United States Patent (19) 11 Patent Number: 5,919,673 Wong Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,919,673 Wong Et Al USOO59 19673A United States Patent (19) 11 Patent Number: 5,919,673 Wong et al. (45) Date of Patent: Jul. 6, 1999 54) ONE-POTENZYMATIC SULFATION Sekura, Methods in Enzymology, 77:413 (1981. PROCESS USING 3'-PHOSPHOADENOSINE Horwitz et al., Biochem. Biophy. Acta., 480:376 (1977). 5'-PHOSPHOSULEATE AND RECYCLED Satishchandran et al., J. Biol. Chem., 264:15012 (1989). PHOSPHORYLATED ADENOSINE Fernando et al., Biosci. Biotech. Biochem, 57:1974 (1993). INTERMEDIATES Mukai, Agric. Biol. Chem, 53:883 (1989). Leyh et al., J. Biol. Chem., 263:2409 (1988). 75 Inventors: Chi-Huey Wong, Rancho Sante Fe; Renosto et al., J. Biol. Chem., 259:2113 (1989). Chun-Hung Lin, San Diego; Marcus et al., Anal. Biochem., 107:296 (1980). GWO-Jenn Shen, Carlsbad, all of Calif. Suzuki et al., Biochim. Biophys. Acta, 50:169 (1961). Robinson, Biochem. J., 113:543 (1969). 73 Assignee: The Scripps Research Institute, Kimata et al., Mol. Cell. Biochem. 1:211(1973). LaJolla, Calif. Silbert, J. Biol. Chem., 239:1310 (1964). Kim et al., J. Biol. Chem., 252:8292 (1977). 21 Appl. No.: 08/408,774 Habuchi et al., Biochim. Biophys. Acta, 208:616 (1980). Habuchi et al., Biochim. Biophys. Acta, 414:717 (1982). 22 Filed: Mar. 22, 1995 Habuchi et al., J. Biol. Chem., 246:7357 (1971). 51) Int. Cl. ............................. C12P 11/00; C12P33/00; Nakanishi et al., J. Biol. Chem., 256:5443 (1981). C12P 19/04; C12P 19/32 Sugumaran et al., J. Biol. Chem., 261: 12659 (1986). 52 U.S. Cl. ............................ 435/130; 435/101; 435/52; Fisher et al., Nature, 357:655 (1992). 435/92 LeRouge et al., Nature, 344:781 (1990). Faucher et al., Mol. Plant-Microbe Interactions, 2:291 58 Field of Search ..................................... 435/130, 101, (1989). 435/52, 92 Faucher et al., J. Bacteriol., 170:5489 (1988). 56) References Cited Atkinson et al., Proc. Natl. Acad. Sci., USA, 91:8418 (1994). Schwedock et al., Mol. Plant-Microbe Interactions, 2:181 U.S. PATENT DOCUMENTS (1989). Cervantes et al., Mol. Microbiol, 3, 745 (1989. 5,376,535 12/1994 Onda et al. ............................... 435/92 Roche et al., Cell, 67: 1131 (1991). OTHER PUBLICATIONS Seubert et al., Arch. Biochem. Biophy.s., 115:679 (1983). Brunngraber, J. Biol. Chem. 233(2):472–477 (1958). Renosto et al., J. Biol. Chem., 264:9433 (1989). Kopp et al., J. Biol. Chem. 247(11):3564–3570 (1972). Burnell et al., Anal. Biochem, 68:281 (1975). Varki, Glycobiology, 3:97 (1993). Ogura et al., Molecular Pharmacol., 27:848 (1990). Yuen et al., J. Biol. Chem., 269:1595 (1994). Primary Examiner John W. Rollins Hemmerich et al., Biochemistry, 33:4830 (1994). ASSistant Examiner-Francisco C. Prats Varki, Proc. Natl. Acad. Sci., 91:7390 (1994). Attorney, Agent, or Firm Welsh & Katz, Ltd. van Boeckel et al., Angew. Chem. Int. Ed. Eng., 32:1671 57 ABSTRACT (1993). Bernstein et al., J. Biol. Chem., 199:745 (1952). A proceSS for the enzymatic Synthase of Sulfate esterS is Robbins et al., J. Biol. Chem., 233:686 (1958). disclosed in which intermediate phosphorylated adenosine EC 2.8.2.1-28 listed in Enzyme Nomenclature 1992, E. C. compounds are recycled to minimize enzyme inhibition. Webb, ed., Academic Press, San Diego, CA 1992, pp. Exemplary enzymes include ATP Sulfurylase, APS kinase 299-303. and a Sulfotransferase. Baddiley et al., J. Am. Chem. Soc., 1067 (1957). Cherniak et al., J. Biol. Chem., 239:2986 (1964). 