Austrian Journal of Earth Sciences Volume 102 Vienna 2009 The Styrian Basin: a key to the Middle Miocene (Bade- nian/Langhian) Central Paratethys transgressions___

Johann HOHENEGGER1)*), Fred RÖGL2), Stjepan ĆORIĆ3), Peter PERVESLER1), Fabrizio LIRER4), Reinhard ROETZEL3), Robert SCHOLGER5) & Karl STINGL5) 1) University of Vienna, Department of Palaeontology, Althanstrasse 14, A 1090 Wien, . KEYWORDS 2) Natural History Museum Vienna, Burgring 7, A 1010 Wien, Austria. Badenian Transgressions Chronostratigraphy 3) Austrian Geological Survey, Neulinggasse 38, A 1030 Wien, Austria. Central Paratethys 4) Istituto Ambiente Marino Costiero – CNR, Calata Porta di Massa, interno Porto di Napoli, I-80133 Napoli, Italia. Middle Miocene Styrian Phase 5) University of Leoben, Department of Geosciences and Geophysics, A 8700 Leoben, Austria. Styrian Basin *) Corresponding author, [email protected]

Abstract In the Styrian Basin, early Miocene marine sedimentation of the Karpatian (upper Burdigalian) ended with basin shallowing, mar- ked regression and tectonic movements. The Karpatian sedimentation cycle corresponds to the global 3rd order cycle TB 2.2, follo- wed by the Bur5/Lan1 sea-level fall. This regression was combined with tectonic movements (the Styrian Tectonic Phase), seen in the Styrian Unconformity by an angular discordance at the and Katzengraben outcrops and also in deep wells. Sediments of the first middle Miocene (Badenian/Langhian) transgression are commonly eroded or reduced in thickness at the basin borders. In the basin center, the bathyal environment continues from the Karpatian to the Badenian. Sediments of the first Badenian transgres- sion have been dated by calcareous nannoplankton as NN4 and correlated by the occurrence of Praeorbulina sicana with the basal Langhian. The 3rd order sequence corresponds to TB 2.3. The erosional phase of the sea-level fall Lan2/Ser1 can only be observed in near-shore facies, followed by transgressive beds within Zone NN5, which represents the second, main Badenian transgression in the Central Paratethys and corresponds to the long global cycle TB 2. The highstand system tract of this cycle is expressed in carbonate build-ups of the Weissenegg Formation. According to the global 3rd order sequences, the youngest sediments of the section (< 14.39 Ma) overlying the carbonate buildups belong to the falling-stage system tract of TB2, but did not record regression, but instead continuous deepening of the Styrian Basin, indicating strong subsidence during the early middle Miocene._

Die marine Sedimentation während des älteren Miozäns (Karpatium / Oberes Burdigalium) endete im Steirischen Becken mit einer starken, durch tektonische Bewegungen verstärkten Regression. Der Sedimentationszyklus im Karpatium entspricht der globalen Sequenz TB 2.2 und wird durch das Absinken des Meeresspiegels (Bur5/Lan1) begrenzt. Die Kombination der Regression mit den tektonischen Bewegungen („Steirische Tektonische Phase“) ist als Winkeldiskordanz und Sedimentationsunterbrechung („Styrian Unconformity“) sowohl in den Tagesaufschlüssen Wagna und Katzengraben, als auch in Tiefbohrungen ausgebildet. Sedimente der folgenden, ersten Transgression im Badenium/Langhium sind in den Randbereichen des Beckens zumeist erodiert oder nur spärlich erhalten, während im Beckeninneren durchwegs bathyale Sedimente sowohl im Karpatium als auch im Badenium auftreten. Die fol- gende Transgression im Badenium läßt sich anhand des kalkigen Nannoplanktons in die Nn4 Zone stellen und korreliert wegen des Auftretens der planktonischen Foraminifere Praeorbulina sicana mit dem basalen Langhium. Die Sequenz 3. Ordnung entspricht der TB 2.3. Die erosive Phase an der Lan2/Ser1 Grenze ist in den Randbereichen des Beckens als Sedimentationsunterbrechung aus- geprägt, die von der 2. Transgression im Badenium, der Haupttransgression innerhalb der Paratethys, gefolgt wird. Letztere ent- spricht dem globalem Zyklus TB 2. Karbonate der Weissenegg-Formation kennzeichnen im Steirischen Becken den Höhepunkt die- ser Trangression. Die über den Karbonaten folgenden Siliziklastika müssten entsprechend der Sequenzstratigraphie als zum „falling stage system tract“ gehörend eine Regression anzeigen, sie kennzeichnen aber durch das kontinuierliche Absinken des Meeresbo- dens die tektonisch bedingte Subsidenz des Steirischen Beckens im Laufe des älteren Mittleren Miozäns.______

1. Introduction During the early Miocene, the region of the circum-Mediter- and Helman, 1994) opened the former seaways again by the ranean, including the vast area of the Paratethys, underwent end of the early Miocene, leading to extensive middle Mioce- profound changes. The Mediterranean was cut off from the ne transgressions (Rögl, 1998, 1999). Transgression in the Indian Ocean; the Eastern Paratethys became an isolated Central Paratethys occurred as far as the area of Karpatian basin and the sea regressed from the Alpine Foredeep in the sedimentation (Fig. 1; Kovač et al., 2007), extending towards West and from the Transylvanian Basin, reducing the Central the Transylvanian and Dacian Basins, to the Carpathian Fore- Paratethys marine realm to the Pannonian Basin area and deep, and connected with the Eastern Paratethys, which was the Carpathian Foredeep (e.g. Kovač et al., 2003). Tectonic also again marine (Fig. 1; Hamor & Halmai, 1988).______movements attributed to the Styrian Tectonic Phase (Stille, The Styrian Tectonic Phase of Stille (1924) characterizes tec- 1924), as a consequence of plate movements (e.g. Mazzolki tonic events at the early/middle Miocene boundary; that is, at Alastair M.D. GEMMELL & Christoph SPÖTL the Karpatian/Badenian and Burdi- galian/Langhian boundaries in the Central Paratethys and Mediterrane- an regions, respectively. This pha- se, as indicated by its name, is de- fined by the Neogene tectonic his- tory of the Styrian Basin of SE Aus- tria, which forms a segment of the western part of the Intra-Carpathian Pannonian Basin system. Tectonic activity was accompanied by exten- sive volcanism (Ebner and Sachsen- Figure 1: Central Paratethys: palaeogeographic reconstruction of the Early Badenian main trans- hofer, 1991; Sachsenhofer, 1996)._ gression within nannoplankton zone NN5 (Rögl and Repp, Naturhistorisches Museum Wien).______Palaeoecological as well as tec- tonic changes characterize the Kar- patian/Badenian boundary interval, with a general increase in were discussed by comparing the Karpatian/Badenian transi- warm-water species (Badenian climatic optimum) and chang- tion in the Styrian Basin and in the Molasse Basin of Lower ing water depths in regional settings (Harzhauser et al., 2003; Austria (Spezzaferri et al., 2002 a,b; Rögl et al., 2005, 2007). Spezzaferri et al., 2002a, 2004).______In the Molasse Basin, a distinct clastic Badenian sequence One of the problems encountered when correlating the trans- (calcareous nannofossil Zone NN4 to NN5) lies between the gression forming the base of the Badenian in the Central Pa- Karpatian Laa Formation and the early Badenian Grund For- ratethys area is connected with the biostratigraphical identifi- mation, showing at least two transgression events (Ćorić and cation of the event. Commonly, the main transgression near Rögl, 2004). The new implications of repeated Badenian trans- the base of calcareous nannoplankton Zone NN5 (Martini, gressions in the Central Paratethys have been recently consi- 1971), with co-occurring Praeorbulina circularis and Orbuli- dered by Kovač et al. (2007).______na suturalis, has been considered to be the basal Badenian The definition and separation of the Karpatian and Badenian transgression. Due to this coincidence, the Badenian in the successions in the investigated sections was made possible Carpathian area of Romania and also in the Transylvanian by an evaluation of calcareous nannoplankton, planktonic and Basin was considered to start with nannoplankton Zone NN5, benthic foraminifera and also mollusc associations (Rögl et al., subzone NN5a, the Geminithella rotula subzone (Marunteanu 2003; Ćorić et al., 2004a,b). As in the Langhian type section, et al., 1999; Chira, 2000). However, in the Mediterranean, the an overlap of the calcareous nannoplankton Zone NN4 and base of the Langhian falls within the calcareous nannofossil Zone NN4 and has historically been identified with the first appearance of Praeor- bulina sicana (Fornaciari and Rio, 1996; Fornaciari et al., 1997). Con- sequently, some authors correlated the lowermost Langhian (calcareous nannofossil Zone NN4) with the Kar- patian instead with the basal Bade- nian (e.g. Andrejeva-Grigorovich et al., 2001).______Work in the Styrian Basin from 2000 to 2006 revealed complex Styrian Tectonic Phase deformation and Badenian transgressions. As a re- sult, it was possible to separate dif- ferent Badenian transgressive hori- zons for the first time, especially in the upper part of the Wagna sec- tion, and to document what were previously extended gaps in the se- dimentation. Figure 2: Styrian Basin: tectonic setting with location of Wagna, Retznei, Katzengraben and the In an initial attempt, these problems investigated deep wells (according to Sachsenhofer, 1996).______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions

of Lourens et al. (2004a) and new radiometric ages from the Styrian Basin (Handler et al., 2006) are discussed. For a bet- ter understanding of the development in deeper parts of the basin and in sections with more continuous sedimentation, some deep wells have been studied in detail (Perbersdorf 1, Petersdorf 1; Fig. 2).______Foraminifera have been deposited with the Micropalaeonto- logical Collection of the Natural History Museum, Vienna, while the calcareous nannoplankton and the Perbersdorf 1 micro- fossils have been placed at the Austrian Geological Survey, Vienna. A number of publications have documented the re- sults produced during the project (Spezzaferri et al., 2001a-c, 2002a-b, 2004; Rögl et al., 2002, 2005, 2006 a-c, 2007; Ćorić et al., 2004a,b; Hohenegger et al., 2005; Lirer et al., 2006). Identical sections and sample splits were used by Latal and Piller (2003) for isotope studies and by Soliman and Piller (2007) for the investigation of dinoflagellates.______

2. Geological setting The Styrian Basin, which is part of the western Pannonian Basin system, has been subdivided by swells into different subbasins. The main structure, the Middle Styrian Swell, se- parates the Western from the Eastern Styrian Basin (Fig. 2). The basement is formed by the Austroalpine nappe system. Subsidence of the basin, which started during the early Mio- cene, probably during the Ottnangian, was connected with the lateral extrusions of crustal wedges along strike-slip faults towards the Pannonian Basin (Decker and Peresson, 1996; Frisch et al., 2000). A combination of block rotation, subsiden- ce and uplift formed the different subbasins. Large areas Figure 3 A-C: a) Wagna, old brickyard: overview with extended section of the Karpatian "Steirischer Schlier", cut by the “Styrian Un- were covered by lava flows during extensive volcanic activity. conformity” (1), transgressed by Badenian shallow water sediments Extended lignite formation occurred in the Western Styrian with a patch reef (2), and base of sandstone layers demonstrating dis- Basin during the early and early middle Miocene, on top of continuity at the Zone NN4/NN5 boundary (3); the top of the section coarse-grained fan deposits. During the Karpatian, the Para- formed by corallinacean limestone of the Weissenegg Formation (4); b) Retznei, Lafarge-Perlmooser cement factory, main quarry: sampled tethys Sea transgressed across the Eastern Styrian Basin, sections (arrows); c) Katzengraben near Spielfeld, outcrop during exca- which was comprised of swamp and floodplain deposits of vation of the sand pit: the slightly tilted Karpatian “Steirischer Schlier” is probably Ottnangian age, resting on a deeply eroded meta- cut by the “Styrian Unconformity” (arrow) and topped by Badenian silts and sands of the Kreuzberg Formation (photo J.G. Friebe, Dornbirn)._ morphic substratum. Angular unconformities and sedimenta- tion gaps (Styrian Unconformity) mark the Karpatian/Badenian boundary. A series of marine transgressions of the Badenian the first appearance of Praeorbulina was taken as diagnostic Sea followed on top of the Karpatian deep-water sediments of the basal Badenian. Spectacular occurrences of molluscs (the Steirischer Schlier). In the Styrian Basin, the transgres- in the Central Paratethys demonstrate the differences be- sions reached their greatest extent in the early Badenian. tween the Karpatian and Badenian stages; for examples, 72 During the Sarmatian and Pannonian, a continuous shrinking gastropod species made their first appearance in the Karpa- of the relict sea and lake has been documented (Kollmann, tian, compared to 439 in the early Badenian, whilst for bivalve 1965; Flügel and Neubauer, 1984; Ebner and Sachsenhofer, taxa the values are 128 species compared to ca. 350, respec- 1991; Sachsenhofer, 1996; Gross et al., 2007; Schreilechner tively (Harzhauser et al., 2003; Harzhauser and Piller, 2007)._ and Sachsenhofer, 2007).______In the present study, the lithological sequences in the Wagna The sections investigated at Wagna, Retznei and Katzengra- brickyard and neighbouring Retznei cement quarry, as well as ben belong to the southern Gnas Subbasin and were strongly the Katzengraben section near Spielfeld, have been biostrati- influenced by the development of the Middle Styrian or Sausal graphically dated with calcareous nannoplankton and plankto- Swell (Fig. 2). Extensive research in this region, with descrip- nic foraminifera. Preliminary results were given by Lirer et al. tions of outcrops, lithostratigraphic subdivisions, and cyclostra- (2006) and Rögl et al. (2005, 2006 a, c). Palaeomagnetic mea- tigraphic interpretations were presented by Friebe (1988, 1990, surements have been correlated with the polarity time scale 1991, 1993), Schell (1994) and Holzer (1994).______Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL

