Isopods Parasites Infection on Commercial Fishes of Parangipettai Waters, Southeast Coast of India

Total Page:16

File Type:pdf, Size:1020Kb

Isopods Parasites Infection on Commercial Fishes of Parangipettai Waters, Southeast Coast of India Asian Pac J Trop Dis 2014; 4(Suppl 1): S268-S272 S268 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage: www.elsevier.com/locate/apjtd Document heading doi: 10.1016/S2222-1808(14)60453-9 2014 by the Asian Pacific Journal of Tropical Disease. All rights reserved. 襃 Isopods parasites infection on commercial fishes of Parangipettai waters, southeast coast of India Palanivel Bharadhirajan*, Sambantham Murugan, Alagarsamy Sakthivel, Periyasamy Selvakumar CAS in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai-608 502, Tamil Nadu-India PEER REVIEW ABSTRACT Peer reviewer Objective: Methods: To examine the effect of six different isopods from five different food fish species. Prof. Dr. Baha Latif, Faculty of The specimens were collected directly from the trawlers landed at Parangipettai coast Medicine, Universiti T,e knologi MARA, during the year of 2012 (January-December). Isopods were removed from the body surface and Sungi Buloh, Selangor Malaysia. buccal cavities of the fish hosts and immediately preserved in 70% ethanol. Data regarding the Tel: +6 017 3145649 pResults:revalence of isopod parasites was calculated and site of attachment. Fax: +6 03 6126 7073 During the study period, 310 fishes were collected and examined for parasites infection, E-mail: [email protected] and it includes five different species. Among the examined fishes, 106 fish were infected among 120 T Comments the total number of collected paraLizasite sparsia. he occurrencThryssae of isop dussumieriod infectio n in all thSardinellae infected 34 19 25 36 albellafishes was . %. The Otolithesoccurren ccuvierie of was %, was %, 17 5 65 In general, it is a good study which Otolithes w acuvieris . % and was %. The mSardinellaaximum ialbellasopoda parasite infected noticed shows the importance of infection of Conclusions: and minimum value was recorded in Nerocila phaeopleura. Liza parsia fishes with isopods in southeast coast This is the new host for the parasite in . Thus of India. The authors investigate the parasitic attack the growth and normal function of the fishes will suffer and lead to economic prevalence of isopods in marine water loss or the marketability may reduce then. In along the lifespan, the host population was may be fishes and the effect of this infection affected by the parasitic outbreak. on the normal growth of the host. KEYWORDS Details on Page S271 Nerocila phaeopleura Food fishes, Isopod parasite, Cymothoids, 1. Introduction impair immature fishes so that they do not survive[6]. Isopod crustaceans are part of the greatest fish ectoparasite group Parasite diseases pose great problem in the culture and and are easy to identify due to their size, morphological captive maintenance of marine water fishes[1]. Among aspects and because they are easily found on the outer marine fish parasites, nearly 25% are crustaceans, mainly part of fish bodies[7]. According to the marine species of represented by copepod, brachiura and isopod[2]. Marine the order, Isopoda are classified into 12 suborders among isopods play an important role in the food web, in particular which the suborder Cymothoida includes 29 families. in removing decaying material from natural or altered Among the families of the suborder Cymothoida, the family environments and they also represent an important factor of Cymothoidae included 43 genera and 358 species[8]. Most of economic unbalance[3]. They occur in marine, estuarine and the fish species are infested by cymothoid isopods position freshwater habitats, especially in the near-shore coastal on the host (buccal, gill, burrowing or external), and general environment[4]. They occur on fish host on the outer body or body shapes have long influenced interpretation of the [9] fins, in the mouth, gill chambers, or nostrils, or occasionally relaNerocilationships of cymothoid genera . in self-made pockets in