6 Claims, 4 Drawing Sheets U.S. Patent Jul. 6, 1999 Sheet 1 of 4 5,919,673 E. coli DNA CYS DN5 5'ATATTGAGCTCGATCAAA SacI TACGACTTACTCACCTG PCR N-terminal amplification CYS DN3 5'GCGCAAGCTTTTATTATT Hind III Stop TATCCCCCAGCAAATC "' Hind III C-terminal Cys D and CysN genes Digest with Sac I pTrcHis A vector-- and Hind III Sac I Ligate Hind III ATG (his), EK ATP sulfurylase genes Fig. 1 pTrcCysDN10 1. LacI Amp Transform into E. coli Add IPTG Express recombinant protein U.S. Patent Jul. 6, 1999 Sheet 2 of 4 5,919,673 CYS C5 5'ATATTGAGCTCGCGCTGC E. coli DNA SacI ATGACGAAAAC N-terminal CYS C3 -Go- Air P 5'GCGCAAGCTTTTATTAGG amplification Hind III Stop ATCTGATAATATCGTT Sac I Hind III C-terminal Cys C gene Digest with Sac I pTrcHis A vector-- and Hind III Sa c I '8" HindIII ATG (his). EKAPS kinase genes Transform into E. coli NagrgExpress recombinant protein U.S. Patent Jul. 6, 1999 Sheet 3 of 4 5,919,673 Rat liver mRNA STAA5 5 ATATTGAATTC CCA EcoR GACTATACTTGGTTT N-terminal cDNA STAA3 5 ACAGGCTCGAGCTT Xho I ATTCAGACATAGAACC-terminal amplificationE. EcoRI Xho I HSSTase gene pFlag-1 vector digested with -e- EcoRI and Xho I Ligate pflaghSST-12 Transform into E. coli Add IPTG Express recombinant protein U.S. Patent Jul. 6, 1999 Sheet 4 of 4 5,919,673 NOdHST5' 5' ATATTGAATTCATTTT Rhizobium meliloti DNA ECOR I. CATGACCCATTCCA Start -- PCR amplification NOdHST3' 5' GGCGCGGATCCTTAGT ECOR I BamHI CGTTAGdAABamH Icre Stop nodH gene (NodST) Digested with EcoRI pKEN2 vector -- and BamH I Ligation - Piac IgAATTCATTTTCATGf".NodHST (750 TAAGGATCCkb) ECOR I Start Stop BamH I NodSTpKEN10 pUC ori Transform into E. coli Add IPTG Amp' Express recombinant protein 5,919,673 1 2 ONE-POTENZYMATIC SULFATION In the course of Sulfation, inorganic Sulfate is activated PROCESS USING 3'-PHOSPHOADENOSNE first, followed by a transfer of the sulfate group to the final 5'-PHOSPHOSULEATE AND RECYCLED PHOSPHORYLATED ADENOSINE acceptor Bernstein et al., J. Biol. Chem., 199:745 (1952)). INTERMEDIATES 5 The two key enzymes involved in this activation process are ATP sulfurylase (EC 2.7.7.4) and adenosine-5'- DESCRIPTION phosphosulfate (APS) kinase (EC 2.7.1.25) Robbins et al., 1. Technical Field J. Biol. Chem., 233:686 (1958); their reactions are shown in The present invention relates to the enzymatic synthesis Scheme 1, below, in which “A” is adenosine, “ROH' is the of Sulfate esters, and more particularly to a single vessel acceptor, and "PPi' is pyrophosphate, following usually enzyme-catalyzed Sulfation of an acceptor molecule by used abbreviations. Scheme 1 O-P-O-P-O-P-OI A. O-S-O-P-OM A. O ATP Sulfurylase O O O O + SO’ s =s O O - PP HO OH HO OH ATP APS O-S-O-P-O| M ADP- O O O O APS Kinase -- OH O PAPS 45 3'-phosphoadenosine-5'-phosphoSulfate in which intermedi 3'-Phosphoadenylsulfate, also known as ate phosphorylated adenosine compounds are recycled. 