(12) Patent Application Publication (10) Pub. No.: US 2009/0208480 A1 Huang Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2009/0208480 A1 Huang Et Al US 20090208480A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0208480 A1 Huang et al. (43) Pub. Date: Aug. 20, 2009 (54) LONG HALF-LIFE RECOMBINANT Related U.S. Application Data BUTYRYLCHOLINESTERASE (60) Provisional application No. 60/835,827, filed on Aug. 4, 2006. (76) Inventors: Yue Huang, Vaudreuil-Dorion O O (CA); Harvey Wilgus, Beaconsfield Publication Classification (CA) (51) Int. Cl. A638/46 (2006.01) Correspondence Address: CI2N 9/18 (2006.01) Alan J. Grant A6IP39/00 (2006.01) Carella Byrne Brain Giffillan Cecchi StwartOlstein (52) U.S. Cl. ........................................ 424/94.6; 435/197 5 Becker Farm (57) ABSTRACT Roseland, NJ 07068 (US) The present invention provides for butyrylcholinesterase (BChE) attached to polyethylene glycol (PEG) to form a (21) Appl. No.: 12/309,909 complex having greatly increased mean residence time (MRT) in the system of an animal following injection there (22) PCT Filed: Aug. 2, 2007 into. Also disclosed are compositions of Such complexes, methods of preparing these complexes and method for using (86). PCT No.: PCT/US07/17279 these complexesp and compositionsp in the treatment and/or prevention of toxic effects of poisons, such as neurotoxins, to S371 (c)(1), which said animals, such as humans, have been, or may (2), (4) Date: Feb. 2, 2009 become, exposed. 1 2 3 4 Patent Application Publication Aug. 20, 2009 Sheet 1 of 2 US 2009/0208480 A1 Patent Application Publication Aug. 20, 2009 Sheet 2 of 2 US 2009/0208480 A1 SB 4 3 O O S. 2 5. ( 8 CD SS is'a J O N 9 lat1-al- Y O & S & 3 S & (u/n) ANOeguo US 2009/020848.0 A1 Aug. 20, 2009 LONG HALF-ILFE RECOMBINANT (Soman), a highly toxic organophophate compound used as a BUTYRYLCHOLINESTERASE chemical weapon (Broomfield et al., J. Pharmacol. Exp. Ther., 1991, 259:633-638; Wolfe et al., Toxicol, Appl. Phar macol., 1992, I17(2):189-193). Administration of sufficient 0001. This application claims priority of U.S. Provisional exogenous human BChE can protect mice, rats, and monkeys Application 60/835,827, filed 4 Aug. 2006, the disclosure of from multiple lethal-dose organophosphate intoxication which is hereby incorporated by reference in its entirety. (See, e.g., Raveh et al., Biochemical Pharmacology, 1993, 42:2465-2474: Raveh et al., Toxicol. Appi. Pharmacol., 1997, FIELD OF THE INVENTION 145:43-53: Allonetal, Toxicol. Sei., 1998,43:121-128). Puri fied human BChE has been used to treat organophosphate 0002. This invention relates to the chemical modification poisoning in humans, with no significant adverse immuno of butyrylcholinesterase (BChE) by polyethylene glycol logical or psychological effects (Cascio et al., Minerva Anes (PEG) to improve circulatory mean residence time (MRT) of tesiol., 1998, 54:337). the protein and reduce protein immunogenicity for pharma 0007 Titration of organophosphates both in vitro and in ceutical and bio-defense applications. Vivo demonstrates a 1:1 stoichiometry between organophos phate-inhibited enzymes and the cumulative dose of the toxic BACKGROUND OF THE INVENTION nerve agent. 0003 Use of organophosphate and related compounds as 0008 Modification of pharmaceuticals by polyethylene pesticides and in warfare over the last several decades has glycol (PEG) has been reported to improve half-life and resulted in a rising number of cases of acute and delayed reduce immunogenicity. Proteins modified by PEG and intoxication, causing damage to the peripheral and central approved by the FDA include: ADAGENR) (pegademase nervous systems and resulting in myopathy, psychosis, gen bovine) by Enzon, ONCASPAR (Pegaspargase) by Enzon, eral paralysis, and death. Such noxious agents act by inhibit PEGASYSR (peginterferon alfa-2a) by Roche, PEG-IN ing cholinesterase enzymes and thereby prevent the break TRONR) (peginterferon alfa-2b) by Schering-Plough and down of neurotransmitters, such as acetylcholine, causing MACUGENR) (pegabtanib) by Eyetech & Pfizer Inc. hyperactivity of the nervous system. For example, build-up of 0009 PEG can be attached to proteins at a variety of sites, acetylcholine causes continued stimulation of the muscarinic including amino groups, such as those on lysine residues, or receptor sites (exocrine glands and Smooth muscles) and the at the N-terminus, as