the flesh of their hosts[5]. Isopods is a large genus of the family Cymothoidae 65 cause significant economic losses to fisheries by killing, including at least Nerocilaspecies lphaeopleuraiving attache dN. o phaeopleuran the skin or, stunting, or damaging these fishes. They can also kill or on the fins of fishes. ( ) *Corresponding author: Palanivel Bharadhirajan, CAS in Marine Biology, Faculty of Article history: Marine Science, Annamalai University, Parangipettai-608 502, Tamil Nadu-India. Received 16 Nov 2013 Tel: 91-9788597210 Received in revised form 25 Nov, 2nd revised form 3 Dec, 3rd revised form 15 Dec 2013 E-mail: [email protected] Accepted 15 Jan 2014 Foundation Project: Supported by MoES project (Ref. No. 36/OOIS/SIBER/07). Available online 28 Jan 2014 Palanivel Bharadhirajan et al./Asian Pac J Trop Dis 2014; 4(Suppl 1): S268-S272 S269 3. Results all the appendages are highly modified to hold the body surface and tearing the body muscles of host fish strongly[10]. As already reported by Bruce NL[11], several species are A total number of 310 fishes were collected and examined morphologically highly variable and their identification for parasites infection. It includes five different food species. 106 is oNerocilaften diff icarmatault. The variNerocilaability w aorbignyis particu lN.arl yorbignyi studied Among the examined fishes, fish were infected among ( ) 120 in Nerocila excisa and Nerocila sundaica Nerocila the total number of collected parasites. The prevalence of [12] [13] [14] ( 1) acuminate, Nerocila arres, Nerocila kisra, N. isopod parasites was calculated Table . The measurements [15] [16] 2 orbignyi Nerocila, monodi , andN. phaeopleura , and of the fish hosts and isopods are shown in Figure . , , and [11]. Several Table 1 P parasitic isopods from araChirocentrusngipettai lik edorab cymothSardinellaoids from Prevalence of isopods parasites in marine food fishes. different food fishes via: , longiceps Sardinella sidensis Sardinella brachysoma Name of host No. of examined No. of infection fish Prevalence (%) L. parsia Dussumieria, acuta Thryssa dussumieri, T. dussumieri , 60 15 25.00 ( ) T. dussumieri , 50 18 36.00 Thryssa mystax Scomberomorus guttatus[17] S. albella and . Further 120 21 17.50 Cymothoa indica O. cuvieri observed an infStrongyluraection by strongylura on the spot 80 52 65.00 tail needlefish [18]. Many works Total 310 106 34.19 have been done on isopods parasites infection potential of different marine fishes whereas no attempt has made of in A B C the case of fishes. Hence, the present study deals with the isopods parasites infection on selected commercial fishes of Parangipettai coastal waters, southeast coast of India 2. Materials and methods F E D T he specimens were collec°ted’ direc°tly’ from the trawlers landed at Parangipettai (Lat 11 29 N; 79 46 E southeast coast of India) from January-December, 2012 (Figure 1). A total of 5 commercial food fishes infected with isopod at Parangipettai G H I landing center. They were brought in the laboratory for further study. Isopods were removed from the body surface and buccal cavities of the fish hosts and immediately preserved in 70% ethanol. The total length of the fish hosts Figure 2. and isopods was measured and all measurements were in The isopods parasites infected in marine fishes at different body millimeters. Mouth parts and appendages were carefully parts. N. phaeopleura L. parsia A B dissected using dissecting needles and forceps. Host and : parasite affeN.cte phaeopleurad in the caudal region of , C E F indicating the infectedS. p albellaart. and :T. dussumieri parasiteCymothoa affected i nbosii the nomenclature and fish taxonomy are according to ish pectoral fin region of and . G and H: [19] Cymothoa crenita O. cuvieri Base . Data regarding the total length, with weight and sex and parasites affected in the gill regions of fish (I) of host fish were recorded. indicate the parasites. The total prevalence of isopod infeLizaction parsia in fou rL. d iparsiafferent Chennai 34 19% T ( ) Bangalore fT.is hdussumieries was . Sardinella. he pre valbellaalence oS.f