3'-phosphoadenosine-5'-phosphosulfate (PAPS), is the prod uct generated in these two enzymatic reactions and is a 2. Background Art Substrate and cofactor for the enzymatic Sulfation of oli 50 gosaccharides and Steroids using Sulfotransferases. Of the Sulfated biomolecules play important roles in many bio twenty-eight Sulfotransferase enzymes EC 2.8.2.1-28 logical processes Varki, Glycobiology, 3:97 (1993)). For listed in Enzyme Nomenclature 1992, E. C. Webb, ed., example, the Sulfated Lea tetra- and pentasaccharides Yuen Academic Press, San Diego, Calif. 1992, pages 299-303, all et al., J. Biol. Chem., 269:1595 (1994) are potent E-selectin but one enzyme utilize PAPS as the Sulfate donor. inhibitors and Sialyl Lewis X with a Sulfate group at the 55 Several groups have reported the synthesis of PAPS 6-position of galactose is a ligand for L-selectin Baddiley et al., J. Am. Chem. Soc., 1731 (1959); Cherniak et al., J. Biol. Chem., 239:1986 (1964); Sekura, Methods in Hemmerich et al., Biochemistry, 33:4830 (1994). These Enzymology, 77:413 (1981); Horwitz et al., Biochem. Sulfated Sugars play important roles in cell adhesion in Biophy, Acta., 480:376 (1977); Satishchandran et al., J. Biol. response to inflammatory reactions Varki, Proc. Natl. Acad. 60 Chem., 264:15012 (1989); Fernando et al., Biosci. Biotech. Sci., 91:7390 (1994)). Many glycosaminoglycans are also Biochem., 57:1974 (1993); Mukai, Acric. Biol. Chem. Sulfated and are involved in numerous cellular functions 53:883 (1989)). The procedures involve many steps and gave very low yields Baddiley et al., J. Am. Chem. Soc., van Boeckel et al., Angew. Chem. Int. Ed. Eng., 32:1671 1731 (1959); Cherniak et al., J. Biol. Chem., 239:1986 (1993)). In addition, the sulfation of hydroxysteroids pro 65 (1964); Sekura, Methods in Enzymology, 77:413 (1981); vides hydrophilic forms for excretion Ogura et al., Bio Horwitz et al., Biochem. Biophy, Acta., 480:376 (1977). The chem. Biophys. Res. Commun., 165: 169 (1989)). enzymatic preparation of PAPS on nmol to limol Scales 5,919,673 3 4 using isolated enzymes was described previously The aqueous reaction medium is maintained at a pH value Satishchandran et al., J. Biol. Chem., 264:15012 (1989); of about 5 to about 10 at a temperature of about Zero degrees Fernando et al., Biosci. Biotech. Biochem., 57:1974 (1993); C to about 40° C. for a time period sufficient for the acceptor Mukai, Agric. Biol. Chem. 53:883 (1989); however, it was to be sulfated. The sulfated acceptor is thereafter preferably not clear if the proceSS was feasible for larger Scale Synthe recovered. SS. A process of Scheme 3, hereinafter, for using APS to Recently, the genes coding for ATP Sulfurylase and APS prepare PAPS with recycling of ATP and ADP thus com kinase in E. coli have been identified Leyh et al., J. Biol. prises the Steps of Chem., 263:2409 (1988). These genes are located in the (a) admixing the following ingredients in an aqueous cluster of cys CDHIJ of E. coli. ATP Sulfurylase contains medium containing magnesium and potassium ions two different Subunits corresponding to two genes, cySD within a single vessel to form an aqueous reaction and cys N. APS kinase contains one Subunit corresponding medium to the cySC gene. (i) ATP Sulfurylase; ATP is a Substrate for ATP Sulfurase and is a cofactor/ (ii) APS kinase; substrate for APS kinase.