Figure 4: Wagna, old brickyard; section 1 sampled in 2000; sections 2 and 3 sampled 2001- 2002.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions

3. Lithostratigraphy and Lithofacies section was recently given by Gross et al. (2007). The palaeo- magnetic profile of Auer (1996) from this locality was supple- 3.1 Wagna, old brickyard mented and updated during the research presented here.___ The old brickyard at Wagna is located south of , on Section 1 (samples Wag01–Wag26; Fig. 4), sampled in the the western side of the river Sulm, on the road to Aflenz. The lower part of the former clay pit, comprises mainly Karpatian section is divided into two parts (Fig. 3a). The lower extended Steirischer Schlier, with the Styrian Unconformity lying between part belongs to the Karpatian Steirischer Schlier (Kreuzkrum- samples Wag23-24 near the top (Spezzaferri et al., 2002a). pel Formation; Schell, 1994), whereas the upper part shows Sections 2 and 3, in the upper part of the outcrop, cross the the Styrian Unconformity with various Badenian lithologies. Karpatian/Badenian boundary and expose the Styrian Uncon- The term Steirischer Schlier is used here instead of the Kreuz- formity between samples Wag01/16-17 and Wag02/07-08 krumpl Formation of Schell (1994), which generally refers to (Fig. 4). Karpatian near-shore deposits. A description of the Wagna The exposed 75 m of Steirischer Schlier shows a cyclic se- dimentation of dark-grey, calcare- ous, silty shales, interbedded by 15-20 cm thick dolomitic limesto- nes (Fig. 5a). In the upper part of the Steirischer Schlier, a channel filling with basement pebbles cuts the layered succession (Fig. 5b). The beds show a dip of about 20° towards 085° E, becoming less in- clined in the upper part. A slight angular disconformity, with a thin pebble layer, separates the shales from overlying sediments. Above this disconformity follow 5 m grey, bioturbated, clayey silts of Karpa- tian age.______Nannofossil assemblages from the Steirischer Schlier are rich and well preserved, dominated by Coc- colithus pelagicus, Reticulofenes- tra minuta and Sphenolithus hete- romorphus. The foraminiferal fau- na, which has been recrystallized, is dominated by agglutinated spe- cies such as Gaudryinopsis bere- goviensis, Textularia laevigata, Spi- rorutilus carinatus and Cribrosto- moides. Among calcareous benthic foraminifera, large Globobulimina pupoides and G. pyrula, together with Allomorphina trigona, Chilos- tomella ovoidea and Valvulineria complanata indicate dysoxic bot- tom conditions. The water depth during deposition of the Steirischer Schlier has been estimated at be- tween 225 m and 315 m, with small variations and a shallowing upward Figure 5: a) Karpatian cyclic sedimentation of "Steirischer Schlier" in the old brickyard Wagna; b) tendency (Spezzaferri et al., 2004; Wagna, upper part of "Steirischer Schlier", channel filling with crystalline pebbles; c) Wagna, “Styrian Hohenegger et al., 2005; Hoheneg- Unconformity”, a layer of mudstone pebbles, interbedded in grey silt marks the Karpatian/Badenian ger, 2005). Planktonic foraminifera boundary; d) Wagna, Badenian patch reef, intercalated in bioturbated grey silt and fine sand (arrow); e) Wagna, coral head from the patch reef; f) Wagna, erosive base of stratified sandstone beds with are mainly small-sized, five-cham- mollusc casts. Sedimentation gap at the NN4/NN5 zonal boundary.______bered globigerinas, e.g. Globigeri- Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL na ottnangiensis, G. tarchanensis and Turborotalita quinque- their first occurrences here.______loba. The abundance of agglutinated and sparseness of plank- A lithostratigraphic definition of the clastic sequence between tonic foraminifera have been interpreted to be a result of vol- the Steirischer Schlier and the corallinacean limestones of the canic activity in the Styrian Basin (Spezzaferri et al., 2002a)._ Weissenegg Formation (see below) is missing, probably also The top of the Karpatian shales is marked by a distinct ero- due to former biostratigraphic misinterpretations of the Karpa- sional and angular unconformity, with reworked silty clasts of tian/Badenian boundary (e.g. Latal and Piller, 2003). A corre- Steirischer Schlier in the pebbly mudstone of the Geröllmergel lation with the Kreuzberg Formation (Friebe 1990) has to be (Fig. 5c) and small oysters, followed by 3-5 m of bluish-grey, checked, as this formation interfingers with the younger Weis- sandy silts. The foraminiferal fauna, as well as shallow-water senegg Formation. The Geröllmergel of Retznei at least partly ostracods and bivalves, mark this distinct unconformity. A corresponds to this clastic sequence.______strong change from deep-water assemblages of about 250 m The top of the section consists of ca. 7 m of layered coralli- water depth to inner neritic depths (< 50 m) characterizes this nacean limestone with intercalated silty marls of a carbonate Styrian Unconformity that here encompasses the Karpatian/ buildup, the Weissenegg Formation (Friebe, 1990). This marks Badenian boundary and the Bur5/Lan1 sequence boundary a distinct facies change, with a clear sedimentary discordance (Rögl et al., 2002; Spezzaferri et al., 2002 a). The nannoflora of Zo- ne NN4 in these sandy silts shows a strong increase in Helicosphaera ampliaperta. Foraminiferal assem- blages are corroded and dominated by Ammonia and elphidiids. The first Praeorbulina sicana occurs, as well as abundant small globigerinids.___ The following ca. 2.5 m of grey, bedded sandy limestone (dip 5° to- wards 015° E) contains a high am- ount of skeletal debris. In section 3, these beds interfinger laterally with a small patch reef (Wag02/15 to Wag02/16, Fig. 4), different from the succession in the Weissenegg Formation (Figs 5d, e). The follow- ing horizon is characterized by bio- turbated, greyish, micaceous san- dy silts and silty sands, interrupted by a thin concretion layer, and with fragments of thin-shelled bivalves at the base. The first Praeorbuli- na glomerosa occurs on top of the patch reef.______These beds are overlain by ca. 3 m of rhythmically stratified brow- nish silty sandstone and siltstone layers with erosive bases and with abundant mollusc casts (Fig. 5f). The erosive base of the lowermost sandstone bed (above Wag02/19, Fig. 4) encompasses the NN4/NN5 boundary, thus indicating a distinct sedimentation gap. Foraminifera are mostly dissolved, but the first Figure 6: a) Retznei, main quarry; Karpatian section of “Steirischer Schlier” below the carbonate record of Amphistegina mammilla, buildup; b) Retznei, main quarry; base of Badenian carbonate buildup with bored boulders; c) Retznei, typical of the Badenian has been main quarry; outcrop of so-called “Geröllmergel”; d) Retznei, main quarry; detail of Figure 6c: grey silts and sands with mainly crystalline pebbles, intercalated between Karpatian Schlier and Badenian observed. Praeorbulina circularis carbonate buildup; e) Thalassinoides from Retznei, main quarry, section 2b; f) Flute casts of the base and Orbulina suturalis also have of the main sandstone layer at section 1, between 22.8 and 24.5 m.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions and erosive base to the underlying sandstones. In the marly The sediment contains some mollusc and echinoid debris, layers, a rich foraminiferal fauna, with agglutinated tropical/ and a rich foraminiferal and ostracod fauna. Shallow water subtropical shallow water species, such as Pseudogaudryina species of Ammonia and Elphidium have been transported or lapugyiensis, P. sturi and Paragaudryinella interjuncta and al- reworked. Pseudogaudryina, Textularia, Uvigerina, Heterolepa, so common Amphistegina, occur together with planktonic spe- Cibicidoides and lagenids indicate an inner shelf environment. cies of Globigerinoides, Praeorbulina and Orbulina. The calca- This fauna and the planktonic assemblage with Globigerino- reous nannoplankton belong to the nannoplankton Zone NN5. ides trilobus, G. quadrilobatus, Praeorbulina glomerosa and Dinoflagellate cysts from these sections were studied by So- the nannoplankton of zone NN 5 indicate a correlation with liman and Piller (2007). The occurrence of Nematosphaerop- the clastic Badenian part of the Wagna section below the car- sis labyrinthus as an indicator of deep water in the Karpatian bonate buildup.______confirms results based on benthic foraminifera whilst a num- The carbonate buildup of the Weissenegg Formation starts ber of thermophilic species point to subtropical conditions in the main quarry (Fig. 6b) with a small coral reef and ex- throughout the sections. The position of the Karpatian/Bade- tends into corallinacean limestones (Leithakalk; Friebe, 1988, nian boundary proposed by Soliman and Piller (2007) is not 1990). Towards the southeast, the limestones show a basin- in agreement with our observations. The correct position of ward transition into reworked material of the reef slope facies. the boundary in section 1 of Soliman and Piller (2007), which Marly sands and silts, with tuffitic intercalations, drowned the is based on the sections presented here, lies between sam- top of the buildup and carbonate sedimentation ended after ples Wag23 and Wag24, in section 2 between Wa01/16 and the start of intense volcanic activity. A thick tuff layer with Wa01/17, and in section 3 between Wa02/07 and Wa02/08 black biotite and sanidine is present on top of the limestones. (Fig. 4). The change of dinocyst assemblages was connected This layer was recently radiometrically dated to 14.21 ± 0.07 to a change in the palaeoenvironment reflected in the litholo- Ma or 14.39 ± 0.12 Ma (Handler et al. 2006).______gical change in the upper part of the Steirischer Schlier.____ The section above the carbonate buildup investigated (samp- led in two overlapping sub-sections, Fig. 7) lies in the south- 3.2 Retznei, Lafarge-Perlmooser cement eastern part of the main quarry (Fig. 3b). The lower part com- quarries mences with 5 m of corallinacean limestones of the Weissen- egg Formation, of which the base is not exposed. Approxima- 3.2.1 Hauptstock, main quarry tely 8 m of silty clay and silt-clay that contains several tuffitic The Wagna section continues to the south and is exposed in intercalations follow above an erosional surface (Fig. 7, sam- the Lafarge-Perlmooser cement quarries in Retznei. Depen- ple R 01/07). The following 45 m show mostly bioturbated, ding on the relief, some Karpatian shales and relics of clastic homogeneous greenish-grey silty clays with intercalated hori- basal Badenian sediments below the corallinacean limestone zons of silty fine sands and silty sands. The pelitic sediments are exposed here.______frequently contain plant remains, molluscs, echinoids, crus- Two outcrops were noted by Friebe (1988, 1993) as Geröll- taceans and fish teeth. The sandy horizons mostly show an mergel. This small, 4 m high first outcrop lies in the middle of upwards fining and bioturbation (Thalassinoides, Ophiomor- the quarry and exposes Steirischer Schlier (Fig. 6a) and the pha; Fig. 6e). Additionally, a 1 m thick sandstone layer, depo- eroded top of the Karpatian. The Steirischer Schlier consists sited about 18 m above the top of the limestones (R 01/28 of dark-grey, silty, calcareous shales with sparse pebbles from and R 01/29), shows flute casts at its base (Fig. 6f).______the basement. Another pebble layer, containing calcareous The rich foraminiferal fauna of the Lower Lagenidae Zone clasts bored by bivalves and with trace fossils (Gastrochae- assemblages points to an upwards deepening in the section, nolites; Fenninger and Hubmann 1997), forms the base of a from 150 to 300 m water depths, indicating strong subsidence huge carbonate buildup (Fig. 6b). The nannoflora and micro- (Hohenegger et al., 2005). Praeorbulina circularis and Orbuli- fauna of this short section are similar to the upper part of the na suturalis occur throughout the section. The nannoplankton Karpatian in Wagna. The calcareous nannoplankton compri- assemblages point to the Helicosphaera waltrans biohorizon ses small reticulofenestrids; the agglutinated foraminiferal spe- within zone NN5 (Ćorić et al., 2007). This datum conforms to cies Spirorutilus carinatus (Spezzaferri et al., 2002a) is cha- the recently proposed data in the Mediterranean area (Di Ste- racteristic. Elsewhere, the dark grey shales contain a typical fano et al., 2008). The dinoflagellate cysts of the siliciclastic Karpatian microfauna with Gaudryinopsis beregoviensis and sequence were studied by Soliman (in Gross et al. 2007). The Cribrostomoides, together with small calcareous benthic and occurrences of Cerebrocysta poulsenii, C. placacanthum, Ha- planktonic foraminifera.______bibacysta tectata and Unipontidinium aquaeductum indicate a The second outcrop (Friebe 1988, 1993), which lies further middle Miocene age.______to the north, exposes Karpatian Steirischer Schlier, Geröllmer- gel and the base of the carbonate buildup (Fig. 6c). The Kar- 3.2.2 Rosenberg quarry patian is overlain by a pebble layer, followed by 1 to 4.5 m A detailed description of the Rosenberg quarry (new Retznei (Fenninger and Hubmann, 1997) of silt and micaceous fine quarry) was given by Gross et al. (2007). As before, Badenian sand with mainly basement pebbles (Geröllmergel; Fig. 6d). sedimentation starts on top of the Styrian Unconformity with a Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL

