sci., 42 43 Klasterni 2, 69142 Valtice, Czech Republic. Email: [email protected] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot9 Street, New Rochelle, NY 10801 Vector-Borne and Zoonotic Diseases Page 10 of 13 For Peer Review Only/Not for Distribution

1 2 3 Table 1. WNV-positive sera (PRNT reciprocal titres) of wild artiodactyls. 4 5 6 Age Study 7 No. Species yrs. Sex Date coll. site WNV TBEV USUV 8 9 10 24 C. capreolus 7 m 10.08.1990 BV-other 80 20 nt 11 27 C. capreolus 5 m 22.08.1990 BV-other 40 <20 <20 12 88 O. musimon ng m 29.09.1991 Palava 160 40 nt 13 161 O. musimon 2 m 07.12.1993 Palava <20 14 40 20 15 277 D. dama 1 ng 08.01.1994 Palava 80 20 nt 16 297 D. dama 2 ng 13.01.1994 Palava 20 <20 <20 17 299 D. dama 5 m 13.01.1994 Palava 20 <20 <20 18 300 O. musimon 1 ng 13.01.1994 Palava 160 <20 40 19 20 301 D. dama 5 m 13.01.1994 Palava 80 <20 <20 21 302 C. elaphus 7 f 15.01.1994 Palava 20 <20 <20 22 309 D. dama 1 ng 15.01.1994 Palava 40 <20 <20 23 319 D. dama 4 f 19.01.1994 Palava 20 <20 <20 24 329 D. dama 8 f 18.01.1994 Palava 320 40 nt 25 26 339 D. dama 4 f 03.02.1994 Palava 80 <20 20 27 350 D. dama 1 ng 22.01.1994 Palava 20 <20 <20 28 403 C. capreolus 3 f 01.12.1995 Palava 80 20 nt 29 503 S. scrofa 2 f 01.09.1996 Soutok 40 <20 <20 30 506 S. scrofa 2 m 28.08.1996 BV-other 80 <20 <20 31 32 511 C. elaphus ng m 15.09.1996 Soutok 160 40 <20 33 512 C. elaphus 3 m 20.09.1996 Soutok 40 <20 <20 34 515 C. elaphus ng m 14.09.1996 Soutok 80 <20 <20 35 528 O. musimon 3 m 19.10.1996 Palava 80 20 nt 36 542 D. dama 7 f 28.10.1996 Palava 80 <20 <20 37 38 577 D. dama 7 f 30.12.1996 Palava 20 <20 <20 39 582 D. dama 8 f 30.12.1996 Palava 40 <20 20 40 631 O. musimon 1 ng 31.10.1997 Palava 80 40 <20 41 638 C. capreolus 1 ng 07.11.1997 Palava 160 80 <20 42 642 D. dama 1 ng 07.11.1997 Palava <20 43 80 40 44 643 D. dama 8 m 14.11.1997 Palava 80 20 <20 45 654 S. scrofa 2 f 16.09.1997 BV-other 40 20 nt 46 681 D. dama 5 f 21.11.1997 Palava 80 <20 20 47 689 O. musimon 1 ng 27.11.1997 Palava 80 <20 <20 48 49 698 O. musimon 1 ng 05.12.1997 Palava 40 <20 <20 50 717 D. dama 6 f 18.12.1997 Palava 80 40 <20 51 795 S. scrofa ng m 05.12.2002 Soutok 20 <20 <20 52 1039 S. scrofa 1 ng 19.02.2007 Soutok 40 <20 <20 53 1084 S. scrofa 1 ng 05.11.2007 Soutok 40 <20 nt 54 55 1101 S. scrofa 1 ng 22.11.2007 Soutok 40 <20 nt 56 1104 S. scrofa 3 f 22.11.2007 Soutok 80 <20 nt 57 1166 S. scrofa 1 ng 12.12.2007 Soutok 160 40 20-40 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 Page 11 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 1169 S. scrofa 1 ng 12.12.2007 Soutok 80 80 nt 4 1170 S. scrofa 1 ng 12.12.2007 Soutok 160 <20 <20 5 1193 S. scrofa 1 ng 10.01.2008 Soutok 40 <20 nt 6 7 1196 C. elaphus 2 m 12.01.2008 Soutok 160 <20 nt 8 1204 S. scrofa 2 m 18.01.2008 Soutok 80 <20 <20 9 1215 S. scrofa 1 ng 20.01.2008 Soutok 160 <20 20 10 1220 D. dama 4 f 20.01.2008 Soutok 40 <20 <20 11 1226 C. capreolus ng f 28.01.2008 Soutok <20 <20 12 40 13 1245 S. scrofa 1 ng 09.02.2008 Soutok 160 <20 20 14 1249 S. scrofa 1 ng 09.02.2008 Soutok 20-40 <20 20 15 1250 S. scrofa 1 ng 09.02.2008 Soutok 20 <20 <20 16 1269 D. dama 1 ng 19.02.2008 Soutok 80 20-40 <20 17