Recommended publications
  • Global Mef2 Target Gene Analysis in Skeletal and Cardiac Muscle
    GLOBAL MEF2 TARGET GENE ANALYSIS IN SKELETAL AND CARDIAC MUSCLE STEPHANIE ELIZABETH WALES A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO FEBRUARY 2016 © Stephanie Wales 2016 ABSTRACT A loss of muscle mass or function occurs in many genetic and acquired pathologies such as heart disease, sarcopenia and cachexia which are predominantly found among the rapidly increasing elderly population. Developing effective treatments relies on understanding the genetic networks that control these disease pathways. Transcription factors occupy an essential position as regulators of gene expression. Myocyte enhancer factor 2 (MEF2) is an important transcription factor in striated muscle development in the embryo, skeletal muscle maintenance in the adult and cardiomyocyte survival and hypertrophy in the progression to heart failure. We sought to identify common MEF2 target genes in these two types of striated muscles using chromatin immunoprecipitation and next generation sequencing (ChIP-seq) and transcriptome profiling (RNA-seq). Using a cell culture model of skeletal muscle (C2C12) and primary cardiomyocytes we found 294 common MEF2A binding sites within both cell types. Individually MEF2A was recruited to approximately 2700 and 1600 DNA sequences in skeletal and cardiac muscle, respectively. Two genes were chosen for further study: DUSP6 and Hspb7. DUSP6, an ERK1/2 specific phosphatase, was negatively regulated by MEF2 in a p38MAPK dependent manner in striated muscle. Furthermore siRNA mediated gene silencing showed that MEF2D in particular was responsible for repressing DUSP6 during C2C12 myoblast differentiation. Using a p38 pharmacological inhibitor (SB 203580) we observed that MEF2D must be phosphorylated by p38 to repress DUSP6.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • Functional Role of a Polysialic Acid- Carrying Proteolytic Fragment of the Neural Cell Adhesion Molecule NCAM in the Nervous System
    Functional role of a polysialic acid- carrying proteolytic fragment of the neural cell adhesion molecule NCAM in the nervous system DISSERTATION Zur Erlangung des Doktorgerades der Naturwissenschaften ( doctor rerum naturalium ) des Departments Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg Vorgelegt von NINAWESTPHAL Hamburg, 2017 Diese Arbeit wurde am Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), im Institut für Biosynthese Neuraler Strukturen durchgeführt. Gutachter: Frau Prof. Dr. M. Schachner Herr Prof. Dr. T. Burmester Tag der Disputation: 07.03.2017 Contents Statement of Contribution ........................................................................................................................ I 1. Introduction ......................................................................................................................................... 1 1.1 Structure, isoforms and proteolytic processing of NCAM ........................................................................... 2 1.2. N-glycosylation of NCAM and attachment of polysialic acid ................................................................... 3 1.3 Functions of polysialylated NCAM in the central nervous system .............................................................. 5 1.4 Interaction of PSA and/or NCAM with other molecules.............................................................................. 6 1.5 PSA-NCAM- mediated downstream signalling ..........................................................................................
