Pdflib API Reference 9.0.1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Unicode Cookbook for Linguists: Managing Writing Systems Using Orthography Profiles
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles Moran, Steven ; Cysouw, Michael DOI: https://doi.org/10.5281/zenodo.290662 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-135400 Monograph The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Moran, Steven; Cysouw, Michael (2017). The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles. CERN Data Centre: Zenodo. DOI: https://doi.org/10.5281/zenodo.290662 The Unicode Cookbook for Linguists Managing writing systems using orthography profiles Steven Moran & Michael Cysouw Change dedication in localmetadata.tex Preface This text is meant as a practical guide for linguists, and programmers, whowork with data in multilingual computational environments. We introduce the basic concepts needed to understand how writing systems and character encodings function, and how they work together. The intersection of the Unicode Standard and the International Phonetic Al- phabet is often not met without frustration by users. Nevertheless, thetwo standards have provided language researchers with a consistent computational architecture needed to process, publish and analyze data from many different languages. We bring to light common, but not always transparent, pitfalls that researchers face when working with Unicode and IPA. Our research uses quantitative methods to compare languages and uncover and clarify their phylogenetic relations. However, the majority of lexical data available from the world’s languages is in author- or document-specific orthogra- phies. -
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
Bbedit 13.5 User Manual
User Manual BBEdit™ Professional Code and Text Editor for the Macintosh Bare Bones Software, Inc. ™ BBEdit 13.5 Product Design Jim Correia, Rich Siegel, Steve Kalkwarf, Patrick Woolsey Product Engineering Jim Correia, Seth Dillingham, Matt Henderson, Jon Hueras, Steve Kalkwarf, Rich Siegel, Steve Sisak Engineers Emeritus Chris Borton, Tom Emerson, Pete Gontier, Jamie McCarthy, John Norstad, Jon Pugh, Mark Romano, Eric Slosser, Rob Vaterlaus Documentation Fritz Anderson, Philip Borenstein, Stephen Chernicoff, John Gruber, Jeff Mattson, Jerry Kindall, Caroline Rose, Allan Rouselle, Rich Siegel, Vicky Wong, Patrick Woolsey Additional Engineering Polaschek Computing Icon Design Bryan Bell Factory Color Schemes Luke Andrews Additional Color Schemes Toothpaste by Cat Noon, and Xcode Dark by Andrew Carter. Used by permission. Additional Icons By icons8. Used under license Additional Artwork By Jonathan Hunt PHP keyword lists Contributed by Ted Stresen-Reuter. Previous versions by Carsten Blüm Published by: Bare Bones Software, Inc. 73 Princeton Street, Suite 206 North Chelmsford, MA 01863 USA (978) 251-0500 main (978) 251-0525 fax https://www.barebones.com/ Sales & customer service: [email protected] Technical support: [email protected] BBEdit and the BBEdit User Manual are copyright ©1992-2020 Bare Bones Software, Inc. All rights reserved. Produced/published in USA. Copyrights, Licenses & Trademarks cmark ©2014 by John MacFarlane. Used under license; part of the CommonMark project LibNcFTP Used under license from and copyright © 1996-2010 Mike Gleason & NcFTP Software Exuberant ctags ©1996-2004 Darren Hiebert (source code here) PCRE2 Library Written by Philip Hazel and Zoltán Herczeg ©1997-2018 University of Cambridge, England Info-ZIP Library ©1990-2009 Info-ZIP. -
DFDL WG Stephen M Hanson, IBM [email protected] September 2014
GFD-P-R.207 (OBSOLETED by GFD-P-R.240) Michael J Beckerle, Tresys Technology OGF DFDL WG Stephen M Hanson, IBM [email protected] September 2014 Data Format Description Language (DFDL) v1.0 Specification Status of This Document Grid Final Draft (GFD) Obsoletes This document obsoletes GFD-P-R.174 dated January 2011 [OBSOLETE_DFDL]. Copyright Notice Copyright © Global Grid Forum (2004-2006). Some Rights Reserved. Distribution is unlimited. Copyright © Open Grid Forum (2006-2014). Some Rights Reserved. Distribution is unlimited Abstract This document is OBSOLETE. It is superceded by GFD-P-R.240. This document provides a definition of a standard Data Format Description Language (DFDL). This language allows description of text, dense binary, and legacy data formats in a vendor- neutral declarative manner. DFDL is an extension to the XML Schema Description Language (XSDL). GFD-P-R.207 (OBSOLETED by GFD-P-R.240) September 2014 Contents Data Format Description Language (DFDL) v1.0 Specification ...................................................... 1 1. Introduction ............................................................................................................................... 9 1.1 Why is DFDL Needed? ................................................................................................... 10 1.2 What is DFDL? ................................................................................................................ 10 Simple Example ...................................................................................................... -
Special Characters in Aletheia
