Vertebrate Proteins Predicted from Genomic Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Proteins Predicted from Genomic Sequences Vertebrate proteins predicted from genomic sequences VWD C8 TIL PTS Mucin2_WxxW F5_F8_type_C FCGBP_N VWC Lethenteron_camtschaticum Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Lethenteron Lethenteron_camtschaticum.0.pep1 Petromyzon_marinus Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Petromyzon Petromyzon_marinus.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep2 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep1 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep2 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.1.pep1 TILa Cynoglossus_semilaevis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cynoglossus_semilaevis.1.pep1 Larimichthys_crocea Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Larimichthys_crocea.0.pep1 Larimichthys_crocea Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Larimichthys_crocea.0.pep2 Larimichthys_crocea Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Larimichthys_crocea.1.pep1 Larimichthys_crocea Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Larimichthys_crocea.1.pep2 Larimichthys_crocea Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Larimichthys_crocea.2.pep1 Larimichthys_crocea Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Larimichthys_crocea.2.pep2 Anoplopoma_fimbria Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Anoplopoma_fimbria.1.pep1 Anoplopoma_fimbria Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Anoplopoma_fimbria.9.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.2.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.3.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.4.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.6.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.fa_0.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.fa_0.pep2 0 2000 4000 6000 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.fa_1.pep1 Gasterosteus_aculeatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Gasterosteus_aculeatus.fa_2.pep1 Sebastes_nigrocinctus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Sebastes_nigrocinctus.2.pep1 Sebastes_nigrocinctus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Sebastes_nigrocinctus.3.pep1 Sebastes_rubrivinctus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Sebastes_rubrivinctus.2.pep1 Sebastes_rubrivinctus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Sebastes_rubrivinctus.4.pep1 Sebastes_rubrivinctus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Sebastes_rubrivinctus.4.pep2 Takifugu_flavidus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_flavidus.1.pep2 Takifugu_flavidus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_flavidus.3.pep1 Takifugu_flavidus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_flavidus.5.pep1 Takifugu_flavidus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_flavidus.6.pep1 Takifugu_rubripes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_rubripes.0.pep1 Takifugu_rubripes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_rubripes.0.pep2 Takifugu_rubripes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_rubripes.2.pep1 FISNA NACHT Takifugu_rubripes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_rubripes.4.pep1 Takifugu_rubripes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_rubripes.4.pep2 Takifugu_rubripes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Takifugu_rubripes.5.pep1 IRK Rabaptin Tetraodon_nigroviridis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Tetraodon_nigroviridis.1.pep1 Tetraodon_nigroviridis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Tetraodon_nigroviridis.4.pep1 Tetraodon_nigroviridis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Tetraodon_nigroviridis.fa_0.pep1 Tetraodon_nigroviridis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Tetraodon_nigroviridis.fa_0.pep2 MRF_C1 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.0.pep1 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.1.pep1 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.10.pep1 0 2000 4000 6000 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.4.pep1 Ank_5 Ank_2 Ank Ank_4 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.8.pep1 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.8.pep2 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.8.pep3 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.9.pep1 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.fa_0.pep1 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.fa_0.pep2 Oryzias_latipes Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Oryzias_latipes.fa_1.pep1 Cyprinodon_variegatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cyprinodon_variegatus.1.pep1 Cyprinodon_variegatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cyprinodon_variegatus.2.pep1 Cyprinodon_variegatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cyprinodon_variegatus.3.pep1 Poecilia_formosa Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_formosa.2.pep1 Poecilia_formosa Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_formosa.3.pep1 Poecilia_formosa Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_formosa.4.pep1 Poecilia_formosa Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_formosa.5.pep1 Poecilia_formosa Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_formosa.6.pep1 Poecilia_formosa Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_formosa.fa_0.pep1 Poecilia_reticulata Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Poecilia_reticulata.1.pep1 Poecilia_reticulata Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri;
Recommended publications