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Supplementary Table 1: Differentially Methylated Genes and Functions of the Genes Before/After Treatment with A) Doxorubicin and B) FUMI and in C) Responders Vs
    Supplementary Table 1: Differentially methylated genes and functions of the genes before/after treatment with a) doxorubicin and b) FUMI and in c) responders vs. non- responders for doxorubicin and d) FUMI Differentially methylated genes before/after treatment a. Doxo GENE FUNCTION CCL5, CCL8, CCL15, CCL21, CCR1, CD33, IL5, immunoregulatory and inflammatory processes IL8, IL24, IL26, TNFSF11 CCNA1, CCND2, CDKN2A cell cycle regulators ESR1, FGF2, FGF14, FGF18 growth factors WT1, RASSF5, RASSF6 tumor suppressor b. FUMI GENE FUNCTION CCL7, CCL15, CD28, CD33, CD40, CD69, TNFSF18 immunoregulatory and inflammatory processes CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3 growth factors HOXB4, HOXB6, HOXC8 regulation of cell transcription WT1, RASSF6 tumor suppressor Differentially methylated genes in responders vs. non-responders c. Doxo GENE FUNCTION CBR1, CCL4, CCL8, CCR1, CCR7, CD1A, CD1B, immunoregulatory and inflammatory processes CD1D, CD1E, CD33, CD40, IL5, IL8, IL20, IL22, TLR4 CCNA1, CCND2, CDKN2A cell cycle regulators ESR2, ERBB3, FGF11, FGF12, FGF14, FGF17 growth factors WNT4, WNT16, WNT10A implicated in oncogenesis TNFSF12, TNFSF15 apoptosis FOXL1, FOXL2, FOSL1,HOXA2, HOXA7, HOXA11, HOXA13, HOXB4, HOXB6, HOXB8, HOXB9, HOXC8, regulation of cell transcription HOXD8, HOXD9, HOXD11 GSTP1, MGMT DNA repair APC, WT1 tumor suppressor d. FUMI GENE FUNCTION CCL1, CCL3, CCL5,CCL14, CD1B, CD33, CD40, CD69, immunoregulatory and inflammatory IL20, IL32 processes CCNA1, CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3, IGFBP7, EGFR, ESR2,RARB2
    [Show full text]
  • RAB-GAP Immunity Signaling by the Tbc1d23 Spatiotemporal Inhibition
    Downloaded from http://www.jimmunol.org/ by guest on September 27, 2021 is online at: average * The Journal of Immunology , 17 of which you can access for free at: 2012; 188:2905-2913; Prepublished online 6 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1102595 http://www.jimmunol.org/content/188/6/2905 Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras, Ivana V. Yang, Brad Lackford, David W. H. Riches, Rytis Prekeris, Jonathan H. Freedman, David A. Schwartz and Scott Alper J Immunol cites 58 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/06/jimmunol.110259 5.DC1 This article http://www.jimmunol.org/content/188/6/2905.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 27, 2021. The Journal of Immunology Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras,*,† Ivana V. Yang,†,‡ Brad Lackford,x David W.
    [Show full text]
  • Genome-Scale Phylogenetic Function Annotation of Large and Diverse Protein Families
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Genome-scale phylogenetic function annotation of large and diverse protein families 1∗ Barbara E Engelhardt Electrical Engineering and Computer Science Department, University of California, Berkeley, Berkeley, CA, USA Current address: Computer Science Department, University of Chicago, Chicago, IL, USA 2 Michael I Jordan Statistics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley, Berkeley, CA, USA 3 John R Srouji Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA USA Current address: Molecular and Cellular Biology Department, Harvard University, Cambridge, MA, USA 4 Steven E Brenner Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, CA, USA ∗ Corresponding author: [email protected] Running Title: Phylogenetic function annotation Keywords: Protein molecular function annotation, statistical model, protein function evolution, Gene Ontology, whole-genome annotation. Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press 2 Abstract The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function pre- diction (Engelhardt et al., 2005, 2006). Here we present a significant revision of the approach (SIFTER version 2.0) that allows annotations to be made on a genomic scale. We confirm that SIFTER 2.0 pro- duces equivalently precise predictions to the earlier version of SIFTER on a carefully studied family and on a collection of one hundred protein families with limited functional diversity. We have added an ap- proximation method to SIFTER 2.0, and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family.