well as thiol groups on cysteine, or other nicotinic receptor sites (skeletal muscles). In addition, expo reactive groups on the protein Surface. Sure to cholinesterase-inhibiting Substances can cause symp 0010. However, PEG modification of proteins, such as toms ranging from mild (e.g., twitching, trembling) to severe enzymes, is known to present some problems such as: 1) (e.g., paralyzed breathing, convulsions), and in extreme non-specific attachment sites, 2) reduction or loss of biologic cases, death, depending on the type and amount of cholinest activities (such as enzyme activity), and 3) outcome of PEGy erase-inhibiting substances involved. The action of cholinest lation is often unpredictable. Ideally, attachment of a PEG to, erase-inhibiting Substances such as organophosphates and for example, a protein should increase circulatory time of the carbamates makes them very effective as pesticides, such as drug in an animal. Such as a human, as well as reduce immu for controlling insects. When mammals, such as humans, are nogenicity and in vivo degradation. exposed to these compounds (e.g., by inhalation), they often 0011. Butyrylcholinesterase (BChE) can be found in experience the same negative effects. nature in the form of monomers, dimers and tetramers. BChE 0004. The devastating impact of certain cholinesterase may also be produced by recombinant techniques, including inhibiting Substances on humans has led to the development production in transgenic animals. Produced transgenically of these compounds as “nerve gases” or chemical warfare (referred to by the name PROTEXIATM) BChE is a mixture of agents. Nerve agents are among the most toxic. Such com dimer and monomer with a small percentage of tetramer. For pounds are related to organophosphorus insecticides in that example, transgenic recombinant BChE Secreted in goat's they are both esters of phosphoric acid. Major nerve agents milk is about 80% dimers and 20% monomers (determined by include diisopropylfluorophosphate (DFP), GA (tabun), GB SEC-HPLC chromatography followed by Ellman activity (sarin), GD (soman), CF (cyelosarin), GE, CV, yE.V.G (ami assay of collected fractions). ton), VM, VR (RVX or Russian VX), VS, and VX. 0005 Organophosphate poisoning is currently treated by BRIEF SUMMARY OF THE INVENTION intravenous or intramuscular administration of combinations 0012. In one aspect, the present invention relates to PEGy of drugs, including carbamates (e.g., pyridostigmine), anti lated (meaning attached to PEG polyethylene glycol) muscarinics (e.g., atropine), and ChE-reactivators such prali recombinant butyrylcholinesterase (PEG-BChE), such as is doxime chloride (2-PAM, Protopam). One approach has ulti produced in the milk of transgenic goats. lized cholinesterase enzymes for the treatment of 0013. In a specific embodiment, the activated PEG organophosphate exposure. Post-exposure toxicology can be reagents include mono-functional methoxy-activated poly prevented by pretreatment with cholinesterases, which act to mer of Succinimidyl derivatives such as Succinimidyl propi sequester the toxic organophosphates before they reach their onic acid, C.-methylbutanoate, and N-Hydroxysucciminidyl. physiological targets. These reagents facilitate attachment of PEG to the amino 0006 Use of cholinesterases as pre-treatment drugs has groups of the protein. been Successfully demonstrated in animals, including non 0014. In a specific and non-limiting embodiment, the acti human primates. For example, pretreatment of rhesus mon vated PEG reagents are mono-functional methoxy-activated keys with fetal bovine serum-derived AChE or horse serum polymer bearing aldehyde groups such as Butyraldehydyl derived BChE protected them against a challenge of two to PEG. The N-terminal amino group of the protein is specifi five times the LD50 of pinacolyl methylphosphonofluoridate cally targeted by these reagents. US 2009/020848.0 A1 Aug. 20, 2009 0015. In another specific and non-limiting embodiment, comprising providing an effective amount of a nerve agent the activated PEG reagents are mono-functional methoxy neutralizing enzyme, preferably PEG-BChE, especially activated PEG with o-pyridylthioester. N-terminal thiol where said agent is delivered systemically, such as by injec groups (cysteine) is specifically target by these reagents. tion. Specific and non-limiting Subjects are any animals in 0016. In a