Special Characters in Aletheia Last Change: 28 May 2014 The following table comprises all special characters which are currently available through the virtual keyboard integrated in Aletheia. The virtual keyboard aids re-keying of historical documents containing characters that are mostly unsupported in other text editing tools (see Figure 1). Figure 1: Text input dialogue with virtual keyboard in Aletheia 1.2 Due to technical reasons, like font definition, Aletheia uses only precomposed characters. If required for other applications the mapping between a precomposed character and the corresponding decomposed character sequence is given in the table as well. When writing to files Aletheia encodes all characters in UTF-8 (variable-length multi-byte representation). Key: Glyph – the icon displayed in the virtual keyboard. Unicode – the actual Unicode character; can be copied and pasted into other applications. Please note that special characters might not be displayed properly if there is no corresponding font installed for the target application. Hex – the hexadecimal code point for the Unicode character Decimal – the decimal code point for the Unicode character Description – a short description of the special character Origin – where this character has been defined Base – the base character of the special character (if applicable), used for sorting Combining Character – combining character(s) to modify the base character (if applicable) Pre-composed Character Decomposed Character (used in Aletheia) (only for reference) Combining Glyph -
Notetab User Manual
NoteTab User Manual Copyright © 1995-2016, FOOKES Holding Ltd, Switzerland NoteTab® Tame Your Text with NoteTab by FOOKES Holding Ltd A leading-edge text and HTML editor. Handle a stack of huge files with ease, format text, use a spell-checker, and perform system-wide searches and multi-line global replacements. Build document templates, convert text to HTML on the fly, and take charge of your code with a bunch of handy HTML tools. Use a power-packed scripting language to create anything from a text macro to a mini-application. Winner of top industry awards since 1998. “NoteTab” and “Fookes” are registered trademarks of Fookes Holding Ltd. All other trademarks and service marks, both marked and not marked, are the property of their respective ow ners. NoteTab® Copyright © 1995-2016, FOOKES Holding Ltd, Switzerland All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. “NoteTab” and “Fookes” are registered trademarks of Fookes Holding Ltd. All other trademarks and service marks, both marked and not marked, are the property of their respective owners. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. -
Sample Chapter 3
108_GILLAM.ch03.fm Page 61 Monday, August 19, 2002 1:58 PM 3 Architecture: Not Just a Pile of Code Charts f you’re used to working with ASCII or other similar encodings designed I for European languages, you’ll find Unicode noticeably different from those other standards. You’ll also find that when you’re dealing with Unicode text, various assumptions you may have made in the past about how you deal with text don’t hold. If you’ve worked with encodings for other languages, at least some characteristics of Unicode will be familiar to you, but even then, some pieces of Unicode will be unfamiliar. Unicode is more than just a big pile of code charts. To be sure, it includes a big pile of code charts, but Unicode goes much further. It doesn’t just take a bunch of character forms and assign numbers to them; it adds a wealth of infor- mation on what those characters mean and how they are used. Unlike virtually all other character encoding standards, Unicode isn’t de- signed for the encoding of a single language or a family of closely related lan- guages. Rather, Unicode is designed for the encoding of all written languages. The current version doesn’t give you a way to encode all written languages (and in fact, this concept is such a slippery thing to define that it probably never will), but it does provide a way to encode an extremely wide variety of lan- guages. The languages vary tremendously in how they are written, so Unicode must be flexible enough to accommodate all of them. -
MUFI Character Recommendation V. 3.0: Code Chart Order
MUFI character recommendation Characters in the official Unicode Standard and in the Private Use Area for Medieval texts written in the Latin alphabet ⁋ ※ ð ƿ ᵹ ᴆ ※ ¶ ※ Part 2: Code chart order ※ Version 3.0 (5 July 2009) ※ Compliant with the Unicode Standard version 5.1 ____________________________________________________________________________________________________________________ ※ Medieval Unicode Font Initiative (MUFI) ※ www.mufi.info ISBN 978-82-8088-403-9 MUFI character recommendation ※ Part 2: code chart order version 3.0 p. 2 / 245 Editor Odd Einar Haugen, University of Bergen, Norway. Background Version 1.0 of the MUFI recommendation was published electronically and in hard copy on 8 December 2003. It was the result of an almost two-year-long electronic discussion within the Medieval Unicode Font Initiative (http://www.mufi.info), which was established in July 2001 at the International Medi- eval Congress in Leeds. Version 1.0 contained a total of 828 characters, of which 473 characters were selected from various charts in the official part of the Unicode Standard and 355 were located in the Private Use Area. Version 1.0 of the recommendation is compliant with the Unicode Standard version 4.0. Version 2.0 is a major update, published electronically on 22 December 2006. It contains a few corrections of misprints in version 1.0 and 516 additional char- acters (of which 123 are from charts in the official part of the Unicode Standard and 393 are additions to the Private Use Area). There are also 18 characters which have been decommissioned from the Private Use Area due to the fact that they have been included in later versions of the Unicode Standard (and, in one case, because a character has been withdrawn). -