Figure 7: Retznei, Lafarge-Perlmooser cement factory, old main quarry; sampled sections with position of investigated samples; in section 1 deep- water silts and marls with two layers of intercalated tuffites top the corallinaceen limestone of the Weissenegg Formation.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions

layer of coarse pebbles (Basalkon- glomerat – Geröllmergel). The over- lying carbonate complex (Erhart and Piller, 2003) is heterogeneous, but also starts with coral growth. Fine- grained calcareous sandstones with corallinacean debris and Planostegi- na, the Aflenz Stone (a well-known building stone of the region), overlie coral patchreefs. Corallinacean lime- stones and patches of corals form the upper part of the carbonate build- up. The occurrence of Planostegina giganteoformis is characteristic for the Lower Badenian in the Styrian Basin. An erosional surface trunca- tes the limestones, followed by a si- liciclastic sequence, reflecting increa- sing water-depths.______

3.3 Katzengraben sec- tion near Spielfeld____ A stratigraphic succession, compa- rable to the Wagna and Retznei sec- tions, but with a more clastic cha- racter, is exposed in the abandoned sand pit at Katzengraben west of Spielfeld (Figs 2, 3c). The >22 m high section consists of silt with fine sand layers and lenses; layers of medium sand are present in the ba- sal section and clean, sometimes concretionary sandstone is charac- teristic of the upper part (Fig. 8). Co- arse gravels and fine gravel hori- zons occur within a silt layer expo- sed from 5.35 to 6.20 m above the present base of the outcrop. At the base of these gravel bearing silts, a layer of reworked Karpatian shale pebbles was also observed. From 11.5 to 11.80 m, a silty fine sand lay- er with fine gravels contains disper- sed lonestones on its top. Besides very rare mollusc shell fragments in the higher fine sandy part, the Kat- zengraben section is free of macro- fossils. Trace fossils such as Plano- lites, Thalassinoides and Scolicia mainly occur in the upper part of the section. The Kreuzkrumpel Formation was defined from Karpatian deposits in the southwestern part of the Gam- Figure 8: Katzengraben near Spielfeld; sampled section with lithology and stratigraphy.______litz embayment (Schell 1994). This Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL formation, which is unpublished (and thus invalid), encompas- 3.4 Perbersdorf 1 deep well ses silty calcareous shales (Steirischer Schlier), with interbed- In the southern Styrian Basin (southern Gnas Subbasin), a ded sands, sandstones and gravel layers. Friebe (1990) des- deep well at Perbersdorf (Fig. 2) was fairly continuously cored cribed the Badenian sands and gravels in this area as the for scientific research in 1953, by the R.K. van Sickle Company Kreuzberg Formation.______(material deposited at the Austrian Geological Survey). The suc- Friebe (1993), who described the Katzengraben outcrop with cession shown in Table 1 is based on Kapounek (1954). Vol- the Styrian Unconformity (Fig. 3c), regarded the lowermost canic layers and tuffites are common, especially below 600 m part of the transgressive sequence with sandy conglomerate drilling depth.______and siltstone cobbles as Karpatian. However, based on our The results were reported by Kapounek (1954) and Kollmann observations, this part of the succession should be correlated (1965), partly revised by Rögl et al. (2002) and Spezzaferri et with the sediments characteristic of the first Badenian trans- al. (2004). The well ended in Palaeozoic phyllites. Although gression in the Wagna section (Fig. 4: Wag02/08 to Wag02/ Spezzaferri et al. (2004) placed the Karpatian/Badenian boun- 19). In both places, Karpatian shale cobbles mark the base of dary at 501 m depth, at the highest occurrence of Uvigerina Badenian, accompanied by a distinct change from deep-water graciliformis, subsequent research, also based on calcareous to shallow-water deposits. Friebe (1993) noted fossil debris, nannoplankton, showed that the Badenian started much lower. with oysters and Gastrochaenolites-borings, indicating shal- The important Badenian nannoplankton marker horizon of H. low-water conditions. The occurrence of glauconite in the pro- waltrans was found between 304 m and 370 m, with the nan- posed Badenian sands confirms an environmental change to noplankton zonal boundary NN4/NN5 placed at 501 m, accom- warmer and shallower conditions, as pyrite is a common com- panied by a disconformity. Typical Karpatian nannoplankton ponent in Karpatian sediments. Hol- zer (1994) correlated the Karpatian shales with the Kreuzkrumpl Forma- tion and the sediments above the angular unconformity with the Weis- senegg Formation. The conglome- rate bed in the higher part (ca. 12 m) of the sand succession (Fig. 8) corresponds to another disconformi- ty and a further Badenian transgres- sion, as demonstrated by calcare- ous nannoplankton and foraminifera. Planktonic species of Praeorbulina and Orbulina were not recorded. The Karpatian/Badenian boundary is mar- ked by the first occurrence of the stratigraphically important shallow benthic foraminiferal species Colo- minella paalzowi and Lingulina cos- tata and the overlying disconformity by the occurrence of Vaginulina le- gumen and Pseudogaudryina lapu- gyensis. The calcareous nannoplank- ton flora is similar to associations in the Wagna section, showing both an assemblage change within Zone NN4 at the Karpatian/Badenian boundary and the NN4/NN5 boundary at the base of the Badenian conglomerate, with the occurrence of H. waltrans. The mass occurrence of the small planktonic foraminiferal genus Cassi- gerinella in both Karpatian and Ba- denian (reworked?) sediments is in- teresting, as this was not observed Table 1: Perbersdorf 1 deep well; lithology and revised biostratigraphy of the deep well in the in the Wagna section.______southern Gnas Subbasin.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions assemblages of NN4 were observed between 862.0 m and ry rare Globigerinoides were found down to 800 m. In the dee- 930.8 m. Planktonic foraminiferal assemblages in the lower per parts of the well, agglutinated assemblages with a domi- part of the section are dominated by Globigerina s.l., but index nance of Bathysiphon alternate with rich calcareous benthic species are very rare. The first occurrence of Praeorbulina cf. faunas. Occurrences of Uvigerina macrocarinata and Vaginul- sicana was in the upper part of the section at 442 m. Only ve- ina legumen indicate an early Badenian age. Based on this and the well-log, the base of the Bade- nian has been placed at 838 m.__ The Karpatian sediments show fo- raminiferal assemblages similar to the Badenian, with abundant ag- glutinated species. No sedimentary break or distinct faunal change was observed. The lowermost investiga- ted sample, at 927.8 m, has a well- developed foraminiferal fauna with common Spirorutilus. This indicates sedimentation at water depths grea- ter than those in the sublittoral fa- cies. Coastal or near-shore Karpa- tian sediments are missing. Marine Karpatian sediments were only do- cumented from 838 to 935 m.____ Dark grey to red brown shales with layers of conglomerates and tuffites form the lower part of section, with some traces of lignite. The microfos- sil content is reduced to silicified stems and tubes, probably of plant roots. This lower part of the section is subdivided into two parts. The upper part (935 – 1335 m) is domi- nated by conglomerates and dark shales that might be correlatives of limno-fluviatile Ottnangian deposits (the lower Eibiswald Formation of Kollmann, 1965). The lowermost part (1335 – 1470 m), with reddish, gree- nish and black shales and red brec- cias corresponds to the continental ?Ottnangian Limnic Series. Kapou- nek (1954) reported some fragments of terrestrial gastropods from these shales. The sediments lie unconfor- mably on the metamorphic base- ment. The core ended at 1477 m, in Palaeozoic phyllites.______-__

3.5 Petersdorf 1 deep well The Petersdorf 1 deep well was drilled in 1995 by the Rohöl-Aufsu- chungs AG (Vienna) in the northern Gnas Subbasin (Fig. 2), penetrating