    [Show full text]
  • Enzymatic Synthesis of Glycosaminoglycans: Improving on Nature
    Fronteirs in Modern Carbohydrate Chemistry, ACS Symposium Series 960, Alexei V. Demchenko, Editor, ACS, Washington, DC, 2007 Chapter 15 ENZYMATIC SYNTHESIS OF GLYCOSAMINOGLYCANS: IMPROVING ON NATURE Fikri Y. Avci,1 Paul L. DeAngelis,2 Jian Liu,3 Robert J. Linhardt,*1 1Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, 2Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, 3Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. The chemoenzymatic synthesis of glycosaminoglycan (GAG) analogs is described. This chapter is divided into three main sections, each describing the use of one enzyme family in GAG synthesis. First, the polysaccharide lyase enzymes are described. These enzymes play crucial role in obtaining homogenous GAG oligosaccharides. Second, GAG synthases, bacterial enzymes that transfer UDP-monosaccharides to acceptor oligosaccharide, GAG synthases are used to obtain homogenous oligosaccharides and polysaccharides. Finally, GAG sulfotransferases, playing a major role in the biosynthesis, are described for the introduction of sulfo groups to the appropriate positions on the polysaccharide backbone. © 2007 American Chemical Society 253 254 1. INTRODUCTION Glycosaminoglycans (GAGs) are highly charged polysaccharides consisting of repeating 1→3 and/or 1→4 linked hexosamine and uronic acid residues (Figure 1).1, 2 GAGs are polydisperse mixtures of polysaccharide chains of varying lengths with an average molecular weight of 104-106 Da.2 GAGs are synthesized by both prokaryotes3 and eukaryotes and are found in all animal cells.2 Pharmaceutical heparin is an example of a structurally complex GAG that is prepared from porcine intestinal mucosa and bovine lung in amounts of 30 metric tons/yr.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Transcriptional and Signaling Analysis As a Means of Investigating the Complexity of Aging Processes in Human and Mouse
    Transcriptional and signaling analysis as a means of investigating the complexity of aging processes in human and mouse Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Thore C. Brink aus Herdecke August 2008 1. Gutachter: Prof. Dr. Hans Lehrach, Max-Planck-Institut für Molekulare Genetik 2. Gutachter: Prof. Dr. Volker Erdmann Freie Universität Berlin Disputation am 27.03.2009 Acknowledgment Acknowledgment Ich danke Herrn Professor Lehrach für die Betreuung, das Interesse und die Unterstützung beim Durchführen dieser Arbeit sowie für die Überlassung des Themas und die Möglichkeit die Dissertation am Max-Planck-Institut für Molekulare Genetik anzufertigen. Des Weiteren danke ich Herrn Professor Erdmann für das Interesse und die Unterstützung beim Durchführen dieser Arbeit. Ein besonderer Dank gebührt Herrn Dr. James Adjaye für die Korrektur, Unterstützung und Anleitung bei der Anfertigung meiner Dissertation sowie für die angenehme Zusammenarbeit während der letzten Jahre. Den Mitgliedern meiner Arbeitsgruppe sowie allen anderen Mitarbeitern und Doktoranden des Max-Planck-Instituts für Molekulare Genetik danke ich für die gute Zusammenarbeit und das gute Arbeitsklima. Meiner Familie danke ich herzlich für vielerlei Unterstützung, Aufmunterung und Anerkennung während der zurückliegenden Zeit. Hervorzuheben sind meine Frau Nicole und meine Eltern Dr. Kurt und Carmen Brink. Ich danke herzlich meinen Freunden für ihre Unterstützung und Aufmunterung während der zurückliegenden Zeit. Danke Andreas und Marc für die tatkräftige Unterstützung bei der Korrektur und viele anregende Gespräche. Vielen Dank Metzler für das Erstellen der PDF Version dieser Arbeit. Contents Contents ABBREVIATIONS V LIST OF FIGURES VII LIST OF TABLES IX ABSTRACT XI ABSTRACT (GERMAN) XIII 1.
