Caractérisation Moléculaire De Tumeurs Pulmonaires Radon-Induites Chez Le Rat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Mef2 Target Gene Analysis in Skeletal and Cardiac Muscle
GLOBAL MEF2 TARGET GENE ANALYSIS IN SKELETAL AND CARDIAC MUSCLE STEPHANIE ELIZABETH WALES A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO FEBRUARY 2016 © Stephanie Wales 2016 ABSTRACT A loss of muscle mass or function occurs in many genetic and acquired pathologies such as heart disease, sarcopenia and cachexia which are predominantly found among the rapidly increasing elderly population. Developing effective treatments relies on understanding the genetic networks that control these disease pathways. Transcription factors occupy an essential position as regulators of gene expression. Myocyte enhancer factor 2 (MEF2) is an important transcription factor in striated muscle development in the embryo, skeletal muscle maintenance in the adult and cardiomyocyte survival and hypertrophy in the progression to heart failure. We sought to identify common MEF2 target genes in these two types of striated muscles using chromatin immunoprecipitation and next generation sequencing (ChIP-seq) and transcriptome profiling (RNA-seq). Using a cell culture model of skeletal muscle (C2C12) and primary cardiomyocytes we found 294 common MEF2A binding sites within both cell types. Individually MEF2A was recruited to approximately 2700 and 1600 DNA sequences in skeletal and cardiac muscle, respectively. Two genes were chosen for further study: DUSP6 and Hspb7. DUSP6, an ERK1/2 specific phosphatase, was negatively regulated by MEF2 in a p38MAPK dependent manner in striated muscle. Furthermore siRNA mediated gene silencing showed that MEF2D in particular was responsible for repressing DUSP6 during C2C12 myoblast differentiation. Using a p38 pharmacological inhibitor (SB 203580) we observed that MEF2D must be phosphorylated by p38 to repress DUSP6. -
(12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG. -
Dissertation V2.2 XR
UCLA UCLA Electronic Theses and Dissertations Title Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation Permalink https://escholarship.org/uc/item/93c9r39k Author Rong, Xin Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Cellular and Molecular Pathology by Xin Rong 2015 © Copyright by Xin Rong 2015 ABSTRACT OF THE DISSERTATION Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation by Xin Rong Doctor of Philosophy in Cellular and Molecular Pathology University of California, Los Angeles 2015 Professor Peter John Tontonoz, Chair Phospholipids (PLs) are important structural components of biological membranes and precursors of numerous signaling molecules. The fatty acyl composition of PLs determines the biophysical characteristics of membranes. Multiple lines of evidence demonstrated that changes in fatty acyl composition could potentially affect the properties of proteins associated with membranes and influence the biological processes that occur on membranes. However, there is little understanding of how regulatory pathways control PL fatty acyl composition in vivo or how such regulation dictates physiological responses. In this work, we investigated the regulation of membrane fatty acyl composition by the Liver X Receptor (LXR)-Lysophosphatidylcholine Acyltranferase 3 (Lpcat3) pathway and its physiological or pathological relevance in lipid homeostasis and metabolic diseases. ii In chapter 2, we define a nuclear receptor pathway for the dynamic modulation of membrane composition in response to changes in cellular lipid metabolism. -
Functional Role of a Polysialic Acid- Carrying Proteolytic Fragment of the Neural Cell Adhesion Molecule NCAM in the Nervous System