Table 2: Petersdorf 1 deep well; lithology and biostratigraphy of the deep well in the northern mainly coarse clastics of Pannonian Gnas Subbasin.______und Sarmatian age. A complete Ba- Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL denian succession was drilled down to 2127 m (Tab. 2). A gian (Polesny, 2003) but terrestrial gastropods and plant fos- bloom of Orbulina was observed at 1470 – 1490 m; this oc- sils did not allow a precise biostratigraphic determination. The curs in the lower Badenian of the Styrian Basin at many drill basement, at 2636 m, is formed by Palaeozoic banded lime- sites. Only scarce microfossil assemblages were observed stones. between 1673 m and 1867 m, probably due to volcanic acti- vity. Index fossils are rare below 2030 m, while agglutinated 3.7 Fürstenfeld Thermal 1 deep well foraminifera are more common. The Karpatian part comprises The deep geothermal well at Fürstenfeld was drilled in 1984/ the section from 2127 m to 2342 m. A core was taken from 1985 in the Fürstenfeld Subbasin (Fig. 2). Friebe and Poltnig 2308 m to 2318 m, from which thin-sections showed dark (1991) published a lithological and biostratigraphic subdivision grey-brown, bioturbated shales with rare agglutinated tubes. of the well (Fig. 9). Early Pannonian sediments were drilled The core samples were barren of micro- and nannofossils. down to 194.5 m. Sarmatian sediments containing the basal Conglomerates with intercalated shales, sandstones and some Anomalinoides Zone followed, down to 1330 m. The Badenian tuffites were found from 2342 m to 2901 m. This sequence succession was difficult to subdivide; based on other, nearby can be correlated with the limno-fluvial Ottnangian deposits in wells, it was here assumed that the lower part of upper Bade- other wells. The well ended at 3084 m in Palaeozoic micace- nian correlates with the zone of agglutinated foraminifera and ous slates.______that the boundary of the middle/lower Badenian should be placed at 1690 m. In contrast to Friebe and Poltnig (1991) 3.6 Übersbach 1 deep well and Polesny (2003), we have placed the Karpatian/Badenian The Übersbach deep well 1 was drilled in 1958/1959 by the boundary at 2620 m, based on the occurrence of Praeorbu- Rohöl-Aufsuchungs AG (Vienna) in the Fürstenfeld Subbasin lina glomerosa. The Karpatian, rich in conglomerates (2620 – (Fig. 2). A profile and detailed description was given by Koll- 2748 m), yielded Globigerinoides bisphericus. The well ended mann (1965: Pl. 3); this is presented here in short form (Fig. at 3145 m in Palaeozoic rocks. Limno-fluviatile, coarse-clastic 9). From 8 m to 209 m, Pannonian gravel, sand and calcare- ?Ottnangian sediments were missing in this well.______ous clay were drilled, followed by Sarmatian clays, oolites, sand, and gravel down to 1023 m, with a discordance and gap 4. Biostratigraphy to the Upper Badenian Bulimina-Bolivina Zone. Calcareous clays Biostratigraphic problems of the early/middle Miocene, Kar- with sandstones, corallinacean lime- stones and some tuffites form the Badenian succession, which trans- gressed with a basal conglomerate at 1582 m. Rich microfossil assem- blages belonging to the Lagenidae Zone appear in the Lower Badenian, with a first occurrence of Orbulina. Marine Karpatian sandstones, calca- reous shales and tuffites were recor- ded between 1582 m and 1980 m. Trace fossils, a few bivalves and a poor microfauna were observed, do- minated by agglutinated foraminife- ra. Index species are missing; only a few Ammonia and Elphidium oc- cur in the lowermost part. The un- derlying sequence consists of sand- stones, conglomerates and shales with some lignite seams. This part of the sequence is considered to be non-marine, and therefore correla- ted with the limno-fluvial Ottnangian, in contrast to the interpretations of Ebner and Sachsenhofer (1991) and Polesny (2003). Flood-plain deposits with red loam, coal seams and bi- Figure 9: Correlation of deep wells in the Styrian Basin: differences of subsidence in different subbasins..The Karpatian marine sedimentation ended at the Styrian Unconformity, followed by the tuminous marls at the base (Limnic Badenian transgression. A basal Badenian conglomerate is developed in the Fürstenfeld Subbasin Series) are considered to be Ottnan- (Übersbach 1).______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions patian/Badenian boundary in the Central Paratethys and cor- ricus in the upper part (Cicha and Rögl, 2003). The upper sur- relations with Mediterranean stages were recently discussed face of the Karpatian was commonly an erosion surface in in detail (Rögl et al., 2002, 2007; Ćorić et al., 2004a, b). The Austrian Neogene basins. The base of the Badenian is deter- Karpatian stage is characterized by the first appearance of mined by the first appearance of the planktonic foraminiferal the benthic foraminifer Uvigerina graciliformis within nanno- genus Praeorbulina. This boundary is correlated with the Bur- plankton zone NN4, defined as the interval between the LO of digalian/Langhian boundary in the Mediterranean region. There- Sphenolithus belemnos and the LO of Helicosphaera amplia- fore, the basal early Badenian still belongs to nannoplankton perta, as well as by the appearance of Globigerinoides bisphe- Zone NN4 (Ćorić et al., 2004a).______The historical method to identify the base of the Langhian is repre- sented by the first evolutionary ap- pearance of Praeorbulina glomero- sa. Fornaciari et al. (1997) propo- sed a revision of the Langhian his- torical stratotype, suggesting that the base of the type Langhian pre- dates the H. ampliaperta LO and contains Sphenolithus heteromor- phus, hence falling within Zone NN4 of Martini (1971), whilst the first evo- lutionary appearance of P. glomerosa occurs about 100 meter below the base of the Cessole Marls, which historically indicate the base of the Langhian (Vervloet 1966). Moreover, Gelati et al. (1992) considered the Langhian stratotype to represent a single depositional sequence, corre- lated to the 3rd-order cycle 2.3, su- percycle TB2, of the Global Cycle Chart of Haq et al. (1988).______Recently, Lourens et al. (2004a) pro- posed, but without a formal definition, placing the base of the Langhian, and therefore the early/middle Mio- cene boundary, at the top of chron C5Cn, dated at 15.974 Ma.______At present, the available published data clearly indicate that there is no general agreement for the identifi- cation of the base of the Langhian. Moreover, the poorly preserved ma- rine Langhian records prevent a clear identification of the Globigerinoides- Praeorbulina lineage, which is al- ways used to identify the base of the Langhian.______In Appendix 2 of Lourens et al. (2004 b), the first appearance of P. glome- rosa is given at 16.27 Ma, which is Figure 10: Wagna, old brickyard, section 3. Interpreted stratigraphy, combining lithology, biostra- in full agreement with the former usa- tigraphy and palaeomagnetic results. The Styrian Unconformity is interpreted to corresponds to the ge. Therefore, we conti-nue to use Bur5/Lan1 sequence boundary. The intra-Badenian discontinuity at the Lan2/Ser1 sequence boundary this biostratigraphical marker, in com- separates a first Badenian transgression from the Central Paratethys wide Badenian main transgres- sion. At the base of the corallinacean limestone of the Weissenegg Formation an additional sedimen- bination with the base of the polarity tation gap is observed.______chron C5Cn.1r at 16.303 Ma, as the Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL base of the middle Miocene (Langhian) and, consequently, as gerina species dominate. Markers of the early Badenian in the the base of the Badenian.______deep basin are represented by Vaginulina legumen, large len- In the Central Paratethys and the Styrian Basin, the Steiri- ticulinas (e.g. Lenticulina ariminensis, L. orbicularis), together scher Schlier belongs to the Karpatian, due to the occurrence with U. macrocarinata, and sometimes replace the missing of G. bisphericus and the marker of the calcareous nanno- Praeorbulina. In shelf areas, agglutinated species such as Co- plankton zone NN4, H. ampliaperta. The Karpatian benthic lominella paalzowi, Psammolingulina papillosa, Pseudogau- foraminiferal marker Uvigerina graciliformis is also common dryina lapugyensis, P. sturi and Paragaudryinella interjuncta here. In most sections, the topmost part of the Steirischer mark the climatic change to warmer conditions at the base of Schlier has been eroded and thus the marker species, G. bis- the Badenian by their first occurrences. In the deep wells of phericus, is not well represented.______the Styrian Basin, a bloom of Orbulina has been observed in For stratigraphical subdivisions based on nannoplankton, the the upper part of the lower Badenian, probably still in the Lo- marker species H. ampliaperta and S. heteromorphus have wer Lagenidae Zone.______been used; zone NN5 is defined by the absence of the former In the investigated sections, a biostratigraphic subdivision of and presence of the latter. Karpatian and the lower part of the Karpatian and Badenian sediments and a correlation between Badenian sediments in Wagna, Katzengraben und Retznei can shallow and deep water regions can be demonstrated:______be assigned to nannoplankton Zone NN4, whereas the upper part of the lower Badenian belongs to NN5.______4.1 Wagna, former clay pit Helicosphaera waltrans (Theodoridis, 1984) can be used as Here, only the upper part of the section, with the Styrian Un- an additional marker within the S. heteromorphus Zone (NN5), conformity and the Badenian part (Fig. 10) is discussed, be- by defining the LO of this species as the upper boundary of cause Spezzaferri et al. (2002a, 2004) gave detailed analyses the H. waltrans subzone. The importance of this short range of the Karpatian part.______species was recognized by Fornaciari et al. (1996), but was The Karpatian and Badenian sediments from section 1 (Fig. not used as a marker for the subdivision of the miocene Medi- 4, App. 1a) and section 2 (Fig. 4, App. 1b) contain Helicos- terranean nannofossil zonation. H. waltrans was described by phaera ampliaperta, which defines nannoplankton Zone NN4. Švábenická (2002) and Ćorić and Švábenická (2004) from Most of section 3 (Wag02/01 to Wag02/19), including the Sty- middle Miocene localities in the Central Paratethys (Vienna rian Unconformity, contains similar nannoplankton assembla- Basin and Alpine-Carpathian Foredeep). Recently, the Last ges as the samples from sections 1 and 2 (App. 1c). There- Common Occurrence (LCO) of this form was used by Di Stefano et al. (2008) for the subdivision of the Sphe- nolithus heteromorphus Interval Zo- ne (MNN5) and for defining the up- per boundary of the Sphenolithus he- teromorphus – Helicosphaera wal- trans Subzone (MNN5a). Abdul Aziz et al. (2008) dated the short range of this form, with the First Common Occurrence (FCO) at 15.476 Ma and the LCO at 14.357 Ma (interpolated to ATNTS 04).______-______A subdivision of the Badenian in the Styrian Basin similar to the ecostrati- graphic zonation of Grill (1941, 1943) for the Vienna Basin, is problematic, especially for the early Badenian. The revision of this zonation by Papp and Turnovsky (1953) was based on Uvi- gerina lineages; this subdivided the early Badenian successions by the range of U. macrocarinata into the Lower and Upper Lagenidae Zones. In the Styrian Basin, this species ran- ges throughout the early Badenian because of a distinctly deeper envi- Figure 11: Palaeomagnetic results and interpretation of chrons from the Retznei Lafarge-Perl- ronment, where heavily costate Uvi- mooser cement factory, old main quarry and new quarry Rosenberg (Stingl and Scholger 2005).____ The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions fore, this part of section 3 can be assigned to the same nan- NN4/NN5 boundary has been placed between samples B02 noplankton zone. The last occurence of H. ampliaperta was and B03. Note that the rare occurrence of H. ampliaperta in observed in sample Wag02/19 and thus the NN4/NN5 boun- sample C1/01 probably results from reworking. The upper part dary can be placed between samples Wag02/19 and Wag02/ of the section (B03 to C2/1) contains H. waltrans and can be 20, on the erosive base of the lowermost sandstone bed. Sil- placed into the lower part of zone NN5. Sphenolithus hetero- ty marls from the uppermost part of section 3 (Wag02/20 to morpus is rare. High percentages of Helicosphaera carteri in- Wag02/25) contain very rich nannoplankton assemblages, in- dicate a shallow-water palaeoenvironment.______cluding Helicosphaera waltrans and can thus be attributed to A rich foraminiferal fauna was determined in marly samples Zone NN5. Just above the angular discordance and clay-peb- of the Karpatian section part. Tests were commonly corroded ble layer, the planktonic foraminifer Praeorbulina sicana marks and some transportation from shallower regions was recorded the base of the middle Miocene (base Badenian) in sample (e.g. Amphistegina, Elphidium). Particularly remarkable are Wag 02/09 (Fig. 4), followed by Praeorbulina transitoria and floods of the small planktonic species Cassigerinella boude- P. glomerosa. In one of the weakly cemented samples be- censis and C. globulosa. Most globigerinas (e.g. Globigerina tween the sandstones, Praeorbulina circularis is recorded to- falconensis, G. ottnangiensis, G. pseudociperoensis, G. sub- gether with Orbulina suturalis. Starting with the corallinacean cretacea) are small and Globoturborotalita connecta, Globige- limestones near the top of the Wagna section, a rich plankto- rinella cf. regularis and Globoquadrina langhiana also occur. nic assemblage with co-occurrence of Praeorbulina and Orbu- Small microperforate genera (Tenuitella, Tenuitellinata, Tur- lina is observed. In this upper part of the Wagna section, a ty- borotalita) are common. The index fossil Globigerinoides bis- pical early Badenian benthic foraminiferal fauna appears also phericus was observed in sample Katz 1 (Fig. 8). Some ag- (Apps 1d, e).______glutinated species, such as Haplophragmoides laminatus, Re- ticulophragmium karpaticum and Cyclammina karpatica indi- 4.2 Retznei, main quarry cate greater water depths (outer shelf). The main fauna con- A small outcrop of the Steirischer Schlier (Fig. 6a) was in- sists of calcareous species, where the following uvigerinids vestigated by Spezzaferri et al. (2002a) in the Retznei quarry. and bolivinids are stratigraphically important: Uvigerina graci- Calcareous nannoplankton constrain the age of these sedi- liformis, U. pygmoides, U. cf. bulbacea, Pappina primiformis, ments to zone NN4; the appearance of U. graciliformis with- P. breviformis, Bolivina hebes and B. matejkai.______out Praeorbulina is indicative for the Karpatian. The upper- No distinct faunal change was observed in the Badenian sam- most, Badenian part of this section yielded nannoplankton ples above the main unconformity. Cassigerinella dominates assemblages with H. waltrans, indicating nannoplankton zone the planktonic assemblages but the benthic assemblages of NN5 (App. 1f). Thus in this section, the Karpatian/Badenian the marly samples are highly diverse. The first typical Bade- and the NN4/NN5 boundaries coincide, indicating a sedimen- nian immigrants, for example the agglutinated shallow water tation gap that extended for more than 1 Ma. In the second species Colominella paalzowi, Pseudogaudryina mayeriana, outcrop, the foraminiferal fauna of the Geröllmergel lying together with Bolivina scalprata muscosa and B. viennensis, above the Steirischer Schlier (Fig. 6c) contains Praeorbulina occur in sample Katz 3. In sample B 02, the species Uvigeri- glomerosa and Amphistegina mammilla, the latter being a na macrocarinata indicates the Lower Lagenidae Zone. In the benthic marker not represented in the Karpatian. The nanno- upper part of the Badenian section (samples B 03 to C 1/1) flora of these sands and silts belong to zone NN5, with H. wal- Pseudogaudryina lapugyensis, P. sturi, Lingulina costata, Pla- trans. The lower part of this section, in the Steirischer Schlier, nularia dentata, Planostegina costata and Vaginulina legumen contains H. ampliaperta and can be assigned to zone NN4.__ occur first. The planktonic assemblages are still of small size, In the Badenian part of the main quarry at Retznei (Fig. 7), Cassigerinella is common but may have been reworked from the nannoplankton zone NN5 is recorded throughout the sec- the lower part of the section. The stratigraphically important tion and belongs to the Helicosphaera waltrans horizon (Apps genera Praeorbulina and Orbulina have not been observed.__ 1g, h). Benthic assemblages correspond to the typical fauna of the Lagenidae Zone, with Uvigerina macrocarinata, Vaginu- 4.4 Perbersdorf 1 deep well lina legumen and Amphistegina mammilla (App. 1i). Praeor- Sediments from the lowermost part (947 m – 1311 m) do not bulina circularis and Orbulina suturalis occur together in both contain nannofossils (App. 1l). As Helicosphaera ampliaperta the basal marls and the corallinacean debris, topping the au- is abundant in samples between 520 – 523 m, the NN4/NN5 tochthonous corallinacean limestone. Of stratigraphic impor- boundary has been placed at the disconformity at 501 m. Due tance are the occurrence of the globorotaliids Paragloborotalia to the absence of this marker species, the upper part of the siakensis/acrostoma and Globorotalia transsylvanica (App. 1j). section (246 m to 496 m) can be assigned to nannoplankton Zone NN5. Calcareous nannoplankton assemblages with H. 4.3 Katzengraben waltrans were observed from 299 m to 370 m. Abundant small The regular occurrence of H. ampliaperta in marly sediments reticulofenestrids within the nannoplankton assemblages above from the lower part of the section at Katzengraben (Fig. 8: A01 the last occurrence of H. ampliaperta confirm this stratigraphic to B02) indicates nannoplankton Zone NN4 (App. 1k). The subdivision. Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL

