Metabolic Regulation by Lipid Activated Receptors by Maxwell A

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Regulation by Lipid Activated Receptors by Maxwell A Metabolic Regulation by Lipid Activated Receptors By Maxwell A Ruby A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy In Molecular & Biochemical Nutrition In the Graduate Division Of the University of California, Berkeley Committee in charge: Professor Marc K. Hellerstein, Chair Professor Ronald M. Krauss Professor George A. Brooks Professor Andreas Stahl Fall 2010 Abstract Metabolic Regulation by Lipid Activated Receptors By Maxwell Alexander Ruby Doctor of Philosophy in Molecular & Biochemical Nutrition University of California, Berkeley Professor Marc K. Hellerstein, Chair Obesity and related metabolic disorders have reached epidemic levels with dire public health consequences. Efforts to stem the tide focus on behavioral and pharmacological interventions. Several hypolipidemic pharmaceutical agents target endogenous lipid receptors, including the peroxisomal proliferator activated receptor α (PPAR α) and cannabinoid receptor 1 (CB1). To further the understanding of these clinically relevant receptors, we elucidated the biochemical basis of PPAR α activation by lipoprotein lipolysis products and the metabolic and transcriptional responses to elevated endocannabinoid signaling. PPAR α is activated by fatty acids and their derivatives in vitro. While several specific pathways have been implicated in the generation of PPAR α ligands, we focused on lipoprotein lipase mediated lipolysis of triglyceride rich lipoproteins. Fatty acids activated PPAR α similarly to VLDL lipolytic products. Unbound fatty acid concentration determined the extent of PPAR α activation. Lipolysis of VLDL, but not physiological unbound fatty acid concentrations, created the fatty acid uptake necessary to stimulate PPAR α. Consistent with a role for vascular lipases in the activation of PPAR α, administration of a lipase inhibitor (p-407) prevented PPAR α dependent induction of target genes in fasted mice. Apolipoprotein CIII, an endogenous inhibitor of lipoprotein lipase, regulated access to the lipoprotein pool of PPAR α ligands. Our results support a role for the local generation of PPAR α ligands by lipase activity. The endocannabinoid system regulates diverse physiological functions, including energy balance. While loss of CB1 signaling has more pronounced effects on lipid parameters than expected based on weight loss alone, direct demonstration of endocannabinoid regulation of lipid metabolism is lacking. To test the effects of endogenously produced cannabinoids on lipid metabolism, independent of alterations in food intake, we analyzed tissues from mice treated with IDFP, an organophosphorus inhibitor of endocannabinoid breakdown. IDFP administration inhibited hepatic monoacylglycerol lipase leading to elevated levels of 2-arachidonylglycerol. We found that IDFP administration caused accumulation of apoE depleted VLDL. HDL particles accumulated apoE and failed to transfer it to VLDL in vitro. Importantly, these effects were prevented by pharmacological inhibition of CB1 and absent in plasma from CB1 mice. IDFP also caused a CB1-dependent increase in hepatic triglycerides. Thus, endocannabinoids inhibit the transfer of apoE from HDL to VLDL leading to apoE depletion of triglyceride rich lipoproteins. Microarray analysis allowed us to determine the effects of IDFP on expression of genes involved in lipid metabolism and to discover novel cannabinoid responsive genes. IDFP increased expression of lipogenic and SREBP2 target genes in a CB1-dependent fashion. On a global scale, pre-administration of a CB1 antagonist prevented many of the IDFP induced alterations in gene expression. IDFP decreased expression of genes involved in amino acid metabolism and inflammation. PCR analysis of selected mRNAs confirmed several of the key array findings. Our work indicates that endocannabinoids exert a large influence on hepatic lipid metabolism independent of food intake and suggest that peripherally restricted CB1 antagonists 1 may be of therapeutic value. Overall, these findings shed light on the endogenous mechanisms of PPAR α activation and the hepatic responses to Cb1 activation. This information may help guide the continuing effort to develop treatments for metabolic disease. 