albella Otolithes, ( ) cuvieri O. cuvieri, and ( ) 25 00% 36 00% 17 50% 65 00% was . , . , . anO.d cuvieri. The maximum isopod parasites infectS.ed albella noticed in and minimum value was recorded in (Table 1). Parangipettai N. phaeopleura The study period was noticed maximum Tamil Nadu S. albella T. dussumieri L. aparsiattached onlCymothoay body surface of , and K erala . TheO. cuvieri sp. was attached by gill and baccual ( 2) Nerocilacavity of fish TCymothoaable . The total of infection sp. was 17.41% and sp. 16.77%. Table 2 The attachments of isopods parasites in marine food fishes. Host Parasites Species Site of attachment Liza parsia N. phaeopleura Body surface (Caudal pedangel) T. dussumieri N. phaeopleura Body surface (Nearby pectoral fin) S. albella N. phaeopleura Palk Skait Body surface (Nearby pectoral fin) O. cuvieri Cymothoa bosii Gill (inside of 1st gill arch) Figure 1. Cymothoa crenita Map shows the study area. Gill, Baccual cavity Palanivel Bharadhirajan et al./Asian Pac J Trop Dis 2014; 4(Suppl 1): S268-S272 S270 4. Discussion are specific in their choice of host, whereas other genera are less specific[33]. In the present study, the maximum affected Nerocila Cymothoa Parasitic isopods are likely the dominant group of was sp. (17.41%) and minimum was sp. Nerocila crustacean ectoparasite of fish in tropical seas[20]. Recently (16.77%). sp. was affected by three different fishes Cymothoa Nerocila the parasites have been recognized as an important and sp. was affected only by one fish. So component of global biodiversity and research efforts sp. was dominated and two genera of parasites could be N. phaeopleura directed and documented towards the parasitic species similarly. which is being host specific, would diversity has increased[21]. Parasites affected fish health, thus seem to fit in with an apparently generic characteristic Sardinella gibbosa growth, behavior, fecundity and mortality and also regulate and it seems reasonable to assume that is host population dynamics and their community structure[22]. the major host of the species in the South China sea.
Recommended publications
  • Seasonal Changes in Benthic Fish Population Influenced by Salinity and Sediment Morphology in a Tropical Bay
    Examines in Marine CRIMSON PUBLISHERS C Wings to the Research Biology and Oceanography: Open Access ISSN 2578-031X Research Article Seasonal Changes in Benthic Fish Population Influenced by Salinity and Sediment Morphology in a Tropical Bay Srinivasa MR, Vijaya Bhanu C and Annapurna C* Department of Zoology, Andhra University, India *Corresponding author: Annapurna C, Department of Zoology, Andhra University, Visakhapatnam-530 003, India Submission: November 13, 2017; Published: February 23, 2018 Abstract Coastal Bays are productive habitats used by a variety of fishes and other benthic organisms but little information is available on the ecology and population dynamics of benthic fishes of coastal bays in the tropical zones. This paper deals with the biodiversity, faunal assemblages, seasonal variations successivein the benthic post fish monsoons population and of pre a shallow monsoons tropical during Bay 2006 named to 2008.Nizampatnam Water and Bay, sediment located insamples southern were province collected of Bayfrom of 20 Bengal, stations East covering coast of 10, India. 20 Theand standing stock of benthic fishes and associated environmental factors of the study area were also reported in this paper. Sampling was done in two 6 orders and 1 class were recorded in this study dominated by Cociella crocodilus and Pisodonophis boro. The mean of Shannon Wiener diversity index 30 m zones. Altogether, 128 biological samples were collected with a Naturalist’s dredge. Thirty benthic fish species belonging to 21 genera, 12 families, H’ was recorded 1.3±0.4 during post-monsoon and 1.2±0.2 at pre-monsoonCociella crocodilus, suggesting Cynoglossus that the benthic lida, Cynoglossus fish diversity punticeps of this andBay wasAstroscopus poor.
    [Show full text]
  • Estuarine Fish Diversity of Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1.
