Genome-Scale Phylogenetic Function Annotation of Large and Diverse Protein Families
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selective Spatial Upregulation of Intratumoral Stromal Aromatase in Breast Cancer Patients: Evidence for Imbalance of Local Estrogen Metabolism
Endocrine-Related Cancer (2006) 13 1101–1107 Selective spatial upregulation of intratumoral stromal aromatase in breast cancer patients: evidence for imbalance of local estrogen metabolism Christian F Singer1,2, Anneliese Fink-Retter1, Daphne Gschwantler-Kaulich1, Theresia Thalhammer 3, Gernot Hudelist1, Ruth Mueller1,2, Klaus Czerwenka4 and Ernst Kubista1,2 1Division of Special Gynecology, University of Vienna Medical Center, Waehringer Guertel 18-20, 1090, Vienna, Austria 2Ludwig-Boltzmann-Institute of Clinical Experimental Oncology, 3Center for Physiology and Pathophysiology, 4Division of Gynecopathology, Medical University of Vienna, Vienna, Austria (Requests for offprints should be addressed to C F Singer; Email: [email protected]) Abstract The suppression of local estrogens levels is of key importance in the treatment of ER-positive breast cancer. Essentially all endocrine strategies act by either suppressing estrogen formation or competitively inhibiting receptor-binding in tumor cells. Nevertheless, little is still known about the local expression of aromatase and sulfotransferase which are the key modulators of intra-tumoral estrogen levels. We have performed immunohistochemostry to investigate the expression of aromatase and sulfotransferase in 42 samples obtained directly from malignant breast tumors, and compared it to biopsies obtained from uninvolved tissue in the vicinity of the invasion front, and to distant breast tissue. We found that aromatase was equally detectable in both tumor epithelial and stroma, but was mostly epithelial in non-malignant tissues (PZ0.00008, Fisher’s exact test). Also, aromatase protein expression was significantly more common in tumoral stroma when compared with peritumoral and distant breast stroma (PZ0.00005, and P!0.00001 respectively). With the notable exception of cystosarcoma phylloides, sulfotransferase protein was detectable only in epithelial tissues, regardless of the location within the diseased breast. -
The Importance of Thyroid Hormone Sulfation During Fetal Development
The importance of thyroid hormone sulfation during fetal development Monique H.A. Kester CIP-data Koninklijke Bibliotheek, Den Haag Kester, Monique Helene Agathe The importance of thyroid hormone sulfation during fetal development Thesis Erasmus University Rotterdam - with summary in Dutch ISBN 90 ·901501 0-2 Cover: White Rabbit Photo I Gert-Jan van den Bemd ~ Printed by Ridderprint offsetdrukkerij BV, Ridderkerk The research described in this thesis was financially supported by the Sophia Foundation for Medical Research (project 211). The publication of this thesis was financially supported by Apotheek J.H. van Waert BV and Organon Nederland BV. The importance of thyroid hormone sulfation during fetal development Het belang van schildklierhormoonsulfatering tijdens de foetale ontwikkeling Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de Rector Magnificus Prof.dr.ir. J.H. van Semmel en volgens besluit van het College voor Promoties De openbare verdediging zal plaatsvinden op woensdag 5 september 2001 om 15.45 uur door Monique Helene Agathe Kester geboren te Sint-Michielsgestel Promotiecommisie Promotoren: Prof.dr.ir. T.J. Visser Prof.dr. D. Tibboel Overige leden: Prof.dr. F.H. de Jong Prof.dr. A. Brouwer Dr. M.W.H. Coughtrie The research described in this thesis was performed at the Departments of Internal Medicine and Pediatric Surgery of the Erasmus University Medical Center Rotterdam, The Netherlands. Labor improbius omnia vinci! De aanhouder win! Vergilius Contents List of abbreviations -