2 Acknowledgments First and foremost, I’d like to thank my graduate advisor Dr. Ronald Krauss. His constant support and patience has allowed me to grow as a scientist and as a person. Discussing science with Dr. Krauss reminds me of my reasons for coming to graduate school. His contiguous enthusiasm for science fueled all of the research I’ve done and will do. The collection of amazing individuals that make up the Krauss lab are a reflection of Dr. Krauss himself. Every member of the Krauss lab has been incredibly supportive and kind throughout these five years. I’d especially like to acknowledge Dr. Sally Chiu, Myra Gloria, Casey Geany and Katie Wojnoonski for their constant friendship. A special thanks to my office- mate, Dr. Lara Mangravite. You were a professional and personal compass when I was lost. Thanks to the entire lab! I feel very fortunate to have worked with many amazing collaborators during my time at Berkeley. Thanks to Dr. Daniel Nomura. Carolyn Hudak, Roger Issa, and Dr. John Casida for making “work” such a pleasant experience. Daniel you were a true mentor in the daily life of a scientist. Thanks to Dr. Jorge Plutzky for hosting me in Boston and allowing me to learn several novel techniques. Thanks to Dr. Thomas Johnston for all the conversations, scientific and otherwise. I also owe a debt of gratitude to my friends and family who have helped me navigate the occasionally rocky emotional terrain of graduate school. You guys are my heart and everything I do is yours. i TABLE OF CONTENTS CHAPTER 1 Review of the Literature 1 Section 1 Introduction 2 Section 2 PPAR α 3 Background & Discovery 3 Pharmacology 3 Downstream Effects 4 Regulation 4 The New Fat Hypothesis 6 Lipolysis of Stored Triglyceride 7 Lipolysis of Lipoproteins 7 Section 3 Cannabinoid Receptor 1 8 Background and discovery 8 Regulation 9 Pharmacology 10 Downstream Effects 11 References 13 CHAPTER 2 VLDL hydrolysis by LpL activates PPAR α through generation of unbound fatty acids 25 Abstract 26 Introduction 27 Methods 27 Results 29 Discussion 30 References 34 Figures and Tables 38 CHAPTER 3 Overactive endocannabinoid signaling impairs apolipoprotein E mediated clearance of triglyceride-rich lipoproteins 42 Abstract 43 Introduction 44 Methods 45 Results 46 ii Discussion 48 References 51 Figures and Tables 54 CHAPTER 4 Endogenous cannabinoid signalling induces insulin resistance and fatty liver: Identification of downstream targets 66 Abstract 67 Introduction 68 Methods 69 Results 69 Discussion 71 References 74 Figures and Tables 78 CHAPTER 5 Conclusions and future directions 98 iii CHAPTER 1 Review of the Literature 1 Introduction One of life’s most amazing feats is the maintenance of homeostasis in the face of constant flux. Consider that over the past year I have consumed over a million calories, and yet my body weight has shifted less than a pound, representing only a few thousand calories. However, it would be a mistake to assume my body has remained the same. The body is in constant flux, with perpetual turnover of nutrients and cells. For example, while my body fat mass may have remained constant, its composition has undoubtedly shifted to reflect the increase in dairy-derived saturated fatty acid induced by the introduction of a gourmet ice cream parlor in my neighborhood. Homeostatic mechanisms disguise the reality of flux so seamlessly that mass spectrometry is necessary to uncover it. What constitutes an acceptable error rate in biological homeostasis can best be judged by function. Many humans are experiencing a breakdown in their ability to maintain metabolic homeostasis that has serious functional consequences. Children today are not expected to outlive their parents for the first time in two centuries(1). This is largely attributed to increased prevalence of obesity and its associated diseases, which include two of the three leading causes of death, type II diabetes and heart disease. Has the marvelous machinery of our body been fundamentally modified in the past few decades? Probably not, even if epigenetic effects are considered. More likely the current environment, characterized by excess consumption of calories and lack of physical activity, overwhelms the regulatory mechanisms that are in place. Although chronic caloric excess likely did not exert large evolutionary pressure, the organism still displays remarkable ability to adapt to this environmental condition. For example, energy expenditure will increase in response to overfeeding. Similarly, pancreatic β-cell mass will increase in response to insulin resistance. The current epidemic of metabolic diseases, in spite of these adaptations, is testimony to the extreme conditions under which we have placed our bodies. Efforts to combat metabolic disease focus on altering these conditions and exploring the homeostatic mechanisms that they are assaulting. Driven by curiosity, I have chosen the latter for the past half decade. Aberrant lipid accumulation plays a crucial role in the pathogenesis of metabolic disease. For example, retention of lipoproteins in the sub-endothelial space is necessary for the development of atherosclerotic lesions. This knowledge, combined with a firm understanding of the homeostatic mechanisms governing cholesterol metabolism, improved prevention of cardiovascular