Functional role of a polysialic acid- carrying proteolytic fragment of the neural cell adhesion molecule NCAM in the nervous system DISSERTATION Zur Erlangung des Doktorgerades der Naturwissenschaften ( doctor rerum naturalium ) des Departments Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg Vorgelegt von NINAWESTPHAL Hamburg, 2017 Diese Arbeit wurde am Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), im Institut für Biosynthese Neuraler Strukturen durchgeführt. Gutachter: Frau Prof. Dr. M. Schachner Herr Prof. Dr. T. Burmester Tag der Disputation: 07.03.2017 Contents Statement of Contribution ........................................................................................................................ I 1. Introduction ......................................................................................................................................... 1 1.1 Structure, isoforms and proteolytic processing of NCAM ........................................................................... 2 1.2. N-glycosylation of NCAM and attachment of polysialic acid ................................................................... 3 1.3 Functions of polysialylated NCAM in the central nervous system .............................................................. 5 1.4 Interaction of PSA and/or NCAM with other molecules.............................................................................. 6 1.5 PSA-NCAM- mediated downstream signalling .......................................................................................... -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
Supplementary Table 1: Differentially Methylated Genes and Functions of the Genes Before/After Treatment with A) Doxorubicin and B) FUMI and in C) Responders Vs
Supplementary Table 1: Differentially methylated genes and functions of the genes before/after treatment with a) doxorubicin and b) FUMI and in c) responders vs. non- responders for doxorubicin and d) FUMI Differentially methylated genes before/after treatment a. Doxo GENE FUNCTION CCL5, CCL8, CCL15, CCL21, CCR1, CD33, IL5, immunoregulatory and inflammatory processes IL8, IL24, IL26, TNFSF11 CCNA1, CCND2, CDKN2A cell cycle regulators ESR1, FGF2, FGF14, FGF18 growth factors WT1, RASSF5, RASSF6 tumor suppressor b. FUMI GENE FUNCTION CCL7, CCL15, CD28, CD33, CD40, CD69, TNFSF18 immunoregulatory and inflammatory processes CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3 growth factors HOXB4, HOXB6, HOXC8 regulation of cell transcription WT1, RASSF6 tumor suppressor Differentially methylated genes in responders vs. non-responders c. Doxo GENE FUNCTION CBR1, CCL4, CCL8, CCR1, CCR7, CD1A, CD1B, immunoregulatory and inflammatory processes CD1D, CD1E, CD33, CD40, IL5, IL8, IL20, IL22, TLR4 CCNA1, CCND2, CDKN2A cell cycle regulators ESR2, ERBB3, FGF11, FGF12, FGF14, FGF17 growth factors WNT4, WNT16, WNT10A implicated in oncogenesis TNFSF12, TNFSF15 apoptosis FOXL1, FOXL2, FOSL1,HOXA2, HOXA7, HOXA11, HOXA13, HOXB4, HOXB6, HOXB8, HOXB9, HOXC8, regulation of cell transcription HOXD8, HOXD9, HOXD11 GSTP1, MGMT DNA repair APC, WT1 tumor suppressor d. FUMI GENE FUNCTION CCL1, CCL3, CCL5,CCL14, CD1B, CD33, CD40, CD69, immunoregulatory and inflammatory IL20, IL32 processes CCNA1, CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3, IGFBP7, EGFR, ESR2,RARB2 -
MBOAT5 (D-19): Sc-161831
SAN TA C RUZ BI OTEC HNOL OG Y, INC . MBOAT5 (D-19): sc-161831 BACKGROUND APPLICATIONS MBOAT5 (membrane-bound O-acyltransferase domain-containing protein 5), MBOAT5 (D-19) is recommended for detection of MBOAT5 of mouse, rat and also known as lysophosphatidylcholine acyltransferase 3 (LPCAT3), lysophos - human origin by Western Blotting (starting dilution 1:200, dilution range 1:100- pholipid acyltransferase 5 (LPLAT 5), 1-acylglycerophosphocholine O-acyl - 1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of transferase, C3F, OACT5 or nessy, is a 487 amino acid multi-pass membrane cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- protein of the endoplasmic reticulum that belongs to the membrane-bound 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- acyltransferase family. As an acyltransferase, MBOAT5 aids in the conversion 1:3000); non cross-reactive with MBOAT1, MBOAT2 or MBOAT4. of lysophosphatidylcholine into phosphatidylcholine, lysophosphatidylserine MBOAT5 (D-19) is also recommended for detection of MBOAT5 in additional into phosphatidylserine, and participates in the Lands cycle by catalyzing species, including equine, canine and porcine. reacylation of phospholipid remodeling. Encoded by a gene located on human chromosome 12, MBOAT5 is highly expressed in liver, adipose tissue and Suitable for use as control antibody for MBOAT5 siRNA (h): sc-95749, pancreas, with lower levels found in skeletal muscle and heart. MBOAT5 siRNA (m): sc-149310, MBOAT5 shRNA Plasmid (h): sc-95749-SH, MBOAT5 shRNA Plasmid (m): sc-149310-SH, MBOAT5 shRNA (h) Lentiviral REFERENCES Particles: sc-95749-V and MBOAT5 shRNA (m) Lentiviral Particles: sc- 149310-V. -