Global Mef2 Target Gene Analysis in Skeletal and Cardiac Muscle
GLOBAL MEF2 TARGET GENE ANALYSIS IN SKELETAL AND CARDIAC MUSCLE STEPHANIE ELIZABETH WALES A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO FEBRUARY 2016 © Stephanie Wales 2016 ABSTRACT A loss of muscle mass or function occurs in many genetic and acquired pathologies such as heart disease, sarcopenia and cachexia which are predominantly found among the rapidly increasing elderly population. Developing effective treatments relies on understanding the genetic networks that control these disease pathways. Transcription factors occupy an essential position as regulators of gene expression. Myocyte enhancer factor 2 (MEF2) is an important transcription factor in striated muscle development in the embryo, skeletal muscle maintenance in the adult and cardiomyocyte survival and hypertrophy in the progression to heart failure. We sought to identify common MEF2 target genes in these two types of striated muscles using chromatin immunoprecipitation and next generation sequencing (ChIP-seq) and transcriptome profiling (RNA-seq). Using a cell culture model of skeletal muscle (C2C12) and primary cardiomyocytes we found 294 common MEF2A binding sites within both cell types. Individually MEF2A was recruited to approximately 2700 and 1600 DNA sequences in skeletal and cardiac muscle, respectively. Two genes were chosen for further study: DUSP6 and Hspb7. DUSP6, an ERK1/2 specific phosphatase, was negatively regulated by MEF2 in a p38MAPK dependent manner in striated muscle. Furthermore siRNA mediated gene silencing showed that MEF2D in particular was responsible for repressing DUSP6 during C2C12 myoblast differentiation. Using a p38 pharmacological inhibitor (SB 203580) we observed that MEF2D must be phosphorylated by p38 to repress DUSP6. -
(12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG. -
Functional Role of a Polysialic Acid- Carrying Proteolytic Fragment of the Neural Cell Adhesion Molecule NCAM in the Nervous System
Functional role of a polysialic acid- carrying proteolytic fragment of the neural cell adhesion molecule NCAM in the nervous system DISSERTATION Zur Erlangung des Doktorgerades der Naturwissenschaften ( doctor rerum naturalium ) des Departments Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg Vorgelegt von NINAWESTPHAL Hamburg, 2017 Diese Arbeit wurde am Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), im Institut für Biosynthese Neuraler Strukturen durchgeführt. Gutachter: Frau Prof. Dr. M. Schachner Herr Prof. Dr. T. Burmester Tag der Disputation: 07.03.2017 Contents Statement of Contribution ........................................................................................................................ I 1. Introduction ......................................................................................................................................... 1 1.1 Structure, isoforms and proteolytic processing of NCAM ........................................................................... 2 1.2. N-glycosylation of NCAM and attachment of polysialic acid ................................................................... 3 1.3 Functions of polysialylated NCAM in the central nervous system .............................................................. 5 1.4 Interaction of PSA and/or NCAM with other molecules.............................................................................. 6 1.5 PSA-NCAM- mediated downstream signalling .......................................................................................... -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
Supplementary Table 1: Differentially Methylated Genes and Functions of the Genes Before/After Treatment with A) Doxorubicin and B) FUMI and in C) Responders Vs