further specific and non-limiting embodiment, need of protection from nerve agents, preferably mammals, the activated PEG reagents are thiol group specific Such as most preferably human beings. Maleimide coupling PEG. Free thiol group (cysteine) on a 0026. Alternatively, PEG-BChE agent is in a liquid form. protein can be specifically target by these reagents. In a such an embodiment, the PEG-BChE may further com 0017. In another embodiment; the activated PEG reagents prise an excipient. In a further such embodiment, PEG-BChE are linked to sialic acid, which facilitates targeting of glycans is administered with an inhaler or a nebulizer. on BChE. 0027. In still another embodiment, the PEG-BChE is con 0018. In other embodiments, the activated PEG reagents tained in a dry powder form. In Such an embodiment, the can be linear PEG, such as mPEG-SPA, branched PEG, such nerve
Recommended publications
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Comments of Teresa Homan with Attachments
    Teresa Homan Watertown, SD 57201 I am a landowner in Deuel County, South Dakota. Our land boarders the Deuel Harvest Wind Project in Deuel county, Docket # EL 18-053. There are 112 towers cited in the project, with 9 towers within a mile of our property. We have spent over three decades developing this property to enhance wildlife and for the enjoyment of our family. Can you imagine how we felt when we found we have a population of eastern bluebirds? We have yellow warblers, which by the way feed on the web worms that form in our trees. We have orioles, cedar waxwings, brown thrashers, rose breasted grosbeaks, gold finches, purple finches, robins, blue jays, nuthatches, eastern kingbirds, bitterns, dark eyed juncos, red winged blackbirds, morning doves, owls, cow birds, northern mocking birds, grey cat birds, wood thrushes, tufted titmouse, king fishers, indigo buntings, scarlet tanagers, bobolinks, meadowlarks, many woodpeckers, turkeys, turkey vultures, even humming birds and bald eagles. There are more, just to numerous to list. Many of these birds we have seen for the first time in our lives on this property in the past 1 O years. Not only are these birds beautiful and fun to watch, they have their purpose in the ecosystem. We also see northern long eared bats, that are on the endangered list in South Dakota. These birds are making a come back after the use of insecticides that nearly wiped out many. In the 1940's the insecticide DDT was introduced for public use, it is now banned from sale. In 1976 the herbicide Roundup was introduced to the public.
    [Show full text]
  • 422 Part 180—Tolerances and Ex- Emptions for Pesticide
    Pt. 180 40 CFR Ch. I (7–1–16 Edition) at any time before the filing of the ini- 180.124 Methyl bromide; tolerances for resi- tial decision. dues. 180.127 Piperonyl butoxide; tolerances for [55 FR 50293, Dec. 5, 1990, as amended at 70 residues. FR 33360, June 8, 2005] 180.128 Pyrethrins; tolerances for residues. 180.129 o-Phenylphenol and its sodium salt; PART 180—TOLERANCES AND EX- tolerances for residues. 180.130 Hydrogen Cyanide; tolerances for EMPTIONS FOR PESTICIDE CHEM- residues. ICAL RESIDUES IN FOOD 180.132 Thiram; tolerances for residues. 180.142 2,4-D; tolerances for residues. Subpart A—Definitions and Interpretative 180.145 Fluorine compounds; tolerances for Regulations residues. 180.151 Ethylene oxide; tolerances for resi- Sec. dues. 180.1 Definitions and interpretations. 180.153 Diazinon; tolerances for residues. 180.3 Tolerances for related pesticide chemi- 180.154 Azinphos-methyl; tolerances for resi- cals. dues. 180.4 Exceptions. 180.155 1-Naphthaleneacetic acid; tolerances 180.5 Zero tolerances. for residues. 180.6 Pesticide tolerances regarding milk, 180.163 Dicofol; tolerances for residues. eggs, meat, and/or poultry; statement of 180.169 Carbaryl; tolerances for residues. policy. 180.172 Dodine; tolerances for residues. 180.175 Maleic hydrazide; tolerances for resi- Subpart B—Procedural Regulations dues. 180.176 Mancozeb; tolerances for residues. 180.7 Petitions proposing tolerances or ex- 180.178 Ethoxyquin; tolerances for residues. emptions for pesticide residues in or on 180.181 Chlorpropham; tolerances for resi- raw agricultural commodities or proc- dues. essed foods. 180.182 Endosulfan; tolerances for residues. 180.8 Withdrawal of petitions without preju- 180.183 Disulfoton; tolerances for residues.