    [Show full text]
  • Immune Cells in Spleen and Mucosa + CD127 Neg Production of IL-17 and IL-22 by CD3 TLR5 Signaling Stimulates the Innate
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 neg is online at: average * The Journal of Immunology , 23 of which you can access for free at: 2010; 185:1177-1185; Prepublished online 21 Immune Cells in Spleen and Mucosa from submission to initial decision + 4 weeks from acceptance to publication TLR5 Signaling Stimulates the Innate Production of IL-17 and IL-22 by CD3 CD127 Laurye Van Maele, Christophe Carnoy, Delphine Cayet, Pascal Songhet, Laure Dumoutier, Isabel Ferrero, Laure Janot, François Erard, Julie Bertout, Hélène Leger, Florent Sebbane, Arndt Benecke, Jean-Christophe Renauld, Wolf-Dietrich Hardt, Bernhard Ryffel and Jean-Claude Sirard June 2010; doi: 10.4049/jimmunol.1000115 http://www.jimmunol.org/content/185/2/1177 J Immunol cites 51 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/185/2/1177.full#ref-list-1 http://www.jimmunol.org/content/suppl/2010/06/21/jimmunol.100011 5.DC1 This article Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Caractérisation Moléculaire De Tumeurs Pulmonaires Radon-Induites Chez Le Rat
    UNIVERSITÉ PARIS XI FACULTÉ DE MÉDECINE PARIS-SUD Ecole doctorale de Cancérologie : Biologie, Médecine, Santé Année 2008 Thèse n° THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE PARIS XI Spécialité : Radiobiologie Présentée et soutenue publiquement par Kristell GUILLET BASTIDE Le 13 novembre 2008 TITRE CARACTÉRISATION MOLÉCULAIRE DE TUMEURS PULMONAIRES RADON-INDUITES CHEZ LE RAT tel-00349902, version 1 - 5 Jan 2009 Directeur de thèse : Pr Jean-François BERNAUDIN JURY Pr Christian BRAMBILLA Président Dr Xavier GIDROL Rapporteur Dr Marc BENDERITTER Rapporteur Pr Philippe GAULARD Examinateur Dr Sylvie CHEVILLARD Examinateur Pr Jean-François BERNAUDIN Directeur de thèse Remerciements Je remercie vivement Monsieur Gidrol et Monsieur Benderitter d’avoir accepté d’être les rapporteurs de cette thèse. Merci à Monsieur Gaulard pour son travail d’examinateur et à Monsieur Brambilla qui a accepté de présider le jury. Merci également au professeur Bernaudin, directeur de thèse auprès de l’Université, qui m’a soutenue et m’a apportée une aide précieuse pour ce travail. Je tiens à remercier Sylvie Chevillard de m’avoir intégrée dans son laboratoire de Cancérologie Expérimentale au CEA de Fontenay-aux-Roses et de m’avoir encadrée pour préparer cette thèse. Sa rigueur scientifique et ses précieux conseils ont été des plus formateurs. Mes remerciements vont également à Monsieur Bernard Malfoy de l’Institut Curie dont la disponibilité et l’écoute ont contribué de façon significative à la progression de ce travail de thèse. Tous mes remerciements vont aussi à mes collègues de travail du laboratoire de Cancérologie Expérimentale qui ont suivi de près ou de loin l’évolution de cette thèse.
    [Show full text]