  • Copyrighted Material
    Index INDEX Note: page numbers in italics refer to fi gures, those in bold refer to tables and boxes. abducens nerve 55 activity cycles 499–522 inhibition 485 absorption effi ciency 72 annual patterns 515, 516, 517–22 interactions 485–6 abyssal zone 393 circadian rhythms 505 prey 445 Acanthaster planci (Crown-of-Thorns Starfi sh) diel patterns 499, 500, 501–2, 503–4, reduction 484 579 504–7 aggressive mimicry 428, 432–3 Acanthocybium (Wahoo) 15 light-induced 499, 500, 501–2, 503–4, aggressive resemblance 425–6 Acanthodii 178, 179 505 aglomerular 52 Acanthomorpha 284–8, 289 lunar patterns 507–9 agnathans Acanthopterygii 291–325 seasonal 509–15 gills 59, 60 Atherinomorpha 293–6 semilunar patterns 507–9 osmoregulation 101, 102 characteristics 291–2 supra-annual patterns 515, 516, 517–22 phylogeny 202 distribution 349, 350 tidal patterns 506–7 ventilation 59, 60 jaws 291 see also migration see also hagfi shes; lampreys Mugilomorpha 292–3, 294 adaptive response 106 agnathous fi shes see jawless fi shes pelagic 405 adaptive zones 534 agonistic interactions 83–4, 485–8 Percomorpha 296–325 adenohypophysis 91, 92 chemically mediated 484 pharyngeal jaws 291 adenosine triphosphate (ATP) 57 sound production 461–2 phylogeny 292, 293, 294 adipose fi n 35 visual 479 spines 449, 450 adrenocorticotropic hormone (ACTH) 92 agricultural chemicals 605 Acanthothoraciformes 177 adrianichthyids 295 air breathing 60, 61–2, 62–4 acanthurids 318–19 adult fi shes 153, 154, 155–7 ammonia production 64, 100–1 Acanthuroidei 12, 318–19 death 156–7 amphibious 60 Acanthurus bahianus
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Epithelial Sodium Channel (Enac) Family: Phylogeny, Structure–Function, Tissue Distribution, and Associated Inherited Diseases
    Gene 579 (2016) 95–132 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Gene wiki review Epithelial sodium channel (ENaC) family: Phylogeny, structure–function, tissue distribution, and associated inherited diseases Israel Hanukoglu a,⁎, Aaron Hanukoglu b,c a Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel b Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel c Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel article info abstract Article history: The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na+ ions Received 7 September 2015 across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Received in revised form 20 December 2015 Na+ in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolar- Accepted 22 December 2015 ity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface Available online 7 January 2016 liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. Keywords: Ion channels The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, Epithelia SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC Evolution orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including Transmembrane proteins lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous Kidney sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes.
    [Show full text]
  • The Genetic Factors of Bilaterian Evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen a Panfilio2,3, Thomas Wiehe1
    RESEARCH ARTICLE The genetic factors of bilaterian evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen A Panfilio2,3, Thomas Wiehe1 1Institute for Genetics, Cologne Biocenter, University of Cologne, Cologne, Germany; 2Institute for Zoology: Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany; 3School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom Abstract The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo- Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship. *For correspondence: [email protected] Introduction The taxon Bilateria consists of multicellular animals
    [Show full text]
  • Bos Taurus, Cattle, Cow at Geochembio: Taxonomy, Brief Facts
    http://www.GeoChemBio.com: Bos taurus, cattle, cow ● Taxonomy ● Brief facts ● Developmental stages ● Digestive system ● Diagram of digestive system ● Some Bovidae species ● Bovidae species ● Cattle domestication ● Cattle domestication diagram ● Photo gallery Taxonomy cellular organisms - Eukaryota - Fungi/Metazoa group - Metazoa - Eumetazoa - Bilateria - Coelomata - Deuterostomia - Chordata - Craniata - Vertebrata - Gnathostomata - Teleostomi - Euteleostomi - Sarcopterygii - Tetrapoda - Amniota - Mammalia - Theria - Eutheria - Laurasiatheria - Cetartiodactyla - Ruminantia - Pecora - Bovidae - Bovinae - Bos - Bos taurus The two principal taxonomic groups of domestic cattle are Bos taurus (taurine cattle) and Bos indicus (zebu cattle). General description ● Domestic cows are common throughout the world. They are grown and bred for food - meat and milk production, as well as for working - plowing and moving heavy loads. ● Domestic cows are social animals and live in herds which are structured according to a dominance hierarchy. ● Cows feed on grasses and other herbaceous plants. An average cow can consume about 70 kg of grass in an 8 hour day. Cows are ruminants. They have a four chambered stomach. Cow's milk allergy vs. cow's milk intolerance ● Cow's milk allergy and cow's milk intolerance are two different concepts that are used interchangeably. The former is an immunologically mediated reaction to the milk's contents, not unlike to any other allergic reactions, for example, to eggs, corn, nuts, etc. The latter is non-immunologic reaction to the cow's milk, the most common cause of which is deficiency of lactase - the enzyme that breaks down one of the main nutrients of the milk - lactose. Importance of bovine genome ● The bovine genome serves as a reference non-primate, non-rodent, eutherian genome.