Supplementary Table 1: Differentially methylated genes and functions of the genes before/after treatment with a) doxorubicin and b) FUMI and in c) responders vs. non- responders for doxorubicin and d) FUMI Differentially methylated genes before/after treatment a. Doxo GENE FUNCTION CCL5, CCL8, CCL15, CCL21, CCR1, CD33, IL5, immunoregulatory and inflammatory processes IL8, IL24, IL26, TNFSF11 CCNA1, CCND2, CDKN2A cell cycle regulators ESR1, FGF2, FGF14, FGF18 growth factors WT1, RASSF5, RASSF6 tumor suppressor b. FUMI GENE FUNCTION CCL7, CCL15, CD28, CD33, CD40, CD69, TNFSF18 immunoregulatory and inflammatory processes CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3 growth factors HOXB4, HOXB6, HOXC8 regulation of cell transcription WT1, RASSF6 tumor suppressor Differentially methylated genes in responders vs. non-responders c. Doxo GENE FUNCTION CBR1, CCL4, CCL8, CCR1, CCR7, CD1A, CD1B, immunoregulatory and inflammatory processes CD1D, CD1E, CD33, CD40, IL5, IL8, IL20, IL22, TLR4 CCNA1, CCND2, CDKN2A cell cycle regulators ESR2, ERBB3, FGF11, FGF12, FGF14, FGF17 growth factors WNT4, WNT16, WNT10A implicated in oncogenesis TNFSF12, TNFSF15 apoptosis FOXL1, FOXL2, FOSL1,HOXA2, HOXA7, HOXA11, HOXA13, HOXB4, HOXB6, HOXB8, HOXB9, HOXC8, regulation of cell transcription HOXD8, HOXD9, HOXD11 GSTP1, MGMT DNA repair APC, WT1 tumor suppressor d. FUMI GENE FUNCTION CCL1, CCL3, CCL5,CCL14, CD1B, CD33, CD40, CD69, immunoregulatory and inflammatory IL20, IL32 processes CCNA1, CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3, IGFBP7, EGFR, ESR2,RARB2 -
Produktinformation
Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic SULT1E1 MaxPab mouse polyclonal antibody (B02) Catalog # : H00006783-B02 規格 : [ 50 uL ] List All Specification Application Image Product Mouse polyclonal antibody raised against a full-length human SULT1E1 Western Blot (Tissue lysate) Description: protein. Immunogen: SULT1E1 (AAH27956.1, 1 a.a. ~ 294 a.a) full-length human protein. Sequence: MNSELDYYEKFEEVHGILMYKDFVKYWDNVEAFQARPDDLVIATYPKSG TTWVSEIVYMIYKEGDVEKCKEDVIFNRIPFLECRKENLMNGVKQLDEMN enlarge SPRIVKTHLPPELLPASFWEKDCKIIYLCRNAKDVAVSFYYFFLMVAGHPN PGSLPEFVEKFMQGQVPYGSWYKHVKSWWEKGKSPRVLFLFYEDLKE Western Blot (Transfected DIRKEVIKLIHFLERKPSEELVDRIIHHTSFQEMKNNPSTNYTTLPDEIMNQK lysate) LSPFMRKGITGDWKNHFTVALNEKFDKHYEQQMKESTLKFRTEI Host: Mouse Reactivity: Human Quality Control Antibody reactive against mammalian transfected lysate. enlarge Testing: Storage Buffer: No additive Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and -
United States Patent (19) 11 Patent Number: 5,919,673 Wong Et Al
USOO59 19673A United States Patent (19) 11 Patent Number: 5,919,673 Wong et al. (45) Date of Patent: Jul. 6, 1999 54) ONE-POTENZYMATIC SULFATION Sekura, Methods in Enzymology, 77:413 (1981. PROCESS USING 3'-PHOSPHOADENOSINE Horwitz et al., Biochem. Biophy. Acta., 480:376 (1977). 5'-PHOSPHOSULEATE AND RECYCLED Satishchandran et al., J. Biol. Chem., 264:15012 (1989). PHOSPHORYLATED ADENOSINE Fernando et al., Biosci. Biotech. Biochem, 57:1974 (1993). INTERMEDIATES Mukai, Agric. Biol. Chem, 53:883 (1989). Leyh et al., J. Biol. Chem., 263:2409 (1988). 75 Inventors: Chi-Huey Wong, Rancho Sante Fe; Renosto et al., J. Biol. Chem., 259:2113 (1989). Chun-Hung Lin, San Diego; Marcus et al., Anal. Biochem., 107:296 (1980). GWO-Jenn Shen, Carlsbad, all of Calif. Suzuki et al., Biochim. Biophys. Acta, 50:169 (1961). Robinson, Biochem. J., 113:543 (1969). 73 Assignee: The Scripps Research Institute, Kimata et al., Mol. Cell. Biochem. 1:211(1973). LaJolla, Calif. Silbert, J. Biol. Chem., 239:1310 (1964). Kim et al., J. Biol. Chem., 252:8292 (1977). 21 Appl. No.: 08/408,774 Habuchi et al., Biochim. Biophys. Acta, 208:616 (1980). Habuchi et al., Biochim. Biophys. Acta, 414:717 (1982). 22 Filed: Mar. 22, 1995 Habuchi et al., J. Biol. Chem., 246:7357 (1971). 51) Int. Cl. ............................. C12P 11/00; C12P33/00; Nakanishi et al., J. Biol. Chem., 256:5443 (1981). C12P 19/04; C12P 19/32 Sugumaran et al., J. Biol. Chem., 261: 12659 (1986). 52 U.S. Cl. ............................ 435/130; 435/101; 435/52; Fisher et al., Nature, 357:655 (1992). 435/92 LeRouge et al., Nature, 344:781 (1990). -