Foraminiferal assemblages vary in this section strongly in continuous sedimentation may have occurred in this deeper abundance as well as in composition. All investigated core part of the basin. Rich assemblages of globigerinas and ben- samples from 216 to 838 m belong to the early Badenian. A thic species occur in the Karpatian part of the section (838 – rich planktonic assemblage, with O. suturalis, P. circularis, P. 935 m), with U. graciliformis as the only marker species.____ sicana and Paragloborotalia siakensis, is present only in the uppermost part (down to 376 m; App. 1m). At 247 – 248 m, 4.5 Petersdorf 1 deep well the marker horizon with the Orbulina bloom was observed. In At Petersdorf, the well-log and foraminiferal assemblages indi- the deeper parts, in which there is an increase of volcaniclas- cate that the early/middle Badenian boundary lies at 1374.5 m. tic intercalations, the biostratigraphic subdivision depends Within the early Badenian, at 1470 – 1490 m, the characteris- mainly on calcareous nannoplankton. Agglutinated foraminife- tic Orbulina bloom was recorded (App. 1o). A rich foraminiferal ra dominate down to 750 m, followed by rich assemblages of fauna with O. suturalis (down to 1590 m) and P. circularis, P. globigerinas and calcareous and agglutinated benthics. Ben- glomerosa, U. macrocarinata and Cylindroclavulina rudis (down thic species such as Vaginulina legumen and U. macrocari- to 1673 m) was observed. As in many drill cores, a less abun- nata indicate a Badenian age (App. 1n). In contrast to earlier dant fauna occurs deeper down (1673 – 1867m). This part is interpretations (Kollmann, 1965; Spezzaferri et al., 2004), nan- followed by a strong increase in agglutinated foraminifera, noplankton and foraminifera indicate that the Karpatian/Bade- comparable to the section in Perbersdorf 1. Scarce P. circula- nian boundary must be placed at 838 m. No distinct assem- ris and P. glomerosa indicate Badenian sedimentation down blage change could be observed at the boundary and thus to 2127 m. In the well-log, the Karpatian/Badenian boundary

Figure 12: Bio-chrono-magnetostratigraphic correlation between Wagna, Retznei and DSDP-Site 372 (Aziz et al., 2008; Di Stefano et al., 2008) records. Quantitative distribution pattern of Paragloborotalia siakensis from DSDP-Site 372 (Di Stefano et al., 2008) and from Retznei (this work). The palaeo-environment of the lower part in the Retznei section was too shallow for P. sia- kinensis, only in the upper section part the estimated palaeodepth of 250 to 300 m (Hohenegger et al., 2005) was convenient explaining abundance peaks.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions is shown by dipmeter measurement to be an angular uncon- strongly between the wells and subbasins. The distinct Styri- formity. The Karpatian sequence (2127 – 2342 m) contains a an Unconformity separates the Karpatian and Badenian in the scarce foraminiferal fauna with G. bisphericus and G. trilobus. Petersdorf 1 and Übersbach 1 wells, whilst continuous sedi- Uvigerinas are missing.______mentation was recognized at Perbersdorf 1. At Übersbach1, in the Fürstenfeld Subbasin, Badenian sedimentation started 4.6 Correlation between wells with a basal conglomerate, whereas the other wells show si- A correlation profile of the investigated wells, including the milar continuous deep-water conditions from the Karpatian to published sections of Übersbach 1 and Fürstenfeld Th 1 is the Badenian. Schreilechner and Sachsenhofer (2007) pre- shown in Fig. 9. Sedimentation started in most regions with a sented a sequence-stratigraphic interpretation based on seis- thick cover of continental and limno-fluviatile clastics (Ottnan- mic sections of this area.______gian). The thickness of the marine Karpatian deposits varies 5. Magnetostratigraphy Stingl and Scholger (2005) check- ed the palaeomagnetic measure- ments of Auer (1996) in the Wagna quarry, leading to minor corrections, especially in the better-studied sec- tion 3 that contains the Karpatian/ Badenian boundary. These re-inves- tigations resulted in a sequence of normal and reverse magnetic polari- ties that could be assigned to dis- tinct chrons using the established biostratigraphic markers (Fig. 10). Based on the Karpatian microfauna, the normal polarity of the basal part of section 3 must be assigned to chron C5Cn.3n and the overlying re- versal to chron C5Cn.2r. The marker species Praeorbulina sicana in sam- ple Wa 02/09 determines the polari- ty chron in these beds as C5Cn.1n, followed by the reverse chron C5Br. By assigning the normal–reverse–nor- mal polarity sequence in the coralli- nacean limestones topping the sec- tion with polarity chrons C5Bn.1n, C5ADr and C5ADn, respectively, the overlying beds, characterized by rhyth- mically stratified brownish silty sand- stones and siltstone layers, must be- long to polarity chron C5Bn.1n (Fig. 10).______The results of palaeomagnetic mea- surements in the Hauptstock and Rosenberg sections in the Retznei quarry (Stingl and Scholger 2005) are shown in Fig. 11. In comparison with the lithology and biostratigraphy of the Wagna section (Geröllmergel), both the normal polarity in the Karpa- tian marls beneath the coral limesto- ne must be placed in chron C5Cn.3n

Figure 13: Correlation of the investigated sections Katzengraben near Spielfeld, Wagna/old and the single measurement in the brickyard and Retznei/main quarry, crossing the Karpatian/Badenian boundary.______following coral limestone must be Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL placed in chron C5Bn.1n (Figs 11, 12). The main section in the The correlation of calcareous nannoplankton and planktonic Hauptstock, with a silt-clay sequence above corallinacean lime- foraminiferal events between the Styrian Basin and the Medi- stones, shows normal polarity, interrupted by a few reversals terranean demonstrates similarities caused by marine connec- (Fig. 11). Since this section in part biostra-tigraphically belongs tions. In the case of benthic foraminifera, the marker species to nannoplankton zone NN5 (Helicosphaera waltrans without for regional stratigraphy have been evaluated. Major bio-events, H. ampliaperta), it must be placed in chron C5ADn. This is ad- such as some of the observed hiatuses and transgressions, ditionally shown by the radiometric dating of the tuffite layers._ especially in near-shore areas, enables a correlation with the 3rd order sequences of Haq et al. (1988) and Hardenbol et al. 6. Radiometric Dating and Biostratigraphy (1998). Similar results have been obtained by the interpreta- 40Ar/39Ar dating of biotite and sanidine from the tuffite layer tion of seismic lines in the eastern part of the basin (Schrei- on top of the corallinacean limestone in the Retznei main lechner and Sachsenhofer 2007).______quarry gave ages of 14.206 +/- 0.066 Ma and 14.39 +/- 0.12 To compare the global sequences with those of the Styrian Ma respectively (Handler et al. 2005, 2006). In the corallina- Basin, it was necessary to calibrate the curves with the new cean limestone below and in the silty marls above the co- time-scale and palaeomagnetic geochronology of Lourens et occurrence of P. circularis and O. suturalis is observed. The al. (2004 a, b). The palaeomagnetic data of the Haq and Har- tuffite was deposited in the normal polarity chron C5ADn denbol tables has been evaluated and correlated accordingly (14.194 – 14.581 Ma). The marls above the tuffite encompass (Tab. 3). The Karpatian transgression has been compared with all the investigated section at Retznei within the H. waltrans sequence TB 2.2, where the regression due to the falling- horizon of Zone NN5 (Fig. 7). The LCO of H. waltrans, dated stage system tract was intensified by tectonic movements of at 14.357 Ma (Abdul Aziz et al., 2008) would support this. With- the Styrian Tectonic Phase, forming angular unconformities in the upper part of the marls (samples R 02/07 – R 02/23), a and leading to extreme shallowing and erosion. This was fol- distinct increase in the occurrence of Paragloborotalia siaken- lowed by the first Badenian transgression of cycle TB 2.3 (Fig. sis left coiled is observed, which correlates with the upper part 14) seen in the Wagna section between samples Wag02/08 of the acme abundance of this taxon in the Mediterranean and Wag02/19 as shallow water sediments with coral patch- (DSDP – Site 372, Balearic Island) during chron C5ADn (up- es (Fig. 10). The global sequence boundary Lan2/Ser1 was per part; Fig.12). This correlation indicates, together with the found in the Wagna section above sample Wag02/19, follo- H. waltrans horizon, that the sanidine age of 14.39 +/- 0.12 wed by the transgressive cycle TB 2.4 of the far-spread Bade- Ma from the Retznei main quarry is reliable.______nian transgression that covered the entire Central Paratethys. Another radiometric age was determined on tuffites in a sec- Although radiometric and biostratigraphical data indicate that tion near Pöls, where shallow marine deposits of the Florian the youngest part of the investigated outcrops in Retznei be- Formation, rich in Lower Badenian mollusc faunas are present longs to the falling-stage system tract, the constantly increa- (Kopetzky, 1957; Fritz et al., 2003). The foraminiferal fauna sing water depth, seen in the benthic and planktonic foramini- consists of miliolids, Ammonia, Buccella, Nonion, Elphidium, fera, demands tectonic subsidence. The sequence boundary Cibicidoides and Amphistegina bohdanowiczi. Planktonic fora- Ser2, compared with the Langhian/Serravallian boundary, was minifera are absent. The rare occurrence of H. ampliaperta only detected in the Petersdorf deep well 1.______indicates nannoplankton Zone NN4. 40Ar/39Ar age dating of sanidine crystals gave a plateau age of 15.75 +/- 0.17 Ma (Handler et al. 2005, 2006). This age correlates the Florian Formation with the earliest Badenian transgression in the Sty- rian Basin during NN4 (chron C5Br, 15.160 – 15.974 Ma).___