Recommended publications
  • 615 Neuroscience-Cayman-Bertin
    Thomas G. Brock, Ph.D. Introduction to Neuroscience In our first Biology classes, we learned that lipids form the membranes around cells. For many students, interests quickly moved to the intracellular constituents ‘that really matter’, or to how cells or systems work in health and disease. If there was further thought about lipids, it might have been limited to more personal issues, like an expanding waistline. It was easy to forget about lipids in the complexities of, say, Alzheimer’s Disease, where tau protein is hyperphosphorylated by a host of kinases before forming neurofibrillary tangles and amyloid precursor protein is processed by assorted secretases, ultimately aggregating to form neurodegenerating plaques. What possible role could lipids have in all this? After all, lipids just form the membranes around cells. Fortunately, neuroscientists study complex systems. Whether working at the molecular, cellular, or organismal level, the research focus always returns to the intricately interconnected bigger picture. Perhaps surprisingly, lipids keep emerging as part of the bigger picture. At least, the smaller lipids do. Many of the smaller lipids, including the cannabinoids and eicosanoids, act as paracrine hormones, modulating cell functions in a receptor-mediated fashion. In this sense, they are rather like the peptide hormones in their diversity and actions. In the neurosystem, this means that these signaling lipids determine if synapses fire or not, when cells differentiate or die, and whether tissues remain healthy or become inflamed. Returning to the question posed above about lipids in Alzheimer’s, these mediators have roles at many levels in the course of the disease, as presented in an article on page 42 of this catalog.
    [Show full text]
  • Lipid Lowering Agents, Cognitive Decline, and Dementia: the Three-City Study
    Lipid lowering agents, cognitive decline, and dementia: the three-city study. Marie-Laure Ancelin, Isabelle Carrière, Pascale Barberger-Gateau, Sophie Auriacombe, Olivier Rouaud, Spiros Fourlanos, Claudine Berr, Anne-Marie Dupuy, Karen Ritchie To cite this version: Marie-Laure Ancelin, Isabelle Carrière, Pascale Barberger-Gateau, Sophie Auriacombe, Olivier Rouaud, et al.. Lipid lowering agents, cognitive decline, and dementia: the three-city study.: Lipid Lowering Agents and Cognitive Decline. Journal of Alzheimer’s Disease, IOS Press, 2012, 30 (3), pp.629-37. 10.3233/JAD-2012-120064. inserm-00707350 HAL Id: inserm-00707350 https://www.hal.inserm.fr/inserm-00707350 Submitted on 12 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lipid lowering agents, cognitive decline, and dementia: the three-city study Marie-Laure Ancelin 1 * , Isabelle Carrière 1 , Pascale Barberger-Gateau 2 , Sophie Auriacombe 2 , Olivier Rouaud 3 , Spiros Fourlanos 4 , Claudine Berr 1 , Anne-Marie Dupuy 1 5 , Karen Ritchie 1 6 1 Neuropsychiatrie : Recherche Epidémiologique
    [Show full text]
  • NO-1886 Decreases Ectopic Lipid Deposition and Protects Pancreatic  Cells in Diet-Induced Diabetic Swine
    399 NO-1886 decreases ectopic lipid deposition and protects pancreatic cells in diet-induced diabetic swine W Yin*,1,2,5, D Liao*,1,2, M Kusunoki6,SXi1, K Tsutsumi3, Z Wang1, X Lian1, T Koike4, J Fan4, Y Yang5 and C Tang5 1Department of Biochemistry and Biotechnology, Nanhua University School of Life Sciences and Technology, Hengyang, Hunan 421001, China 2Department of Pathophysiology, Central South University Xiangya Medical College, Changsha, Hunan, China 3Research and Development, Otsuka Pharmaceutical Factory Inc., Tokushima, Japan 4Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan 5Institute of Cardiovascular Research, Nanhua University Medical School, Hengyang, Hunan 421001, China 6Department of Internal Medicine, Faculty of Medicine, Aichi Medical University, Nagakute-cho, Aichigunte, Aichi 480-11, Japan (Requests for offprints should be addressed to W Yin, Department of Biochemistry and Molecular Biology, Nanhua University School of Life Sciences and Technology, Hengyang, Hunan 421001, China; Email: [email protected]) *W Yin and D Liao contributed equally to this paper Abstract The synthetic compound NO-1886 (ibrolipim) is a lipo- skeletal muscle, liver and pancreas, and also caused pan- protein lipase activator that has been proven to be highly creatic cell damage. However, supplementing 1% NO- effective in lowering plasma triglycerides. Recently, we 1886 (200 mg/kg per day) into the high-fat/high-sucrose found that NO-1886 also reduced plasma free fatty acids diet decreased ectopic lipid deposition, improved insulin and glucose in high-fat/high-sucrose diet-induced dia- resistance, and alleviated the cell damage. These results betic rabbits.