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • Sardinella
    A CHECK.LIST OF THE FISHES OF INDIA, BURMA AND CEYLON. PART II. CLUPEIFORMES, BATHYCLUPEIFORMES, GALAXIIFORMES, SCOPELIFORMES AND ATELEOPIl~"ORMES. By K. S. l\iISRA, D.Se., F.Z.S., ,,1ssistant Superintendent, Zoological Survey of India, Kaiser Castle, Banaras Gantt. CONTENTS. PAGE. INTRODUOTION •• 382 SYSTEMATIC ACCOUNT 382 Class TELEOSTOMI 382 Subclass ACTINOPTERYGII 382 Order CLUPEIFOR)IES (ISOSPONDYLI, MALACOPTERYGII S. STR., 382 THRISSO)IORPHI). Suborder CLUPEOIDEI .. 382 Superfamily ELOPOIDAE 382 Family ELOPIDAE 382 Elopa 8aurU8 L. 382 Family MEGALOPIDA.E 383 M egalopa cyprinoides (Brouss.) 383 Su perfamily ALBULOIDAE 383 Family ALBULIDAE 383 Albula vulpe8 (L.) 384 Superfamily CLUPEOIDAE ... 384 Family CL UPEIDAE .' 384 SU bfamily DU88umieriini 384- Dussumieria acuta (C.V.) ". 384 Dus8umieria hasselti Blkr. 384 Ehirava jluviatiz.i8 Deraniyagala 385 Stolephorus malabaricu.9 Day 385 Subfamily Clupeini 385 IJarengula, punctata (RUpp.) 385 , Ilarcngula 'l:itteta (C. V .) .. 386 Sardinella albella.<C.V.) 386 Sardinella clupeoides (Blkr.) 387 Sardinella dayi Reg. 387 Saidinella jimbriata (C.V.) .. 387 Sa-rdinella gibbosa (Blkr.) 387 Sarain,ella longiceps C. V. 388 Sardinella melon1#tra (C.) 388 Sard·inella 8inden~i8 (Day) 389 Sardinella sirm (RliPll.) 389 Hilsu U·isha (Ham.) 389 HUsa !'anglt'rta (Blkr.) 390 390 lli/sa tol~ (C.v.) ., . [ 377 ] Q 378 Records of tll.e Indian Museum. [VOL. XLV .P~OE. (}ac1lUsia chapra (Ham.) 391 GadU8ia vari8!Jata (Day) 391 l(owala coval (C.) · . 392 Oarica Bohoma Ham. 392 Ilisha brachllsom:a (Blkr.) .. 3\J2 llisha elongata (Benn.) .. 393 llish.Q jiligera (C. V.) Ii • 393 llislla indica (Swns.) .. 393 ilisha kampeni (Web. & de Bfrt.) 394 llisha leach.enaulti (C.V.) , .
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Khu Hệ Cá Nội Địa Vùng Thừa Thiên Huế
    ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC SƢ PHẠM NGUYỄN DUY THUẬN KHU HỆ CÁ NỘI ĐỊA VÙNG THỪA THIÊN HUẾ LUẬN ÁN TIẾN SĨ SINH HỌC Huế, năm 2019 ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC SƢ PHẠM NGUYỄN DUY THUẬN KHU HỆ CÁ NỘI ĐỊA VÙNG THỪA THIÊN HUẾ Chuyên ngành: Động vật học Mã số: 9.42.01.03 LUẬN ÁN TIẾN SĨ SINH HỌC Ngƣời hƣớng dẫn khoa học: PGS.TS. VÕ VĂN PHÖ Huế, năm 2019 LỜI CAM ĐOAN Xin cam đoan đây là công trình nghiên cứu của riêng tôi dƣới sự hƣớng dẫn của thầy giáo PGS.TS. Võ Văn Phú. Các số liệu và kết quả nghiên cứu nêu trong luận án là trung thực, đƣợc các đồng tác giả cho phép sử dụng và chƣa từng đƣợc công bố trong bất kỳ một công trình nào khác. Những trích dẫn về bảng biểu, kết quả nghiên cứu của những tác giả khác, tài liệu sử dụng trong luận án đều có nguồn gốc rõ ràng và trích dẫn theo đúng quy định. Thừa Thiên Huế, ngày tháng năm 2019 Tác giả luận án Nguyễn Duy Thuận i LỜI CẢM ƠN Hoàn thành luận án này, tôi xin bày tỏ lòng biết ơn sâu sắc đến thầy giáo PGS.TS. Võ Văn Phú, Khoa Sinh học, Trƣờng Đại học Khoa học, Đại học Huế, ngƣời Thầy đã tận tình chỉ bảo, hƣớng dẫn trong suốt quá trình học tập, nghiên cứu và hoàn thành luận án. Tôi xin phép đƣợc gửi lời cảm ơn chân thành đến tập thể Giáo sƣ, Phó giáo sƣ, Tiến sĩ - những ngƣời Thầy trong Bộ môn Động vật học và Khoa Sinh học, Trƣờng Đại học Sƣ phạm, Đại học Huế đã cho tôi những bài học cơ bản, những kinh nghiệm trong nghiên cứu, truyền cho tôi tinh thần làm việc nghiêm túc, đã cho tôi nhiều ý kiến chỉ dẫn quý báu trong quá trình thực hiện đề tài luận án.