United States Patent (19) 11 Patent Number: 5,919,673 Wong Et Al
USOO59 19673A United States Patent (19) 11 Patent Number: 5,919,673 Wong et al. (45) Date of Patent: Jul. 6, 1999 54) ONE-POTENZYMATIC SULFATION Sekura, Methods in Enzymology, 77:413 (1981. PROCESS USING 3'-PHOSPHOADENOSINE Horwitz et al., Biochem. Biophy. Acta., 480:376 (1977). 5'-PHOSPHOSULEATE AND RECYCLED Satishchandran et al., J. Biol. Chem., 264:15012 (1989). PHOSPHORYLATED ADENOSINE Fernando et al., Biosci. Biotech. Biochem, 57:1974 (1993). INTERMEDIATES Mukai, Agric. Biol. Chem, 53:883 (1989). Leyh et al., J. Biol. Chem., 263:2409 (1988). 75 Inventors: Chi-Huey Wong, Rancho Sante Fe; Renosto et al., J. Biol. Chem., 259:2113 (1989). Chun-Hung Lin, San Diego; Marcus et al., Anal. Biochem., 107:296 (1980). GWO-Jenn Shen, Carlsbad, all of Calif. Suzuki et al., Biochim. Biophys. Acta, 50:169 (1961). Robinson, Biochem. J., 113:543 (1969). 73 Assignee: The Scripps Research Institute, Kimata et al., Mol. Cell. Biochem. 1:211(1973). LaJolla, Calif. Silbert, J. Biol. Chem., 239:1310 (1964). Kim et al., J. Biol. Chem., 252:8292 (1977). 21 Appl. No.: 08/408,774 Habuchi et al., Biochim. Biophys. Acta, 208:616 (1980). Habuchi et al., Biochim. Biophys. Acta, 414:717 (1982). 22 Filed: Mar. 22, 1995 Habuchi et al., J. Biol. Chem., 246:7357 (1971). 51) Int. Cl. ............................. C12P 11/00; C12P33/00; Nakanishi et al., J. Biol. Chem., 256:5443 (1981). C12P 19/04; C12P 19/32 Sugumaran et al., J. Biol. Chem., 261: 12659 (1986). 52 U.S. Cl. ............................ 435/130; 435/101; 435/52; Fisher et al., Nature, 357:655 (1992). 435/92 LeRouge et al., Nature, 344:781 (1990). -
RAB-GAP Immunity Signaling by the Tbc1d23 Spatiotemporal Inhibition
Downloaded from http://www.jimmunol.org/ by guest on September 27, 2021 is online at: average * The Journal of Immunology , 17 of which you can access for free at: 2012; 188:2905-2913; Prepublished online 6 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1102595 http://www.jimmunol.org/content/188/6/2905 Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras, Ivana V. Yang, Brad Lackford, David W. H. Riches, Rytis Prekeris, Jonathan H. Freedman, David A. Schwartz and Scott Alper J Immunol cites 58 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/06/jimmunol.110259 5.DC1 This article http://www.jimmunol.org/content/188/6/2905.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 27, 2021. The Journal of Immunology Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras,*,† Ivana V. Yang,†,‡ Brad Lackford,x David W. -
( 12 ) United States Patent
US010127346B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 127 ,346 B2 Dewey et al . (45 ) Date of Patent: Nov . 13 , 2018 (54 ) SYSTEMS AND METHODS FOR Fan et al. Noninvasive diagnosis of fetal aneuploidy by shotgun INTERPRETING A HUMAN GENOME USING sequencing DNA from maternal blood Proceedings of the National A SYNTHETIC REFERENCE SEQUENCE Academy of Sciences USA vol. 16266 - 16271 (2008 ) . * Chen et al. -717A > G polymorphism of human C - reactive protein ( 75 ) Inventors: Frederick Dewey , Redwood City , CA gene associated with coronary heart disease in ethnic Han Chinese : (US ) ; Euan A . Ashley , Menlo Park , CA the Beijing atherosclerosis study Journal of Molecular Medicine (US ) ; Matthew Wheeler, Sunnyvale , vol. 83 , pp . 72 -78 ( 2005 ). * CA (US ) ; Michael Snyder , Stanford , Wheeler et al. The complete genome of an individual by massively CA (US ) ; Carlos Bustamante , Emerald parallel DNA sequencing Nature vol. 452 , j pp . 872 -877 ( 2008 ). * Hills , CA (US ) Candore et al . Pharmacogenomics : A Tool to Prevent and Cure Coronary Heart Disease Current Pharmaceutical Design vol. 13 pp . ( 73 ) Assignee : The Board of Trustees of the Leland 3726 - 3734 ( 2007 ) . * Stanford Junior University , Stanford , Dewey et al . Phase Whole -Genome Genetic Risk in a Family CA (US ) Quartet Using a Major Allele Reference Sequence PLoS Genetics vol. 7 , article e1002280 ( 2011 ) . * ( * ) Notice : Subject to any disclaimer , the term of this Abecasis et al. , “ Merlin — rapid analysis of dense genetic maps patent is extended or adjusted under 35 using sparse gene flow trees ” , Nature Genetics , Jan . 2002 , vol. 30 , U . S . C . 154 ( b ) by 978 days . pp . -