    [Show full text]
  • Organophosphate Poisoning : a Review
    120 Sinha and Sharma Med J Indones Organophosphate poisoning : A review Parmod K. Sinha, Ashok Sharma Abstrak Pestisida organofosfat digunakan secara luas di seluruh dunia. Keracunan oleh bahan ini merupakan masalah kesehatan masyarakat, terutama di negara berkembang. Zat neurotoksik organofosfat merupakan bahan yang dianggap mengancam dalam bidang militer dan terorisme. Mekanisme toksisitas bahan ini adalah dengan cara menghambat asetilkolinesterase yang mengakibatkan menumpuknya neurotransmitor asetilkolin dan terjadi rangsangan terus-menerus pada reseptor asetilkolin pada sistem saraf sentral maupun perifer. Selain krisis kolinergik, organofosfat dapat menimbulkan berbagai sindrom neurologis, baik akut maupun kronik. Sedangkan gejala peralihan ( intermediate) terjadi 1-4 hari setelah krisis kolinergik teratasi. Pengobatan standar terdiri dari reaktivasi asetilkolinesterase dengan antidot golongan oksim (prolidoksim, oksidoksime, HI-6 dan HLo7), dan pengendalian efek biokimia asetilkolin dengan menggunakan atropin. Golongan oksim yang baru HI-6 dan Hlo7 merupakan reaktivator asetilkolinesterase yang lebih cocok dan efektif untuk keracunan akut dan berat dibandingkan dengan prolidoksim dan obidoksim. Penderita yang mendapat pengobatan segera, biasanya dapat sembuh dari toksisitas akut, namun gejala neurologis ikutan dapat saja terjadi. (Med J Indones 2003; 12: 120-6) Abstract Organophosphate pesticides are used extensively worldwide, and poisoning by these agents, particularly in developing nations is a public health problem. Organophosphorous
    [Show full text]
  • Guide No. 1 – October 2020 2/12 the CONCEPT and IMPLEMENTATION of CPA GUIDANCE RESIDUE LEVELS
    Cooperation Centre for Scientific Research Relative to Tobacco CORESTA GUIDE N° 1 The Concept and Implementation of CPA Guidance Residue Levels October 2020 Agro-Chemical Advisory Committee CORESTA TECHNICAL GUIDE N° 1 Title: The Concept and Implementation of CPA Guidance Residue Levels Status: Valid Note: This document will be periodically reviewed by CORESTA Document history: Date of review Information July 2003 Version 1 GRL for Pyrethrins () and Terbufos corrected. December 2003 CPA terminology corrected. June 2008 Version 2 – GRLs revised and residue definitions added Provisional GRL of 2.00 ppm for Cyfluthrin to replace previous June 2010 GRL of 0.50 ppm July 2013 Version 3 – GRLs revised October 2013 Note for Maleic Hydrazide revised Version 4 – GRLs revised + clarification that scope of GRLs July 2016 applies predominantly to the production of traditional cigarette tobaccos and GAP associated with their cultivation. June 2018 Fluopyram GRL of 5 ppm added to GRL list Version 5 – Nine new CPAs with GRL added to list. November 2019 Revision of GRLs for Chlorantraniliprole and Indoxacarb. Updated web links. October 2020 Version 6 – Flupyradifurone GRL of 21 ppm added to GRL list. CORESTA Guide No. 1 – October 2020 2/12 THE CONCEPT AND IMPLEMENTATION OF CPA GUIDANCE RESIDUE LEVELS Executive Summary • Guidance Residue Levels (GRLs) are in the remit of the Agro-Chemical Advisory Committee (ACAC) of CORESTA. Their development is a joint activity of all ACAC members, who represent the leaf production, processing and manufacturing sectors of the Tobacco Industry. The concept of GRLs and their implementation are described in this guide. • GRLs provide guidance to tobacco growers and assist with interpretation and evaluation of results from analyses of residues of Crop Protection Agents (CPAs*).