    [Show full text]
  • Download This PDF File
    Iran. J. Ichthyol. (June 2021), 8(2): 114-124 Received: February 9, 2021 © 2021 Iranian Society of Ichthyology Accepted: May 6, 2021 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v8i2.584 http://www.ijichthyol.org Research Article Morphology and DNA barcode confirm three new records of gobies (Gobiiformes: Gobiidae) from Bangladesh Md Jayedul ISLAM1, Tania SIDDIQUEKI1, Amit Kumer NEOGI1, Md. Yeamin HOSSAIN2, Michael HAMMER3, Kazi Ahsan HABIB1,4* 1Aquatic Bioresource Research Lab, Department of Fisheries Biology and Genetics, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh. 2Department of Fisheries, Faculty of Fisheries, University of Rajshahi, Rajshahi-6205, Bangladesh. 3Museum and Art Galllery of the Northern Territory, Darwin, NT, Australia. 4Department of Fisheries Biology and Genetics, Faculty of Fisheries, Aquaculture and Marine Science, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh. *Email: [email protected] Abstract: This paper deals with three new distributional records of gobies viz. Amblyeleotris downingi Randall, 1994, Psammogobius biocellatus (Valenciennes, 1837), and Valenciennea muralis (Valenciennes, 1837) from Bangladeshi waters in the northernmost part of the Bay of Bengal. The examined specimens are identified and described by morphomeristic characteristics in addition to DNA barcoding based on mitochondrial COI gene. The COI barcode sequence of Amblyeleotris downingi is submitted for the first time in the GenBank. In addition, an updated checklist of gobies of the country is also compiled in this paper. Keywords: First record, Gobiid fish, Saint Martin’s Island, Sonadia Island. Citation: Islam, M.J.; Siddiqueki, T.; Neogi, A.K.; Hossain, M.Y.; HammerM M. & Habib, K.A. 2021. Morphology and DNA barcode confirm three new records of gobies (Gobiiformes: Gobiidae) from Bangladesh.
    [Show full text]
  • Marine and Estuarine Fish Fauna of Tamil Nadu, India
    Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(4): 231-271 Article Marine and estuarine fish fauna of Tamil Nadu, India 1,2 3 1 1 H.S. Mogalekar , J. Canciyal , D.S. Patadia , C. Sudhan 1Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India 2College of Fisheries, Dholi, Muzaffarpur - 843 121, Bihar, India 3Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India E-mail: [email protected] Received 20 June 2018; Accepted 25 July 2018; Published 1 December 2018 Abstract Varied marine and estuarine ecosystems of Tamil Nadu endowed with diverse fish fauna. A total of 1656 fish species under two classes, 40 orders, 191 families and 683 geranra reported from marine and estuarine waters of Tamil Nadu. In the checklist, 1075 fish species were primary marine water and remaining 581 species were diadromus. In total, 128 species were reported under class Elasmobranchii (11 orders, 36 families and 70 genera) and 1528 species under class Actinopterygii (29 orders, 155 families and 613 genera). The top five order with diverse species composition were Perciformes (932 species; 56.29% of the total fauna), Tetraodontiformes (99 species), Pleuronectiforms (77 species), Clupeiformes (72 species) and Scorpaeniformes (69 species). At the family level, the Gobiidae has the greatest number of species (86 species), followed by the Carangidae (65 species), Labridae (64 species) and Serranidae (63 species). Fishery status assessment revealed existence of 1029 species worth for capture fishery, 425 species worth for aquarium fishery, 84 species worth for culture fishery, 242 species worth for sport fishery and 60 species worth for bait fishery.