    [Show full text]
  • The Role of Genetic Variation in Predisposition to Alcohol-Related Chronic Pancreatitis
    The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Marianne Lucy Johnstone April 2015 The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis 2015 Abstract Background Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main causative agent. However, only a small proportion of alcoholics develop chronic pancreatitis. Genetic polymorphism may affect pancreatitis risk. Aim To determine the factors required to classify a chronic pancreatic population and identify genetic variations that may explain why only some alcoholics develop chronic pancreatitis. Methods The most appropriate method of diagnosing CP was assessed using a systematic review. Genetics of different populations of alcohol-related chronic pancreatitics (ACP) were explored using four different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. Results EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93).
    [Show full text]
  • Development of a Human Mitochondrial Oligonucleotide
    BMC Genomics BioMed Central Research article Open Access Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency Alena Жížková1,2,5, Viktor Stránecký1,2, Robert Ivánek1,2,4, Hana Hartmannová1,2, Lenka Nosková2, Lenka Piherová1,2, Markéta Tesařová1,3, Hana Hansíková1,3, Tomáš Honzík3, JiříZeman1,3, Petr Divina4, Andrea Potocká1,5, Jan Paul1,5, Wolfgang Sperl6, Johannes A Mayr6, Sara Seneca7, Josef Houštĕk1,5 and Stanislav Kmoch*1,2 Address: 1Center for Applied Genomics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic, 2Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic, 3Department of Pediatrics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic, 4Institute of Molecular Genetics, Academy of Science of the Czech Republic, Prague, Czech Republic, 5Department of Bioenergetics, Institute of Physiology, Academy of Science of the Czech Republic, Prague, Czech Republic, 6Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria and 7Center of Medical Genetics, Free University Brussels, Brussels, Belgium Email: Alena Жížková - [email protected]; Viktor Stránecký - [email protected]; Robert Ivánek - [email protected]; Hana Hartmannová - [email protected]; Lenka Nosková - [email protected]; Lenka Piherová - [email protected]; Markéta Tesařová - [email protected]; Hana Hansíková -
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Lipoprotein Lipase As an Attractive Target for Correcting Dyslipidemia and Reduction of Cvd Residual Risk
    ISSN 2311-715X УКРАЇНСЬКИЙ БІОФАРМАЦЕВТИЧНИЙ ЖУРНАЛ, № 4 (45) 2016 UDC 577.125.8:616.005 National University of Pharmacy D. A. Dorovsky, A. L. Zagayko LIPOPROTEIN LIPASE AS AN ATTRACTIVE TARGET FOR CORRECTING DYSLIPIDEMIA AND REDUCTION OF CVD RESIDUAL RISK Lipoprotein lipase has long been known to hydrolyse triglycerides from triglycerides-rich lipoproteins. It also the ability to promote the binding of lipoproteins to the wide variation of lipoprotein receptors. There are some studies that suggest the possible atherogenic role of lipoprotein lipase. In theory, lipoprotein lipase deficiency should help to clarify this question. However, the rarity of this condition means that it has not been possible to conduct epidemiological studies. During the last decade it became obvious that elevated plasma TG and low HDL-cholesterol are part of CVD residual risk. Thus LPL is an attractive target for correcting dyslipidemia and reduction of CVD residual risk. Key words: Lipoprotein lipase; atherosclerosis; lipoproteins INTRODUCTION differences in M expression of LPL contributed to diffe- Lipoprotein lipase (LPL) is synthesized and secreted rences in the development of atherosclerotic plaque for- in several tissues, such as skeletal muscle, adipose tissue, mation. Concentrations of LPL protein, activity and mRNA cardiac muscle and macrophages (M), binding to the in atherosclerosis-prone mice were found to be seve- vascular endothelial cell surface of the capillary through- ral-fold higher than in atherosclerosis-resistant counter- heparan sulphate. parts. Ichikawa et al. compared atherosclerotic lesions in Lipoprotein lipase (LPL) plays a central role in lipo wild-type strains with lesions in rabbits with over-exp- protein metabolism by catalyzing hydrolysis of triglyce- ressed M-specific human lipoprotein lipase, after giving rides (TG) in very low-density lipoprotein (VLDL) partic- both groups food containing 0.3 % cholesterol.