    [Show full text]
  • Lifetime Organophosphorous Insecticide Use Among Private Pesticide Applicators in the Agricultural Health Study
    Journal of Exposure Science and Environmental Epidemiology (2012) 22, 584 -- 592 & 2012 Nature America, Inc. All rights reserved 1559-0631/12 www.nature.com/jes ORIGINAL ARTICLE Lifetime organophosphorous insecticide use among private pesticide applicators in the Agricultural Health Study Jane A. Hoppin1, Stuart Long2, David M. Umbach3, Jay H. Lubin4, Sarah E. Starks5, Fred Gerr5, Kent Thomas6, Cynthia J. Hines7, Scott Weichenthal8, Freya Kamel1, Stella Koutros9, Michael Alavanja9, Laura E. Beane Freeman9 and Dale P. Sandler1 Organophosphorous insecticides (OPs) are the most commonly used insecticides in US agriculture, but little information is available regarding specific OP use by individual farmers. We describe OP use for licensed private pesticide applicators from Iowa and North Carolina in the Agricultural Health Study (AHS) using lifetime pesticide use data from 701 randomly selected male participants collected at three time periods. Of 27 OPs studied, 20 were used by 41%. Overall, 95% had ever applied at least one OP. The median number of different OPs used was 4 (maximum ¼ 13). Malathion was the most commonly used OP (74%) followed by chlorpyrifos (54%). OP use declined over time. At the first interview (1993--1997), 68% of participants had applied OPs in the past year; by the last interview (2005--2007), only 42% had. Similarly, median annual application days of OPs declined from 13.5 to 6 days. Although OP use was common, the specific OPs used varied by state, time period, and individual. Much of the variability in OP use was associated with the choice of OP, rather than the frequency or duration of application.
    [Show full text]
  • Organophosphate Insecticides
    CHAPTER 4 HIGHLIGHTS Organophosphate Insecticides Acts through phosphorylation of the acetylcholinesterase enzyme Since the removal of organochlorine insecticides from use, organophosphate at nerve endings insecticides have become the most widely used insecticides available today. More Absorbed by inhalation, than forty of them are currently registered for use and all run the risk of acute ingestion, and skin and subacute toxicity. Organophosphates are used in agriculture, in the home, penetration in gardens, and in veterinary practice. All apparently share a common mecha- Muscarinic, nicotinic & CNS nism of cholinesterase inhibition and can cause similar symptoms. Because they effects share this mechanism, exposure to the same organophosphate by multiple routes or to multiple organophosphates by multiple routes can lead to serious additive Signs and Symptoms: toxicity. It is important to understand, however, that there is a wide range of Headache, hypersecretion, toxicity in these agents and wide variation in cutaneous absorption, making muscle twitching, nausea, specific identification and management quite important. diarrhea Respiratory depression, seizures, loss of consciousness Toxicology Miosis is often a helpful Organophosphates poison insects and mammals primarily by phosphory- diagnostic sign lation of the acetylcholinesterase enzyme (AChE) at nerve endings. The result is a loss of available AChE so that the effector organ becomes overstimulated by Treatment: the excess acetylcholine (ACh, the impulse-transmitting substance) in the nerve Clear airway, improve tissue ending. The enzyme is critical to normal control of nerve impulse transmission oxygenation from nerve fibers to smooth and skeletal muscle cells, glandular cells, and Administer atropine sulfate autonomic ganglia, as well as within the central nervous system (CNS).