18 19 20 Legend: nt, not tested (not enough serum); ng, data not given by the hunters 21 22 23 24 Evaluation: 25 26 PRNT titer was defined as the reciprocal dilution of serum that produced an 80% decrease in 27 28 virus PFU count as compared with a virus-only titration control. The titres 20 or higher were 29 30 31 regarded positive, and printed in bold. 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 Vector-Borne and Zoonotic Diseases Page 12 of 13 For Peer Review Only/Not for Distribution

1 2 3 Table 2. Presence of specific antibodies to WNV in wild artiodactyls. 4 5 6 7 Species: Roe deer Red deer Fallow deer Mouflon Wild boar 8 9 Capreolus Cervus Dama Ovis Sus scrofa 10 11 capreolus elaphus dama musimon 12 Total examined 105 148 287 71 412 13 14 15 No. (%) 5 (4.8% ) 6 (4.1% ) 18 (6.3% ) 7 (9.9% ) 17 (4.1% ) 16 seropositive 17 18 Reciprocal titre, 40-160 20-160 20-320 40-160 20-160 19 20 range 21 Geometric mean 70 57 54 80 63 22 23 titre 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 Page 13 of 13 Vector-Borne and Zoonotic Diseases For Peer Review Only/Not for Distribution

1 2 3 4 5 Table 3. WNV seropositivity of wild artiodactyls according to sampling periods. 6 7 8 9 10 Years: 1990 −93 1994 −95 1996 −97 2002 −0 6 2007 −08 11 12 Total examined 150 117 260 226 270 13 14 No. (%) seropositive 5 (3.3%) 12 (10.3%) 18 (6.9%) 1 (0.4%) 17 (6.3%) 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

7

1

Další publikační aktivita uchazečky

1) Venclíková K., Mendel J., Betášová L., Blažejová H., Jedličková P., Straková P., Hubálek Z., Rudolf I. (2016): Neglected tick-borne pathogens in the Czech Republic, 2011-2014. Ticks Tick. Borne Dis. 7: 107-112. 2) Rudolf I., Bakonyi T., Šebesta O., Mendel J., Peško J., Betášová L., Blažejová H., Venclíková K., Straková P., Nowotny N., Hubálek Z. (2015): Co-circulation of Usutu virus and West Nile virus in a reed bed ecosystem. Parasit. Vectors. 8: 520-525.

3) Dufková L., Straková P., Širmanová J., Salát J., Moutelíková R., Chrudimský T., Bartonička T., Nowotny N., Růžek D. (2015): Detection of diverse novel bat Astrovirus sequences in the Czech Republic. Vector Borne Zoonotic Dis. 15: 518-521.

4) Rudolf I., Šebesta O., Straková P., Betášová L., Blažejová H., Venclíková K., Seidel B., Toth S., Hubálek Z., Schaffner F. (2015): Overwintering of Uranotaenia unguiculata adult females in central Europe: a possible way of persistence of the putative new lineage of West Nile virus? J. Am. Mosq. Control Assoc. 31: 364-365.

5) Kríž B., Hubálek Z., Marek M., Daniel M., Straková P., Betášová L. (2015): Results of the screening of tick-borne encephalitis virus antibodies in human sera from eight districts collected two decades apart. Vector Borne Zoonotic Dis. 15: 489-493.

6) Rudolf I., Bakonyi T., Šebesta O., Mendel J., Peško J., Betášová L., Blažejová H., Venclíková K., Straková P., Nowotny N., Hubálek Z. (2014): West Nile virus lineage 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV endemic area to the North? Euro. Surveill. 19: 2-5.

7) Straková P., Kříž B., Rudolf I., Hubálek Z. (2014): Seroprevalence study of hepatitis E virus infection in two districts of the Czech Republic. Epidemiol. Mikrobiol. Imunol. 63: 92-94.

8) Straková P., Rudolf I., Pavliš O., Hubálek Z. (2014): The use of immunoenzymatic method for detection of antibodies against zoonotic diseases in Czech soldiers returning from Afghanistan. Mil. Med. Sci. Lett. 83: 67-72.