    [Show full text]
  • A Phylogenomic Perspective on the Radiation of Ray-Finned Fishes Based Upon Targeted Sequencing of Ultraconserved Elements
    1 A phylogenomic perspective on the radiation of 2 ray-finned fishes based upon targeted sequencing of 3 ultraconserved elements 1;2;∗ 1;2 1 1 4 Michael E. Alfaro , Brant C. Faircloth , Laurie Sorenson , Francesco Santini 1 5 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA 2 6 These authors contributed equally to this work 7 ∗ E-mail: [email protected] arXiv:1210.0120v1 [q-bio.PE] 29 Sep 2012 1 8 Summary 9 Ray-finned fishes constitute the dominant radiation of vertebrates with over 30,000 species. 10 Although molecular phylogenetics has begun to disentangle major evolutionary relationships 11 within this vast section of the Tree of Life, there is no widely available approach for effi- 12 ciently collecting phylogenomic data within fishes, leaving much of the enormous potential 13 of massively parallel sequencing technologies for resolving major radiations in ray-finned 14 fishes unrealized. Here, we provide a genomic perspective on longstanding questions regard- 15 ing the diversification of major groups of ray-finned fishes through targeted enrichment of 16 ultraconserved nuclear DNA elements (UCEs) and their flanking sequence. Our workflow 17 efficiently and economically generates data sets that are orders of magnitude larger than 18 those produced by traditional approaches and is well-suited to working with museum speci- 19 mens. Analysis of the UCE data set recovers a well-supported phylogeny at both shallow and 20 deep time-scales that supports a monophyletic relationship between Amia and Lepisosteus 21 (Holostei) and reveals elopomorphs and then osteoglossomorphs to be the earliest diverging 22 teleost lineages.
    [Show full text]
  • Direct Identification of Fish Species by Surface Molecular Transferring
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 Supplementary materials for Direct Identification of Fish Species by Surface Molecular Transferring Mingke Shao, Hongyan Bi* College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China * To whom correspondence should be addressed. E-mail address: [email protected] E-mail address for the other authors: [email protected] S1 S1. Photos and information on the analyzed fish samples Fig. S1. Photos of fishes analyzed in the present study: (A) Oreochromis mossambicus (B) Epinephelus rivulatus (C) Mugil cephalus; (D) Zeus faber (E) Trachinotus ovatus (F) Brama japonica (G) Larimichthys crocea (H) Larimichthys polyactis (I) Pampus argenteus. Scale bar in each photo represents 1 cm. Table S1. List of the scientific classification of fishes analyzed in the study. The classification of fishes refers to https://www.fishbase.de/. Binomial Abbreviatio English Chinese name n common Scientific classification name (Scientific name name) Actinopterygii (class) > Perciformes (order) > Japanese Brama Brama BJ Bramidae (family) > Wufang japonica japonica Brama (genus) > B. brama (species) Actinopterygii (class) > Silver Scombriformes(order) > Baichang pomfret; Pampus PA ( Fish White argenteus Stromateidae family) > pomfret Pampus (genus) > P. argenteus (species) Haifang Zeus faber Actinopterygii (class) > (commonly Linnaeu; Zeus faber ZF Zeiformes (order) > called: John Dory; Zeidae (family) > S2 Yueliang target perch Zeus (genus) > Fish) Z. faber (species) Actinopteri (class) > OM Cichliformes (order) > Mozambique Oreochromis Cichlidae (family) > Luofei Fish tilapia mossambicus Oreochromis (genus) > O.mossambicus (species) Actinopterygii (class) > MC Mugiliformes (order) Xiaozhai Flathead Mugil Mugilidae (family) > Fish grey mullet cephalus Mugil (genus) > M.