    [Show full text]
  • Use the Decision Was Signed on the Same Day As the Completion of the OP Cumulative Assessment
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES MEMORANDUM DATE: July 31, 2006 SUBJECT: Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the Organophosphate Pesticides, and Completion of the Tolerance Reassessment and Reregistration Eligibility Process for the Organophosphate Pesticides FROM: Debra Edwards, Director Special Review and Reregistration Division Office of Pesticide Programs TO: Jim Jones, Director Office of Pesticide Programs As you know, EPA has completed its assessment of the cumulative risks from the organophosphate (OP) class of pesticides as required by the Food Quality Protection Act of 1996. In addition, the individual OPs have also been subject to review through the individual- chemical review process. The Agency’s review of individual OPs has resulted in the issuance of Interim Reregistration Eligibility Decisions (IREDs) for 22 OPs, interim Tolerance Reassessment and Risk Management Decisions (TREDs) for 8 OPs, and a Reregistration Eligibility Decision (RED) for one OP, malathion.1 These 31 OPs are listed in Appendix A. EPA has concluded, after completing its assessment of the cumulative risks associated with exposures to all of the OPs, that: (1) the pesticides covered by the IREDs that were pending the results of the OP cumulative assessment (listed in Attachment A) are indeed eligible for reregistration; and 1 Malathion is included in the OP cumulative assessment. However, the Agency has issued a RED for malathion, rather than an IRED, because the decision was signed on the same day as the completion of the OP cumulative assessment.
    [Show full text]
  • Environmental Health Criteria 63 ORGANOPHOSPHORUS
    Environmental Health Criteria 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION Please note that the layout and pagination of this web version are not identical with the printed version. Organophophorus insecticides: a general introduction (EHC 63, 1986) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1986 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination
    [Show full text]
  • Quantification of Organophosphorus Pesticides by Quechers and LC
    HPLC Application ID No.: 20020 Quantification of Organophosphorus Pesticides by QuEchERS and LC/MS/MS Column: Synergi™ 4 µm Fusion-RP 80 Å, LC Column 50 x 2 mm, Ea Dimensions: 50 x 2 mm ID Order No: 00B-4424-B0 Elution Type: Gradient Eluent A: Add 5mL of 1M ammonium formate to 1L Water Eluent B: Add 5mL of 1M ammonium formate to 1L Methanol Gradient Step No. Time (min) Pct A Pct B Profile: 1 -5 95 5 2 0 95 5 3 2 95 5 4 6 50 50 5 12 10 90 6 14 10 90 7 16 95 5 8 17 95 5 Flow Rate: 250 mL/min Col. Temp.: 25 °C Detection: Tandem Mass Spec (MS-MS) @ (ambient) Detector Info: <a target="_blank" href="https://sciex.com/products/mass-spectrometers?utm_campaign=2019%20application%20search&utm_source=phenomenex&utm_medium=referral">SCIEX</a> Analyst Note: SecurityGuard™ Guard Cartridge System extends column lifetime. - SecurityGuard Cartridges, Fusion-RP 4 x 2.0mm ID, 10/Pk Part No.: AJ0-7556 - Holder Part No.: KJ0-4282 ©2021 Phenomenex Inc. All rights reserved. For more information contact your Phenomenex Representative at [email protected] Phenomenex products are available worldwide. www.phenomenex.com [email protected] Page 1 of 2 HPLC Application ID No.: 20020 Quantification of Organophosphorus Pesticides by QuEchERS and LC/MS/MS ANALYTES: 1 Acephate (MRM: 184/142.8) 41 Diazinon (MRM: 305/169) 2 Acephate (MRM: 184/94.9) 42 Diazinon (MRM: 305/153) 3 Demeton-S-methyl sulfone (MRM: 263/169) 43 Fenthion (MRM: 278.9/169) 4 Demeton-S-methyl sulfone (MRM: 263/109) 44 Fenthion (MRM: 278.9/246.9) 5 Parathion-methyl Methyl parathion (MRM: 263.9/232.1)45
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • How to Reduce Bee Poisoning from Pesticides
    PNW 591 December 2006 How to ReduceReduce BeeBee PoisoningPoisoning from pesticides H. Riedl E. Johansen L. Brewer J. Barbour A Pacific Northwest Extension publication Oregon State University • University of Idaho • Washington State University Contents Pollinators are essential to Pacific Northwest agriculture .......................................................................1 Rules to protect bees ..............................................................................................................................1 Causes of bee poisoning in the Pacific Northwest .................................................................................2 Investigating a suspected bee poisoning ................................................................................................2 Signs and symptoms of bee poisoning ...................................................................................................2 Honey bees .................................................................................................................................................... 2 Managed solitary bees ................................................................................................................................... 3 Ways to reduce bee poisoning ...............................................................................................................3 Beekeeper–grower cooperation ..................................................................................................................... 3 What pesticide
    [Show full text]