    [Show full text]
  • 1. Endocannabinoid System (ECS)
    UNIVERSITÀ DI PISA Dipartimento di Farmacia Corso di Laurea Specialistica in Chimica e Tecnologia Farmaceutiche Tesi di Laurea: DESIGN AND SYNTHESIS OF HETEROCYCLIC DERIVATIVES AS POTENTIAL MAGL INHIBITORS Relatori: Prof. Marco Macchia Candidato: Glenda Tarchi Prof.ssa Clementina Manera (matricola N° 445314) Dott.ssa Chiara Arena Settore Scientifico Disciplinare: CHIM-08 ANNO ACCADEMICO 2013–2014 INDEX Sommario INDEX ......................................................................................... 3 1. Endocannabinoid system (ECS) ......................................... 6 1.1 Endocannabinoid receptors ........................................................... 7 1.2 Mechanism of endocannabinoid neuronal signaling ..................... 9 1.3 Endocannabinoids biosynthesis ................................................... 11 1.4 Enzymes involved in endocannabinoids degradation ................. 16 1.4.1 FAAH ........................................................................................................ 16 1.4.2 MAGL ....................................................................................................... 18 1.4.3 ABHD6 ..................................................................................................... 20 1.4.4 ABDH12 ................................................................................................... 21 2. MAGL like pharmacological target ................................ 23 2.1 The role of MAGL in pain and inflammation ............................. 24 2.1.1 Relation between
    [Show full text]
  • Regulation of Signaling and Metabolism by Lipin-Mediated Phosphatidic Acid Phosphohydrolase Activity
    biomolecules Review Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity Andrew J. Lutkewitte and Brian N. Finck * Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA; [email protected] * Correspondence: bfi[email protected]; Tel: +1-3143628963 Received: 4 September 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms. Keywords: phosphatidic acid; diacylglycerol; lipin; signaling 1. Introduction Foundational work many decades ago by the laboratory of Dr. Eugene Kennedy defined the four sequential enzymatic steps by which three fatty acyl groups were esterified onto the glycerol-3-phosphate backbone to synthesize triglyceride [1].
    [Show full text]
  • Dissertation V2.2 XR
    UCLA UCLA Electronic Theses and Dissertations Title Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation Permalink https://escholarship.org/uc/item/93c9r39k Author Rong, Xin Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Cellular and Molecular Pathology by Xin Rong 2015 © Copyright by Xin Rong 2015 ABSTRACT OF THE DISSERTATION Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation by Xin Rong Doctor of Philosophy in Cellular and Molecular Pathology University of California, Los Angeles 2015 Professor Peter John Tontonoz, Chair Phospholipids (PLs) are important structural components of biological membranes and precursors of numerous signaling molecules. The fatty acyl composition of PLs determines the biophysical characteristics of membranes. Multiple lines of evidence demonstrated that changes in fatty acyl composition could potentially affect the properties of proteins associated with membranes and influence the biological processes that occur on membranes. However, there is little understanding of how regulatory pathways control PL fatty acyl composition in vivo or how such regulation dictates physiological responses. In this work, we investigated the regulation of membrane fatty acyl composition by the Liver X Receptor (LXR)-Lysophosphatidylcholine Acyltranferase 3 (Lpcat3) pathway and its physiological or pathological relevance in lipid homeostasis and metabolic diseases. ii In chapter 2, we define a nuclear receptor pathway for the dynamic modulation of membrane composition in response to changes in cellular lipid metabolism.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]