Metabolic Regulation by Lipid Activated Receptors by Maxwell A
Metabolic Regulation by Lipid Activated Receptors By Maxwell A Ruby A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy In Molecular & Biochemical Nutrition In the Graduate Division Of the University of California, Berkeley Committee in charge: Professor Marc K. Hellerstein, Chair Professor Ronald M. Krauss Professor George A. Brooks Professor Andreas Stahl Fall 2010 Abstract Metabolic Regulation by Lipid Activated Receptors By Maxwell Alexander Ruby Doctor of Philosophy in Molecular & Biochemical Nutrition University of California, Berkeley Professor Marc K. Hellerstein, Chair Obesity and related metabolic disorders have reached epidemic levels with dire public health consequences. Efforts to stem the tide focus on behavioral and pharmacological interventions. Several hypolipidemic pharmaceutical agents target endogenous lipid receptors, including the peroxisomal proliferator activated receptor α (PPAR α) and cannabinoid receptor 1 (CB1). To further the understanding of these clinically relevant receptors, we elucidated the biochemical basis of PPAR α activation by lipoprotein lipolysis products and the metabolic and transcriptional responses to elevated endocannabinoid signaling. PPAR α is activated by fatty acids and their derivatives in vitro. While several specific pathways have been implicated in the generation of PPAR α ligands, we focused on lipoprotein lipase mediated lipolysis of triglyceride rich lipoproteins. Fatty acids activated PPAR α similarly to VLDL lipolytic products. Unbound fatty acid concentration determined the extent of PPAR α activation. Lipolysis of VLDL, but not physiological unbound fatty acid concentrations, created the fatty acid uptake necessary to stimulate PPAR α. Consistent with a role for vascular lipases in the activation of PPAR α, administration of a lipase inhibitor (p-407) prevented PPAR α dependent induction of target genes in fasted mice. -
Genome-Scale Phylogenetic Function Annotation of Large and Diverse Protein Families
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Genome-scale phylogenetic function annotation of large and diverse protein families 1∗ Barbara E Engelhardt Electrical Engineering and Computer Science Department, University of California, Berkeley, Berkeley, CA, USA Current address: Computer Science Department, University of Chicago, Chicago, IL, USA 2 Michael I Jordan Statistics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley, Berkeley, CA, USA 3 John R Srouji Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA USA Current address: Molecular and Cellular Biology Department, Harvard University, Cambridge, MA, USA 4 Steven E Brenner Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, CA, USA ∗ Corresponding author: [email protected] Running Title: Phylogenetic function annotation Keywords: Protein molecular function annotation, statistical model, protein function evolution, Gene Ontology, whole-genome annotation. Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press 2 Abstract The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function pre- diction (Engelhardt et al., 2005, 2006). Here we present a significant revision of the approach (SIFTER version 2.0) that allows annotations to be made on a genomic scale. We confirm that SIFTER 2.0 pro- duces equivalently precise predictions to the earlier version of SIFTER on a carefully studied family and on a collection of one hundred protein families with limited functional diversity. We have added an ap- proximation method to SIFTER 2.0, and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family.