8

1

Účast na konferencích, projektech a stážích

1) Straková P.. Hantaviruses – still surprising! In Czechoslovak virology conference, České Budějovice 2017 - prezentace 2) Straková P., Schmidt S., Saxenhofer M., Wen C., Balčiauskiené L., Balčiauskas L., Heroldová M., Beerli O., Marianneau P., Heckel G., Ulrich R.G.. Hantaviruses in Microtus voles. In 15th International Conference on Rodent Biology, Olomouc 2016 - poster 3) Straková P., Drewes S., Dafalla M., Schmidt S., Rosenfeld U.M., Schlegel M., Sheikh Ali H., Ulrich R.G.. Rodent- and shrew-borne hantaviruses in Germany. In X International Conference on HFRS, HPS and Hantaviruses, Fort Collins, Colorado 2016 - poster 4) Straková P., Schmidt S., Schlegel M., Drewes S., Ulrich R.G.. Detection of Dobrava- Belgrade hantavirus genotype Kurkino in Apodemus agrarius in Germany during 2009-2015. In 15th Medical Biodefence Conference, Munich 2016 – poster 5) Drewes S., Turni H., Rosenfeld U.M., Obiegala A., Straková P., Imholt C., Glatthaar E., Dressel K., Pfeffer M., Jacob J., Wagner-Wiening, Ulrich R.G.. Inhomogeneous distribution of Puumala virus in South-West Germany. In 15th Medical Biodefence Conference, Munich 2016 – poster 6) Daffala M., Straková P.. Monitoring of shrew borne Seewis hantavirus in Germany. In 15th Medical Biodefence Conference, Munich 2016 – poster 7) Straková P.. Hantavirus infection in rodents from Germany. In Graduate Meeting Evolutionary Biology and Ecology, Responses to Environmental Change, Greifswald 2016 - prezentace 8) Straková P., Dufková L., Širmanová J., Salát J., Moutelíková R., Chrudimský T., Bartonička T., Nowotny N., Růžek D.. Detection of diverse novel bat astrovirus sequences in the Czech Republic. In National Symposium on Zoonoses Research, Berlin 2015 - poster 9) Venclíková K., Rudolf I., Betášová L., Blažejová H., Straková P., Hubálek Z.. Neglected tick-borne pathogens in the Czech Republic – EDENext prevalence study. In EDENext Annual Meetings, Herkalion 2015 - poster 10) Venclíková K., Rudolf I., Betášová L., Blažejová H., Straková P., Hubálek Z.. Tick- borne pathogens in Ixodes ricinus in the Czech Republic. In EDENext Annual Meetings, Rovaniemi 2014 - poster 11) Venclíková K., Rudolf I., Betášová L., Blažejová H., Straková P., Hubálek Z.. The prevalence of “ Candidatus Neoehrlichia mikurensis“ in Ixodes ricinus ticks and sheep in the Czech Republic. ESOVE conference, Thessaloniki 2014 - poster 12) Straková P.. Využití imunoenzymatické metody pro průkaz protilátek k vybraným zoonózám. In 26. kongres československé společnosti mikrobiologické, Brno 2013 – prezentace

Pasivní účast Symposium on Species Barriers in Emerging Viral Diseases, Berlin 2016 Workshop „AKTimo – Alternative Kleinsäuger-Tierversuchsmodelle“, Insel Riems 2016 ECCMID - The 24th European Congress of Clinical Microbiology and Infectious Diseases, Barcelona 2014 10. ročník celostátní conference Medicína katastrof, Hradec Králové 2013 Český kongres o infekčních nemocech, Brno 2013

Účast na grantových projektech EDENext (Biology and Control of Vector-borne Infections in Europe) Doba řešení: 2011-2015 Pozice: v letech 2014-2015 člen výzkumného týmu GAČR standartní projekt (Pokročilé studie patogeneze západonilské horečky směrem k novým možnostem terapie) Doba řešení: 2016-2018 Pozice: člen výzkumného týmu

Stáže ERASMUS+ pracovní pobyt, Friedrich-Loeffler Institut (INNT), Insel Riems - Greifswald, Německo (11 měsíců) Fakultní nemocnice Brno, Jihlavská 20, Brno, týdenní praxe na oddělení Klinické mikrobiologie Ústřední kontrolní a zkušební ústav zemědělský, Hroznová 2, Brno, semestrální stáž v rámci předmětu Environmentální praxe

176

9

1

Výuka během studia

Masarykova univerzita, Přírodovědecká fakulta, oddělení Mikrobiologie 1) Obecná mikrobiologie - laboratorní cvičení pro studenty oborů biochemie a experimentální biologie (kromě oboru mikrobiologie a molekulární biotechnologie), jarní a podzimní semestr 2) Mikrobiální zoonózy a sapronózy – laboratorní cvičení pro studenty oboru Mikrobiologie, cvičení probíhá ve Valticích, podzimní semestr 3) Letní škola pro gymnázia (2014) – třídenní cyklus přednášek a laboratorních cvičení pro studenty gymnázií 4) MjUNI (2017) – workshop v rámci výuky Dětské univerzity MjUNI