    [Show full text]
  • From the Middle Triassic of Guizhou, China
    第53卷 第1期 古 脊 椎 动 物 学 报 pp. 1-15 2015年1月 VERTEBRATA PALASIATICA figs. 1-6 Panxianichthys imparilis gen. et sp. nov., a new ionoscopiform (Halecomorphi) from the Middle Triassic of Guizhou, China XU Guang-Hui1,2 SHEN Chen-Chen1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) Nanjing 210008) Abstract The Ionoscopiformes are a fossil lineage of halecomorphs known only from the Mesozoic marine deposits. Because of their close relationships with the Amiiformes, the Ionoscopiformes are phylogenetically important in investigating the early evolution and biogeography of the Halecomorphi. However, fossil evidence of early ionoscopiforms was scarce; until recently, Robustichthys from the Middle Triassic Luoping Biota, eastern Yunnan, China, represents the oldest and only known ionoscopiform in the Triassic. Here we report the discovery of a new ionoscopiform, Panxianichthys imparilis gen. et sp. nov., on the basis of two well preserved specimens from the Middle Triassic Panxian Biota, western Guizhou, China. The discovery documents the second ionoscopiform in the Middle Triassic; although Panxianichthys is slightly younger than Robustichthys, it is significantly older than other members of this group from the Late Jurassic of Europe, and Early Cretaceous of North and South America. Panxianichthys possesses an important synapomorphy of the Ionoscopiformes: a sensory canal in the maxilla, but retains some primitive characters unknown in other ionoscopiforms. Results of our phylogenetic analysis recover Panxianichthys as the most primitive ionoscopiform, and provide new insight on the early evolution of this clade.
    [Show full text]
  • The Living Planet Index (Lpi) for Migratory Freshwater Fish Technical Report
    THE LIVING PLANET INDEX (LPI) FOR MIGRATORY FRESHWATER FISH LIVING PLANET INDEX TECHNICAL1 REPORT LIVING PLANET INDEXTECHNICAL REPORT ACKNOWLEDGEMENTS We are very grateful to a number of individuals and organisations who have worked with the LPD and/or shared their data. A full list of all partners and collaborators can be found on the LPI website. 2 INDEX TABLE OF CONTENTS Stefanie Deinet1, Kate Scott-Gatty1, Hannah Rotton1, PREFERRED CITATION 2 1 1 Deinet, S., Scott-Gatty, K., Rotton, H., Twardek, W. M., William M. Twardek , Valentina Marconi , Louise McRae , 5 GLOSSARY Lee J. Baumgartner3, Kerry Brink4, Julie E. Claussen5, Marconi, V., McRae, L., Baumgartner, L. J., Brink, K., Steven J. Cooke2, William Darwall6, Britas Klemens Claussen, J. E., Cooke, S. J., Darwall, W., Eriksson, B. K., Garcia Eriksson7, Carlos Garcia de Leaniz8, Zeb Hogan9, Joshua de Leaniz, C., Hogan, Z., Royte, J., Silva, L. G. M., Thieme, 6 SUMMARY 10 11, 12 13 M. L., Tickner, D., Waldman, J., Wanningen, H., Weyl, O. L. Royte , Luiz G. M. Silva , Michele L. Thieme , David Tickner14, John Waldman15, 16, Herman Wanningen4, Olaf F., Berkhuysen, A. (2020) The Living Planet Index (LPI) for 8 INTRODUCTION L. F. Weyl17, 18 , and Arjan Berkhuysen4 migratory freshwater fish - Technical Report. World Fish Migration Foundation, The Netherlands. 1 Indicators & Assessments Unit, Institute of Zoology, Zoological Society 11 RESULTS AND DISCUSSION of London, United Kingdom Edited by Mark van Heukelum 11 Data set 2 Fish Ecology and Conservation Physiology Laboratory, Department of Design Shapeshifter.nl Biology and Institute of Environmental Science, Carleton University, Drawings Jeroen Helmer 12 Global trend Ottawa, ON, Canada 15 Tropical and temperate zones 3 Institute for Land, Water and Society, Charles Sturt University, Albury, Photography We gratefully acknowledge all of the 17 Regions New South Wales, Australia photographers who gave us permission 20 Migration categories 4 World Fish Migration Foundation, The Netherlands to use their photographic material.