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc
The Unicode Standard Version 6.2 – Core Specification To learn about the latest version of the Unicode Standard, see http://www.unicode.org/versions/latest/. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trade- mark claim, the designations have been printed with initial capital letters or in all capitals. Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and other countries. The authors and publisher have taken care in the preparation of this specification, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The recipient agrees to determine applicability of information provided. Copyright © 1991–2012 Unicode, Inc. All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction. For information regarding permissions, inquire at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please see http://www.unicode.org/copyright.html. The Unicode Standard / the Unicode Consortium ; edited by Julie D. Allen ... [et al.]. — Version 6.2. -
Locale Database
International Language Environments Guide Part No: 817–2521–11 November 2010 Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms setforth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065. -
C++ Reading a Line of Text
C++ Reading a Line of Text Because there are times when you do not want to skip whitespace before inputting a character, there is a function to input the next character in the stream regardless of what it is. The function is named get and is applied as shown. cin.get(character); The next character in the input stream is returned in char variable character. If the previous input was a numeric value, character contains whatever character ended the inputting of the value. There are also times when you want to skip the rest of the values on a line and go to the beginning of the next line. A function named ignore defined in file <iostream> allows you to do this. It has two parameters. The first is an int expression and the second is a character. This function skips the number of characters specified in the first parameter or all the characters up to and including the character specified in the second parameter, whichever comes first. For example, cin.ignore(80, '\n'); skips 80 characters or skips to the beginning of the next line depending on whether a newline character is encountered before 80 characters are skipped (read and discarded). As another example, consider: cin.ignore(4,’g’); cin.get(c); cout << c << endl; If the input to this program is “agdfg” then the input is ignored up to and including the ‘g’ so the next character read is ‘d’. The letter “d” is then output. If the input to this program is “abcdef” then the input is ignored for the first four characters, so the next character read is ‘e’. -
The XSB System Version 2.4 Volume 1: Programmer's Manual
The XSB System Version 2.4 Volume 1: Programmer’s Manual Konstantinos Sagonas Terrance Swift David S. Warren Juliana Freire Prasad Rao Baoqiu Cui Ernie Johnson with contributions from Steve Dawson Michael Kifer July 13, 2001 Credits Day-to-day care and feeding of XSB including bug fixes, ports, and configuration man- agement has been done by Kostis Sagonas, David Warren, Terrance Swift, Prasad Rao, Steve Dawson, Juliana Freire, Ernie Johnson, Baoqiu Cui, Michael Kifer, and Bart Demoen. In Version 2.4, the core engine development of the SLG-WAM has been mainly imple- mented by Terrance Swift, Kostis Sagonas, Prasad Rao, and Juliana Freire. The break- down, roughly, was that Terrance Swift wrote the initial tabling engine and builtins. Prasad Rao reimplemented the engine’s tabling subsystem to use tries for variant-based table access while Kostis Sagonas implemented most of tabled negation. Juliana Freire revised the table scheduling mechanism starting from Version 1.5.0 to create a more efficient engine, and implemented the engine for local evaluation. Starting from XSB Version 2.0, XSB includes another tabling engine, CHAT, which was designed and developed by Kostis Sagonas and Bart Demoen. CHAT supports heap garbage collection (both based on a mark&slide and on a mark© algorithm) which was developed and implemented by Bart Demoen and Kostis Sagonas. Memory expansion code for WAM stacks was written by Ernie Johnson and Bart De- moen, while memory management code for CHAT areas was written by Bart Demoen and Kostis Sagonas. Rui Marques improved the trailing of the SLG-WAM and rewrote much of the engine to make it compliant with 64-bit architectures.