7. Discussion By comparisons with the Mediterranean stratigraphy, the bio- stratigraphic and palaeomagnetic results have allowed the time ranges of sedimentation gaps to be calculated between the transgressions in the investigated near-shore localities (Figs 10, 12, 13). In the basinwards positioned Wagna clay pit, the time gap between polarity chrones C5Cn.2r and C5Cn.1n, which contains the first Badenian transgression, was ca. 400 ky. The second gap, between C5Br and C5Bn.1n, which includes the second Badenian transgression and the NN4/NN5 boun- dary, was ca. 600 ky (Figs 10, 12). This gap is much longer at the near-shore Retznei quarry, where polarity chron C5Bn.1n Table 3: Calibration of sequences. Based on the position in pa- laeomagnetic polarity chrons, global sequences of 3rd order in Haq et (NN5) directly follows C5Cn.3n (NN4), thus marking a time al. (1988) and Hardenbol et al. (1998) have been calibrated to the new gap of ca. 1.6 Ma (Figs 11, 13).______chron ages of Lourens et al. (2004a).______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions

8. Conclusion The next sedimentation gap in nearshore regions occurred At the early/middle Miocene boundary, that is, the Karpatian/ around the nannoplankton zone NN4/NN5 boundary (14.74 Badenian and Burdigalian/Langhian boundary, a series of Ma), between polarity chrons C5Br and C5Bn.1n, ranging transgressive events in the Styrian Basin were combined with from about 15.4 to <14.8 Ma; this marks the second Badeni- tectonic events of the classical Styrian Tectonic Phase. The an transgression.______formation of the Styrian Basin started during the early Mio- A third discontinuity, at the base of the corallinacean lime- cene, as swamp and floodplain deposits of probable Ottnan- stones lying on top of the Wagna section, is too short to be gian age, lying on top of the deeply eroded Austroalpine nap- precisely dated. In the Retznei sections, this sedimentation pes, were transgressed during the Karpatian by the Paratethys gap extends from top of the Karpatian Steirischer Schlier to Sea. A series of marine ingressions of the Badenian Sea fol- the base of the carbonate sedimentation, thus showing a large lowed the deep water sediments of the Karpatian Steirischer gap between nannozones NN4 and NN5. At a few places, Schlier. During the Badenian, tectonic activity was accompa- sandy-silty sediments of the early Badenian are intercalated nied by extensive volcanism.______below the carbonates of the Weissenegg Formation.______Changes in sedimentary facies and sedimentation rates, un- Volcanic ash layers and tuffites were deposited at the base conformities, sedimentation gaps, as well as tectonic and of marls and silts belonging to zone NN5 that overlie the coral- volcanic activity demonstrate that the Styrian Phase was an linacean limestones of the Weissenegg Formation. The over- event that occurred around the early/middle Miocene boun- lapping range of Praeorbulina and Orbulina, both present in dary. New stratigraphic results, in combination with palaeo- this upper section part, allows the assignment to chron C5ADn magnetic and micropalaeontological investigations, allow the (14.19 – 14.58 Ma), which is confirmed by radiometric dating. timing of these events to be constrained. A major event is re- Although the global 3rd order sequence marks a regression for presented in nearshore sediments between the sedimentation this period, the observed deepening tendency must have been of the Karpatian Steirischer Schlier and the lowermost Bade- caused by continuing tectonic processes.______nian silts, with tilting of the Steirischer Schlier, to form the Sty- rian Unconformity. The first Badenian transgression is repre- Acknowledgements sented in the Wagna section after a sedimentation gap be- Investigations were performed within FWF projects P13743- tween 16.5 and 16.1/16.2 Ma, while in deep wells of the cen- BIO, P16793-B06 and P13738-Tec of the Austrian Science tral basin sedimentation was continuous.______Fund. Field work was done in 2000, when the lower part of

Figure 14: Integrated stratigraphy of the Early/Middle Miocene with a revised cyclostratigraphic model for the Austrian Neogene basins. The dis- continuous sections of the Wagna and Retznei outcrops, and the transition in the deeper parts of the Styrian Basin are shown. The additional sequen- ce boundary at 14.20 Ma and cycle BA2/VB6 are given according to Kovač et al. (2004) and Strauss et al. (2006) based on seismic profiles in the Vi- enna Basin. Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL the Wagna section was investigated and in 2001 and 2002, K., Svabenicka, L., Zorn, I. and Zuschin, M., 2004a. Stratigra- when the upper part of the Wagna section and the complete phy and correlation of the Grund Formation in the Molasse Ba- Retznei section were investigated in detail, with support from sin, northeastern Austria (Middle Miocene, Lower Badenian). participants on a field course run by the Department of Pala- Geologica Carpathica, 55, 207-215.______eontology, University of Vienna. The Katzengraben section Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., Rögl, F., was investigated during a field course in 2007. We especially Scholger, R., Spezzaferri, S. and Stingl, K., 2004b. Around thank Silvia Spezzaferri (University of Fribourg, Switzerland) the Early/Middle Miocene (Karpatian/Badenian) boundary in for her work within project P13743-BIO. For support the samp- the Austrian Neogene basins. A story of gaps. Slovakian Geo- ling work, we thank the owners of the old Wagna quarry and logical Magacine, 9, 259-260.______of the Lafarge-Perlmooser Zement AG Retznei. We thank the Rohöl-Aufsuchungs AG (Vienna) and the Austrian Geological Ćorić, S., Švábenická, L., Rögl, F. and Petrová, P., 2007. Stra- Survey for permission to study samples from deep wells. For tigraphical position of Helicosphaera waltrans nannoplankton additional information on the region, we are grateful to our col- horizon (NN5, Lower Badenian). Joannea-Geologie und Palä- leagues F. Ebner (Leoben), G. Friebe (Dornbirn), R. Handler ontologie, 9, 17-19.______(Salzburg) and H. Hiden (Graz).______Decker, K. and Peresson, H., 1996. Tertiary kinematics in the Al- pine-Carpathian-Pannonian system: links between thrusting, trans- form faulting and crustal extension. In: Wessely, G. and Liebl, W. References (eds), Oil and Gas in Alpidic thrustbelts and basins of Central and Abdul Aziz, H., Di Stefano, A., Foresi, L.M., Hilgen, F.J., Iacca- Eastern Europe. EAGE Special Publications, 5, pp. 69-77._____ rino, S.M., Kuiper, K.F., Lirer, F., Salvatorini, G. and Turco, E., Di Stefano, A., Foresi, L.M., Lirer, F., Iaccarino, S.M., Turco, E., 40 39 2008. Integrated stratigraphy and Ar/ Ar chronology of early Amore, F.O., Mazzei, R., Morabito, S., Salvatorini, G. and Abdul Middle Miocene sediments from DSDP Leg 42A, Site 372 (wes- Aziz, H., 2008. Calcareous plankton high resolution bio-magne- tern Mediterranean). Palaeogeography, Palaeoclimatology, Pa- tostratigraphy for the Langhian of the Mediterranean area. Ri- laeoecology, 257, 123-138.______vista Italiana di Palaeontologia e Stratigrafia, 114, 51-76._____

Andrejeva-Grigorovič, A.S., Kováč, M., Halásová, E. and Hu- Ebner, F. and Sachsenhofer, R.F., 1991. Die Entwicklungsge- dáčková, N. 2001. Litho and biostratigraphy of the Lower and schichte des Steirischen Tertiärbeckens. Mitteilungen der Ab- Middle Miocene sediments of the Vienna Basin (NE part) on teilung für Geologie und Paläontologie am Landesmuseum the basis of calcareous nannoplankton and foraminifers. Scrip- Joanneum, 49, 1-96.______ta Facultatis Scientiarum Naturalium Univiversitatis Masaryki- anae Brunensis, 30, 27-40.______Erhart, C.W. and Piller E., 2003. Paleoecological successions in the Badenian (Middle Miocene) Leitha limestone (Retznei/ Ro- Auer, J., 1996. Biostratigraphische und magnetostratigraphi- senberg; Southern ). Berichte des Institutes für Geololgie sche Untersuchungen im Grenzbereich Unter- und Mittelmio- und Paläontologie der Karl-Franzens-Universität Graz, 7, 23.__ zän (Karpatium/Badenium) der Paratethys, Ziegelei Aflenz/ Wagna, Steirisches Becken, Steiermark, Österreich. Unpubl. Fenninger, A. and Hubmann, B., 1997. Palichnologie an der PhD Thesis, Universität Wien, 138 pp.______Karpatium/Badenium-Grenze des Steirischen Tertiärbeckens (Österreich). Geologische und Paläontontologische Mitteilun- Chira, C,. 2000. Nannoplankton calcaros si moluste Miocene din gen Innsbruck, 22, 71-83.______Transilvania, Romania. 1-183, Editura Carpatica, Cluj-Napoca._ Flügel, H.W. and Neubauer, F., 1984. Steiermark. – Erläute- Cicha. I. and Rögl. F., 2003. Definition of the Karpatian stage. rungen zur geologischen Karte der Steiermark. Geologie der In: R. Brzobohaty, I. Cicha, M. Kovac and F. Rögl (eds), The österreichischen Bundesländer in kurzgefaßten Einzeldarstel- Karpatian. A Lower Miocene stage of the Central Paratethys. lungen, pp. 1-127. Geologische Bundesanstalt Wien.______Masaryk University, Brno, pp. 15-20.______Fornaciari, E. and Rio, D. ,1996. Latest Oligocene to early mid- Ćorić, S. and Rögl, F., 2004. Roggendorf-1 borehole, a key- dle Miocene quantitative calcareous nannofossil biostratigraphy section for Lower Badenian transgressions and the stratigra- in the Mediterranean region. Micropaleontology, 42, 1-36._____ phic position of the Grund Formation (Molasse Basin, Lower Austria). Geologica Carpathica, 55, 165-178.______Fornaciari, E., Di Stefano, A., Rio, D. and Negri, A., 1996. Mid- dle Miocene calcareous nannofossil biostratigraphy in the Me- Ćorić, S. and Švábenická, L., 2004. Calcareous nannofossil diterranean region. Micropaleontology, 42, 37-63.______biostratigraphy of the Grund Formation (Molasse Basin, Lower Austria). Geologica Carpathica, 55, 147–153.______Fornaciari, E., Iaccarino, S., Mazzei, R., Rio, D., Salvatorini, G., Bossio, A. and Monteforti, B., 1997. Calcareous plankton bio- Ćorić, S., Harzhauser, M., Hohenegger, J., Mandic, O., Perves- stratigraphy of the Langhian historical stratotype. In: A. Monta- ler, P., Roetzel, R., Rögl, F., Scholger, R., Spezzaferri, S., Stingl, The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions nari et al. (eds), Miocene Stratigraphy: An Integrated Approach, graphic atlas of Central and Eastern Europe. Budapest Hun- 15, pp. 315-341, Elsevier, Amsterdam.______garian Geological Institute, 7 maps.______