    [Show full text]
  • Clupeiformes: Clupeidae) in the Philippines
    Environmental Science & Civil Engineering Faculty Works Environmental Science & Civil Engineering 2011 First report of the Taiwan sardinella Sardinella hualiensis (Clupeiformes: Clupeidae) in the Philippines. Demian A. Willette Loyola Marymount University, [email protected] Follow this and additional works at: https://digitalcommons.lmu.edu/es-ce_fac Part of the Environmental Sciences Commons Recommended Citation Willette DA, Santos MD, and Aragon MA. (2011) First report of the Taiwan sardinella Sardinella hualiensis (Clupeiformes: Clupeidae) in the Philippines. Journal of Fish Biology, 79: 2087-2094. This Article is brought to you for free and open access by the Environmental Science & Civil Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Environmental Science & Civil Engineering Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Journal of Fish Biology (2011) 79, 2087–2094 doi:10.1111/j.1095-8649.2011.03133.x First report of the Taiwan sardinella Sardinella hualiensis (Clupeiformes: Clupeidae) in the Philippines D. A. Willette*†‡, M. D. Santos† and M. A. Aragon§ *Old Dominion University, Department of Biological Sciences, 207 Mills Godwin Building, Norfolk, VA 23508, U.S.A., †National Fisheries Research and Development Institute, 940 Quezon Avenue, Quezon City, Metro Manila 1103, Philippines and §Bureau of Fisheries and Aquatic Resources, Regional Fisheries Office No. II, Government Centre, Carig, Tuguegarao City, Cagayan 3500, Philippines (Received 4 May 2011, Accepted 22 September 2011) A range expansion of the Taiwan sardinella Sardinella hualiensis to the Philippines is reported. The data suggested that the southern translocation of S.
    [Show full text]
  • National Report on the Fish Stocks and Habitats of Regional, Global
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility NATIONAL REPORT on The Fish Stocks and Habitats of Regional, Global, and Transboundary Significance in the South China Sea THAILAND Mr. Pirochana Saikliang Focal Point for Fisheries Chumphon Marine Fisheries Research and Development Center 408 Moo 8, Paknum Sub-District, Muang District, Chumphon 86120, Thailand NATIONAL REPORT ON FISHERIES – THAILAND Table of Contents 1. MARINE FISHERIES DEVELOPMENT........................................................................................2 / 1.1 OVERVIEW OF THE FISHERIES SECTOR ...................................................................................2 1.1.1 Total catch by fishing area, port of landing or province (by species/species group).7 1.1.2 Fishing effort by gear (no. of fishing days, or no. of boats) .......................................7 1.1.2.1 Trawl ...........................................................................................................10 1.1.2.2 Purse seine/ring net....................................................................................10 1.1.2.3 Gill net.........................................................................................................12 1.1.2.4 Other gears.................................................................................................12 1.1.3 Economic value of catch..........................................................................................14 1.1.4 Importance of the fisheries sector
    [Show full text]
  • AN ANNOTATED CHECKLIST of GOBIOID FISHES from the MANGROVE ESTUARY of MATANG, MALAY PENINSULA, with COMMENTS on a NEW Pseudogobius (TELEOSTEI: GOBIIDAE) SPECIES
    106 Journal of Marine Science and Technology, Vol. 21, Suppl., pp. 106-116 (2013) DOI: 10.6119/JMST-013-1219-8 AN ANNOTATED CHECKLIST OF GOBIOID FISHES FROM THE MANGROVE ESTUARY OF MATANG, MALAY PENINSULA, WITH COMMENTS ON A NEW Pseudogobius (TELEOSTEI: GOBIIDAE) SPECIES Shih-Pin Huang1, Kwang-Tsao Shao1, 2, Hao-Ming Huang1, Ving-Ching Chong3, and I-Shiung Chen1 Key words: Malaysia, Gobiidae, Eleotridae, mangrove. around the Strait. Larson et al. [47] released a comprehen- sive faunistic list of gobioid fishes collected from the marine habitat of Singapore, which provided useful fish data for the ABSTRACT southern tip of the Malay Peninsula. A series of field collections of fishes were made in the However, except for the research work mentioned above, Matang mangrove, Malay Peninsula in April 2011. At least few field survey data have been published for the small-sized 23 genera and 27 species of gobioid fishes including a new mangrove gobies, especially in the Indian Ocean side of the Pseudogobius species were collected and recorded in this Strait of Malacca. The mangrove of Matang is the largest region during the expedition. The checklist of gobioid fauna mangrove forest of the Malay Peninsula. Situated at the and available materials are provided herein, and the formal northern region of the Peninsula, with over forty thousand description of a new goby species, Pseudogobius fulvicaudus hectares of coverage, this productive area is the subject of our Huang, Shao & Chen, new species will be provided and dis- 2011 fish collecting expedition. Despite the difficulty in cussed in this paper. reaching the muddy habitats around the mangrove of Matang in the northern region of the Strait of Malacca, our research team employed local fishing boats to go further into small I.
    [Show full text]