    [Show full text]
  • VIRION Manuscript
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455442; this version posted August 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The Global Virome in One Network (VIRION): an atlas of vertebrate-virus associations Colin J. Carlson1,2,3,* , Rory J. Gibb4,5, Gregory F. Albery3, Liam Brierley6, Ryan P. Connor7, Tad A. Dallas8,9, Evan A. Eskew10, Anna C. Fagre11,12, Maxwell J. Farrell13, Hannah K. Frank14, Renata L. Muylaert15, Timothée Poisot16,17, Angela L. Rasmussen2,18, Sadie J. Ryan19,20,21, and Stephanie N. Seifert22 1. Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, Washington, D.C., U.S.A. 2. Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, D.C., U.S.A. 3. Department of Biology, Georgetown University, Washington, D.C., U.S.A. 4. Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK. 5. Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK. 6. Department of Health Data Science, University of Liverpool, Liverpool, UK. 7. National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20894, U.S.A. 8. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70806, U.S.A.
    [Show full text]
  • The Evolutionary Transition from Lungs to a Gas Bladder: Evidence from Immunohistochemistry, Rna-Seq, and Morphology
    THE EVOLUTIONARY TRANSITION FROM LUNGS TO A GAS BLADDER: EVIDENCE FROM IMMUNOHISTOCHEMISTRY, RNA-SEQ, AND MORPHOLOGY A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Emily Funk December 2020 © 2020 Emily Funk THE EVOLUTIONARY TRANSITION FROM LUNGS TO A GAS BLADDER: EVIDENCE FROM IMMUNOHISTOCHEMISTRY, RNA-SEQ, AND MORPHOLOGY Emily Funk, Ph. D. Cornell University 2020 Key to understanding the evolutionary origin and modification of phenotypic traits is revealing the underlying developmental genetic mechanisms. An important morphological trait of ray-finned fishes is the gas bladder, an air-filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe- finned fishes. While gas bladders and lungs are similar in many ways, the distinguishing morphological difference between these organs is the general direction of budding from the foregut during development. Lungs bud ventrally and the gas bladder buds dorsally from the foregut endoderm. To compare lung and gasbladder development, the relevant taxa include bichir and bowfin. Bichir are the only living ray-finned fish that develops ventrally budding lungs. Bowfin, an early-diverging lineage, sister to teleosts, develops a gas bladder and exhibits a number of ancestral characteristics. Additionally, we included zebrafish as a representative of teleost fishes. I investigated the genetic underpinnings of this ventral-to-dorsal shift in budding direction using immunohistochemistry and RNA sequencing to determine whether gene expression patterns show a dorsoventral inversion paralleling the morphological inversion in budding direction. I also characterize morphological budding direction in bowfin, a purported transitional form, using nano-CT scanning.
    [Show full text]
  • Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors
    GBE Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors Yvan Wenger and Brigitte Galliot* Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland *Corresponding author: E-mail: [email protected]. Accepted: September 12, 2013 Data deposition: Sequences of the 6,071 Hydra-human orthologs were deposited at European Nucleotide Archive (ENA), sequencing project PRJEB446, individual accession numbers HAAD01000001–HAAD01006071. Sequences of the 45,269 Hydra RNA-seq transcripts were also de- posited at European Nucleotide Archive (ENA) sequencing project PRJEB445, individual accession numbers HAAC01000001–HAAC01045269. Abstract Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans,
    [Show full text]