Friebe, J.G., 1988. Paläogeographische Überlegungen zu den Handler, R., Ebner, F., Neubauer, F., Hermann, S., Bojar, A.- Leithakalkarealen (Badenien) der Mittelsteirischen Schwelle V. and Hermann, S., 2006. 40Ar/39Ar dating of Miocene tuffs (Steiermark). Geologische und Paläontontologische Mitteilun- from Styrian part of the Pannonian Basin: an attempt to refine gen Innsbruck, 15, 41-57.______the basin stratigraphy. Geologica Carpathica, 57, 483-494.__

Friebe, J.G., 1990. Lithostratigraphische Neugliederung und Haq, B.U., Hardenbol, J. and Vai, l. P.R., 1988. Mesozoic and Sedimentologie der Ablagerungen des Badenium (Miozän) um Cenozoic chronostratigraphy and cycles of sea-level changes. In: die Mittelsteirische Schwelle (Steirisches Becken, Österreich). C.K.,Wilgus, B.S. Hastings, C. Kendall, H.W. Posamentie, C.A. Jahrbuch der Geologischen Bundesanstalt, 133, 223-257.__ Ross and J.C. Van Wagoner (eds), Sea-level changes - an in- tegrated approach. SEMP Special Publications, 42, pp. 71-108. Friebe, J.G., 1991. Carbonate sedimentation within a siliciclas- tic envirnonment: the Leithakalk of the Weißenegg Formation Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., Graciansky, (Middle Miocene, Styrian basin, Austria). Zentralblatt für Geo- P.C. and Vail, P.R., 1998. Mesozoic and Cenozoic sequence logie und Paläontologie, Teil I, 1990, 1671-1687.______chronostratigraphic framework of European basins. In: C.P. Graciansky, J. Hardenbol and T. Jacquin (eds), Mesozoic and Friebe, J.G., 1993. Sequence stratigraphy in a mixed carbonate- Cenozoic sequence stratigraphy of European basins. SEPM siliciclastic depositional system (Middle Miocene; Styrian Basin, Special Publications, 60, pp. 3-13.______Austria). Geologische Rundschau, 82, 281-294.______Harzhauser, M. and Piller, W.E., 2007. Benchmark data of a Friebe, J.G. and Poltnig, W., 1991. Biostratigraphische Ergeb- changing sea – Palaeogeography, Palaeobiogeography and nisse der Tiefbohrung Fürstenfeld Thermal 1. Jahrbuch der events in the Central Paratethys during the Miocene. Palao- Geologischen Bundesanstalt, 134, 689-700.______geography Palaeoclimatology Palaeoecology, 253, 8-31.____ Frisch, W., Dunkl, I., and Kuhlemann, J., 2000. Post-collisional Harzhauser, M., Mandic, O. and Zuschin, M., 2003. Changes orogen-parallel large-scale extension in the Eastern Alps. Tec- in Paratethyan marine molluscs at the Early/Middle Miocene tonophysics, 327, 239-265.______transition: diversity, palaeogeography and palaeoclimate. Acta Fritz, I., Gross, M. and Hiden, H., 2003. Fossiliengrabung in Geologica Polonica, 53, 323-339.______Pöls in der Weststeiermark vom 15. bis 19. September 2003. Hohenegger, J., 2005. Estimation of environmental paleogra- Projektmappe für Schulen, Abteilung Geologie und Paläonto- dient values based on presence/absence data: a case study logie des Landesmuseums Joanneum, Graz, 1-37.______using benthic foraminifera for paleodepth estimation. Palao- Gelati, R., Gnaccolini, M., Falletti, P., and Catrullo, D., 1992. geography, Palaeoclimatology, Palaeoecology, 217, 115-130._ Stratigrafia sequenziale della successione oligo-miocenica Hohenegger, J., Rögl, F. and Spezzaferri, S., 2005. Paleodepth delle Langhe, Bacino terziario ligure-piemontese. Rivista Itali- estimation within the Early/Middle Miocene transition in the Styrian ana di Paleontologia e Stratigrafia, 98, 425-452.______Basin (Austria) using benthic foraminifera. Patterns and processes th Grill, R., 1941. Stratigraphische Untersuchungen mit Hilfe von in the Neogene of the Mediterranean region, 12 Congress R. Mikrofossilien im Wiener Becken und den benachbarten Mo- C.M.N.S. – 6-22 September 2005, Vienna, Abstracts, 91-92._ lasseanteilen. Öl und Kohle, 37, 595-602.______Holzer, H.L. (ed.), 1994. Exkursionsführer Steirisches Tertiär- Grill, R., 1943. Über mikropaläontologische Gliederungsmög- becken. Österreichische Geologische Gesellschaft, Wander- lichkeiten im Miozän des Wiener Beckens. Mitteilungen des tagung (Bad Gleichenberg) 1994. Graz (Karl-Franzens-Univer- Reichsamtes für Bodenforschung, Zweigstelle Wien, 6, 33-44. sität Graz), 80 pp.______

Gross, M., Fritz, I., Piller, W.E., Soliman, A., Harzhauser, M., Kapounek, J.,1954. Zusammenfassender geologischer Bericht Hubmann, B., Moser, B., Scholger, R., Suttner, T.J. and Bojar, über die Tiefbohrung Perbersdorf 1. Internal Report, Tiefbohr- H.-P., 2007. The Neogene of the Styrian Basin – Guide to ex- unternehmen Richard K. van Sickle.______cursions. Joannea Geologie und Paläontologie, 9, 117-193.__ Kollmann, K., 1965. Jungtertiär im Steirischen Becken. Mittei- Handler, R., Ebner, F., Neubauer, F., Hermann,S. and Bojar, lungen der Geololgischen Gesellschaft Wien, 57, 479-632.__ A.-V., 2005. 40Ar/39Ar dating of Miocene tuffs from the Styrian Kopetzky, G., 1957. Das Miozän zwischen Kainach und Laß- part of the Pannonian Basin, Austria: first attempts to refine nitz in Südweststeiermark. Mitteilungen des Museums für Berg- the Paratethys stratigraphy. Geophysical Research Abstracts bau, Geologie und Technik, Graz, 18, 1-112.______(EGU05), 7, 04177, 1-3.______Kovač, M., Andreyeva-Grigorovich, A. S., Brzobohatý, R., Fo- Hamor, G. and Halmai, J. (eds), 1988. Neogene palaeogeo- dor, L., Harzhauser, M., Oszczypko, N., Pavelić, D., Rögl, F., Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL

Saftić, B., Sliva, L. and Stranik, Z., 2003. Karpatian paleogeo- bohaty, R., Cicha, I., Kovac, M. & Rögl, F. (eds). The Karpa- graphy, tectonics and eustatic changes. In: R. Brzobohaty, I. tian. A Lower Miocene stage of the Central Paratethys. Brno Cicha, M. Kovac and F. Rögl (eds), The Karpatian. A Lower (Masaryk University), 127-131.______Miocene stage of the Central Paratethys. Masaryk University, Rögl, F., 1998. Palaeogeographic considerations for Mediter- Brno, pp. 49-72. ranean and Paratethys seaways (Oligocene to Miocene). An- Kovač, M., Baráth, I., Harzhauser, M., Hlavatý, I. and Hudá- nalen des Naturhistorischen Museums Wien, 99A, 279-310._ čková, N., 2004. Miocene depositional systems and sequence Rögl, F., 1999. Mediterranean and Paratethys, facts and hy- stratigraphy of the Vienna Basin. Courier Forschungs-Institut potheses of an Oligocene to Miocene paleogeography (short Senckenberg, 246, 187-212.______overview). Geologica Carpathica, 50, 339-349.______Kovač, M., Andreyeva-Grigorovich, A., Bajraktarević, Z., Brzo- Rögl, F., Spezzaferri, S. and Ćorić, S., 2002. Micropaleonto- bohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagyma- logy and biostratigraphy of the Karpatian-Badenian transition rosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, (Early-Middle Miocene boundary) in Austria (Central Parate- L. and Studencka, B., 2007. Badenian evolution of the Central thys). Courier Forschungs-Institut Senckenberg, 237, 47-67._ Paratethys Sea: paleogeography, climate and eustatic sea le- vel changes. Geologica Carpathica, 58, 579-606.______Rögl, F., Ćorić, S., Daxner-Höck, G., Harzhauser, M., Mandic, O., Svabenicka, L. and Zorn, I., 2003. Correlation of the Kar- Latal, C. and Piller, W.E., 2003. Stable isotope signatures at patian stage. In: R. Brzobohaty, I. Cicha, M. Kovac and F. Rögl the Karpatian/Badenian boundary in the Styrian Basin. In: R. (eds), The Karpatian. A Lower Miocene stage of the Central Brzobohaty, I. Cicha, M. Kovac and F. Rögl (eds): The Karpa- Paratethys. Masaryk University, Brno, pp. 27-34.______tian. A Lower Miocene stage of the Central Paratethys. Masa- ryk University, Brno, pp. 37-48.______Rögl, F., Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., Scholger, R., Spezzaferri, S. and Stingl, K., 2005. The Styrian Lirer, F., Rögl, F., Ćorić, S. and Hohenegger, J., 2006. The Medi- tectonic phase – A series of events at the Early/Middle Mioce- terranean and the Paratethys. New bio-stratigraphic tools for the ne boundary revised and stratified (Styrian Basin, Central Pa- correlation between these two different realms. Pangeo Austria ratethys). - Abstracts, 12th Congress R.C.M.N.S. – 6-11 Sep- 2006, University Press Innsbruck, Conference Series: 179-180._ tember 2005, Vienna, pp. 191-192.______Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J. and Wilson, Rögl, F., Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., J., 2004a. The Neogene Period. In: F.M. Gradstein, J.G. Ogg Scholger, R., Spezzaferri, S. and Stingl, K., 2006a. The Sty- and A.G. Smith (eds), A geologic time scale 2004. Cambridge rian tectonic phase – A series of events at the Early/Middle University Press, pp. 409-440.______Miocene boundary revised and stratified in the Styrian Basin. Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J. and Wilson, Geophysical Research Abstracts, 8, 10733: 3 p. – European J., 2004b. Appendix 2. Orbital tuning calibrations and conver- Geosciences Union.______sions for the Neogene Period. In: F.M. Gradstein, J.G. Ogg and Rögl, F., Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., A.G. Smith (eds), A geologic time scale 2004. Cambridge Uni- Scholger, R., Spezzaferri, S. and Stingl, K., 2006b. The Styrian versity Press, pp. 469-471.______tectonic phase – A series of events at the Early/Middle Miocene Martini, E., 1971. Standard Tertiary and Quaternary calcare- boundary revised and stratified (Styrian Basin, Central Parate- ous nannoplankton zonation. – In: A. Farinacci (ed.), Procee- thys). – Proceedings XVIIIth Congress of the Carpathian-Balkan dings of the II Plankton Conference, Roma 1970, II, Roma, Geological Association – September 3-6, 2006 Belgrade, Ser- pp. 738-785. bia,. Serbian Geological Society, Belgrade, 504-505.______

Marunteanu, M., Crihan, M. and Chira, C., 1999. Badenian nan- Rögl, F., Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., nofossil zonation – the Carpathia area, Romania. Acta Palae- Scholger, R., Spezzaferri, S. and Stingl, K., 2006c. The Sty- ontologica Romaniae, 2, 261-267.______rian tectonic phase – A series of events at the Early/Middle Miocene boundary revised and stratified in the Styrian Basin. Mazzolki, S. and Helman, K., 1994. Neogene patterns of rela- Joannea-Geologie und Paläontologie, 9, 89-91.______tive plate motion for Africa-Europe: some implications for re- cent central Mediterranean tectonics. - International Journal Rögl, F., Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., of Earth Sciences, 83, 464-468.______Scholger, R., Spezzaferri, S. and Stingl, K., 2007. Cyclostrati- graphy and transgressions at the Early/Middle Miocene (Kar- Papp, A. and Turnovsky, K., 1953. Die Entwicklung der Uvige- patian/Badenian) boundary in the Austrian Neogene basins rinen im Vindobon (Helvet und Torton) des Wiener Beckens. (Central Paratethys). Scripta Facultatis Scientiarum Natura- Jahrbuch der Geologischen Bundesanstalt, 46, 117-142.____ lium Univiversitatis Masarykianae Brunensis, 36, 7-13.______Polesny, H., 2003. The Karpatian in the Styrian Basin. In: Brzo- Sachsenhofer, R.F., 1996. The Neogene Styrian Basin. An over- The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions view. Mitteilungen der Gesellschaft der Geologie und Bergbau- glutinated foraminifera (Prague, Czech Republik, Septemebr studenten in Österreich, 41, 19-32.______1-7, 2001). Grzybowski Foundation Special Publication, 8, pp. 423-459. Schell, F., 1994. Die Geologie des südlichen Windischen Bü- heln (Raum -Leutschach-Langegg). Unpubl. PhD The- Stille, H. ,1924. Grundfragen vergleichender Tektonik. Born- sis, Karl-Franzens-Universität Graz, 207 pp.______traeger, Berlin, 1-443.______