Neetika Nath Phd Thesis
QUANTITATIVE AND EVOLUTIONARY GLOBAL ANALYSIS OF ENZYME REACTION MECHANISMS Neetika Nath A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6899 This item is protected by original copyright PhD Thesis Quantitative and Evolutionary Global Analysis of Enzyme Reaction Mechanisms Author: Supervisor: Neetika Nath Dr. John BO Mitchell This thesis presented for the degree of Doctor of Philosophy School of Chemistry University of St Andrews United Kingdom Friday 17th March, 2015 Declaration I, Neetika Nath, declare that this thesis titled, ‘Quantitative and Evolution- ary Global Analysis of Enzyme Reaction Mechanisms’ and the work pre- sented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a re- search degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other insti- tution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. Except such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. -
RAB-GAP Immunity Signaling by the Tbc1d23 Spatiotemporal Inhibition
Downloaded from http://www.jimmunol.org/ by guest on September 27, 2021 is online at: average * The Journal of Immunology , 17 of which you can access for free at: 2012; 188:2905-2913; Prepublished online 6 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1102595 http://www.jimmunol.org/content/188/6/2905 Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras, Ivana V. Yang, Brad Lackford, David W. H. Riches, Rytis Prekeris, Jonathan H. Freedman, David A. Schwartz and Scott Alper J Immunol cites 58 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/06/jimmunol.110259 5.DC1 This article http://www.jimmunol.org/content/188/6/2905.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 27, 2021. The Journal of Immunology Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras,*,† Ivana V. Yang,†,‡ Brad Lackford,x David W. -
Dissertation / Doctoral Thesis
DISSERTATION / DOCTORAL THESIS Titel der Dissertation /Title of the Doctoral Thesis „ The natural compound curcumin: impact of cellular uptake and metabolism on in vitro activity “ verfasst von / submitted by Qurratul Ain Jamil angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2018 / Vienna 2018 Studienkennzahl lt. Studienblatt / A 796 610 449 degree programme code as it appears on the student record sheet: Dissertationsgebiet lt. Studienblatt / Pharmazie, Klinische Pharmazie und Diagnostik field of study as it appears on the student record sheet: Pharmacy, Clinical Pharmacy and Diagnostics Betreut von / Supervisor: Ao.Univ.Prof.Magpharm.Dr.rer.nat.WalterJӓger “Verily in the Creation of the Heavens and the Earth, and in the Alteration of Night and Day, and the Ships which Sail through the Sea with that which is of used to Mankind, and the Water (Rain) which God sends down from the Sky and makes Earth Alive there with after its Death, and the moving Creatures of all kind that he has Scattered therein, and the Veering of Winds and Clouds which are held between the Sky and the Earth, are indeed Signs for Peoples of Understanding.” Acknowledgements While writing this section, I remember the first day in my lab, having a warm welcome from my supervisor; ao. Univ.-Prof. Mag. Dr. Walter Jӓger (Division of Clinical Pharmacy and Diagnostics, University of Vienna). He was waiting for me, offered me coffee and told me how to operate the coffee machine. He showed me, my office and asked me to make a list of all stuff, I need for daily work.