Schreilechner, M.G. and Sachsenhofer, R.F., 2007. High resolu- Stingl, K. and Scholger, R., 2005. Detailed magnetic investiga- tion sequence stratigraphy in the Eastern Styrian Basin (Mioce- tions in the Karpatian to Badenian sections of the Retznei and ne, Austria). Austrian Journal of Earth Sciences, 100, 164-184. Wagna Quarries (Styrian Basin, Austria). Patterns and proces- ses in the Neogene of the Mediterranean region, 12th Congress Shackleton, N.J., Crowhurst, S.J., Weedon, G.P. and Laskar, R.C.M.N.S. 6-22 September 2005, Vienna, Abstracts, p. 213._ J., 1999. Astronomical calibration of Oligocene-Miocene time. Philosphical Transactions of the Royal Society London, A, 357, Strauss, P., Harzhauser, M., Hinsch, R. and Wagreich, M., 2006. 1907-1929. Sequence stratigraphy in a classical pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geo- Soliman, A. and Piller, W.E., 2007. Dinoflagellate cysts at the logica Carpathica, 57, 185-197.______Karpatian/Badenian boundary of Wagna (Styrian Basin, Aus- tria). Jahrbuch der Geologischen Bundesanstalt, 147, 405-417. Švábenická, L., 2002. Calcareous nannofossils of the Upper Karpatian and Lower Badenian deposits in the Carpathian Fo- Spezzaferri, S., Ćorić, S., Hohenegger, J., Rögl, F. and Rupp, redeep, Moravia (Czech Republic). Geologica Carpathica, 53, C., 2001a. Miocene benthic and planktonic foraminifera and 197–210. calcareous nannoplankton from the Parathethys: Implications for paleobiogeography and paleoecology. Preliminary results Theodoridis, S., 1984. Calcareous nannofossil biozonation of of Project P 13743-BIO. Paleobiogeography and Paleoeco- the Miocene and revision of the helicoliths and discoasterids. logy 2001, Int. Conference, May 31-June 2, 2001 Piacenza Ultrecht Micropalaeontological. Bullettin, 22, 271 pp.______and Castell’Arquato, Italy, pp. 123-124.______Vervloet ,C.C., 1966. Stratigraphical and Micropaleontological Spezzaferri, S., Hohenegger, J., Rögl, F. and Ćorić, S., 2001b. Data on the Tertiary of Southern Piedmont (Northern Italy). Paleodepth estimates by transfer equation of benthic foramine- Schotanus and Jens Utrecht NV, Utrecht, 88 pp.______ral range depth distribution: Examples from the Styrian Basin - Results from FWF project P 13743-Bio. - 6. Österreichisches Sedimentologen-Treffen, Seewalchen am Attersee, 03. Novem- ber 2001, Kurzfassungen. Mitteilungen der Gesellschaft der Geololgie und Bergbaustudenten Österreichs, 45, p. 174.____

Spezzaferri, S., Rögl, F. and Ćorić, S., 2001c. Paleoenviron- mental changes across the Karpatian/Badenian (Early/Middle Miocene) boundary in the Styrian Basin (Austria, Central Pa- ratethys). Abstracts, 6th International Workshop on Agglutina- Received: 14. February 2009 ted Foraminifera, Prague, 1-7 September, 2001, pp.53-54.___ Accepted: 12. May 2009

Spezzaferri, S., Ćorić, S., Hohenegger, J. and Rögl, F., 2002a. Basin-scale paleobiogeography and paleoecology: an example from Karpatian (Latest Burdigalian) benthic and planktonic fo- raminifera and calcareous nannofossils from the Central Para- tethys. Geobios, Memoir special, 24, 241-256.______Johann HOHENEGGER1)*), Fred RÖGL2), Stjepan ĆORIĆ3), Pe- 1) 4) 3) Spezzaferri, S., Ćorić, S., Stingl, K., Rögl, F. and Hohenegger, ter PERVESLER , Fabrizio LIRER , Reinhard ROETZEL , Ro- 5) 5) J., 2002b. Bio- and magneto-stratigraphy and sequence bio- bert SCHOLGER & Karl STINGL ______stratigraphy of the Karpatian-Badenian transition in the Styrian 1) University of Vienna, Department of Palaeontology, Althanstrasse 14, Basin. Evidence from the Wagna section. PANGEO Austria, A 1090 Wien, Austria.______28-30.6.2002, Abstracts, p. 169.______2) Natural History Museum Vienna, Burgring 7, A 1010 Wien, Austria.__ 3) Austrian Geological Survey, Neulinggasse 38, A 1030 Wien, Austria._

Spezzaferri, S., Rögl, F., Ćorić, S. and Hohenegger, J., 2004. 4) Istituto Ambiente Marino Costiero – CNR, Calata Porta di Massa, in- Paleoenvironmental changes and agglutinated foraminifera terno Porto di Napoli, I-80133 Napoli, Italia.______across the Karpatian/Badenian (Early/Middle Miocene) boun- 5) University of Leoben, Department of Geosciences and Geophysics, dary in the Styrian Basin. In: M. Bubik and M.A. Kaminski A 8700 Leoben, Austria.______

(eds), Proceedings of the Sixth International Workshop on ag- *) Corresponding author, [email protected]______Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL

Appendix: i i a s t s r w u u e o n l i c a l i p s i i a i r r i i a u g d h i a i m r e q l s f a r c r s l l o i a p u a s o d j a e l s u p h h u f m n c l p n p o i p a l t a a a r r u o s i s e l r i i f a f p t o e d u b r a r e e s r m m a b h l o e m t m r d s e

Wagna e i h a d a s l o u s o u s n a r a p h r f s h u o r i o u r c u r e e i h s i a e Section r f p h g t u r c d t t o c a e t p o r g i o s r i s o s s e u u e l d l t b i s c a t s a i l o i s 1 a l l e r n h m l i o u e o d c u i i c a i i o e s e a c c c . . l c u i b c i a c p m p g m c s w l c l t c Sample h h r q s i o . y i . e ...... m a e p p y r C C C C D D H H H H R R R R S S S T U s Stage/Nannoplankton Zone Wag26 r c r r r r f r r r f r r r r r r Wag25 r r c r f r r r r r r Wag24 r r c r r r f r r r r r r r )

Wag23 1 r c r r f r r r r r f r r 7 9

Wag22 1 r r c r r f r r r r f r r , Wag21 i r c r f r r r r r r r n i t

Wag20 r r r c r r f r r r r r f r r a

Wag19 M r r c r r r f r f r r f r r r (

Wag18 4 r r c r r f r r r r f r r

Wag17 N r c r r f r r r r f r r Wag16 N r c r r f r r f r r f r r Wag15 r r c r r f r r r r r f r r Wag14 r c r r f r r f r r f r r Wag13 r r c r f r r r f r r Wag12 r r c r r f r r r r r r r r r Wag11 r r c r r f r r r f r r r Wag10 r r c r r f r r r r r f r r r

Wag09 N r c r r f r r r r r r

Wag08 A r r c r r r f r r f r r f r r Wag07 I r r c r r r r r r r f r r r N

Wag06 E r c r r f r r r r r r r r

Wag05 D r r c r r r f r r r r r r r r r r Wag04 A r r c r f r r r r r r r r r Wag03 B r r c r r f r r f r r r r r r Wag02 r r c r r f r r f r r r r r Wag01 r r c r r f r r f r r r r r Appendix 1A: Wagna brickyard; distribution of stratigraphically important calcareous nannoplankton and biostratigraphic zonation in section 1. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______1971) i i s w u o a n l (Martini, r l s i a o u d i m r p i s r s t o i l s u o a l s p s u u c f c l i n o i u Zones l t s u p s m i e h s f p u d o u a b r p u t a r e c i r b h s t l r i r o e i t m s e i o t a g e e d l s s s r u u i a n m h l a p s a o r m u i u d o l r r c r i a i a a h g r u c o c n b d e t i i o o a e r i l g i r f p r s s s s e m i i a a u r p u d t i b i i t a l i p a e s i r l l Wagna s l f q a l i r r e a o n t i e d d c i i f o o i a i i e d e x m a s e a a c e t l u a c c p v c m l m a d e a s w h p g j l h Section 2 c n m q i a . . . . . a . y ...... o . . r C C C C C D D D D H H H H P R R R R S S T U

Samples Stage Nannoplankton Wag01/24 r r r c r r f r r r f r r r r r r

Wag01/23 N r r c r r f r r r f r r r r r A

Wag01/22 I r r c r r f r r r r r r r r

Wag01/21 N r c r r f r r f r r r r r

Wag01/20 E r r r c r r r f r r r r r r r r r r Wag01/19 D r r r c r r r f r r r f r r r r r A

Wag01/18 B r r r c r r f r r r f r r r r r Wag01/17 r c r r r f r r r f r r r r r Wag01/16 r r r c r r r r r r r r r Wag01/15 r r r c r r f r r r r r r r Wag01/14 r c r r r r r r r r r r r Wag01/13 4 r r c r r r r r r r r r Wag01/12 N r r r c r r r r r r r r r r N

Wag01/11 N r r r c r r r r r r r r r

Wag01/10 A r r c r r r r r r r r r I

Wag01/09 T r r r c r r r r r r r r r

Wag01/08 P r r c r f r r r r r r r Wag01/07 R r r r c r f r r r r r r A

Wag01/06 K r r c r r f 1 r r r r r r r Wag01/05 r r r c r f 1 r r r r r r Wag01/04 r r c r f r r r f r r r Wag01/03 r r r c r f r r r r r f r Wag01/02 r r r c r f r r f r r f r Wag01/01 r r c r r r r r f r Appendix 1B: Wagna brickyard; distribution of stratigraphically important calcareous nan- noplankton and biostratigraphic zonation in section 2. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions ) 1 7 9 1 a s i c , i i l s i n i n s b t e r u i f i m a a r h s t u s S r w WAGNA o p u M r o u s e o d ( E s i n a l s i a o a c l d t i a p s i i s OLD u r a i r r n s G r i i m s i u u d a u g m e r u d i r h i a a e e m i q l A l r u t e e n f r a s s o c e i r o r BRICKYARD n l b t i l c a s e o n p t r f T l l l a i s s i o d r i j i o e u l p h m g a p e r a a S u g f m t a n c b l p Z p section 2 o o a a s m a c w a a a a s w t e a a u l r o s i l i r r r r i l n a a f p m h t t t t i r d e e u r a a a a a o s s s s d x e e r r r r r a m b p a h t l s s e t e e e e a e d v e e e e e a i h k u u a s s l s n n n n r r a a a r r a a h p n h h h u u o r u t t e e e e e h e e e h h h h s a i i f f f f p h h t t t t g l c l l o t t p p p p p o r s r i i s s s o o o o s s p

Wagna o o l l l l l l t s s s i s s c a s o i a a a a o n n l o u u e o u u small globigerinas Globoturborotalita woodi Globigerinoides bisphericus Globigerinoides trilobus Globigerinoides quadrilobatus Praeorbulina circularis Uvigerina graciliformis Uvigerina laviculata Pappina primiformis Pappina parkeri r o d o o o o c i e c i i o o o o n e c e c c c c c u l c c c c c e i i i i b g c i i i i a Section 3 i c c c c t n c c l l l l t t t t l l h h c r q a s s i s s e o y i e e e e e m a a o i i i e e e e WA 01/24 x x x t p p y r

Samples S N M C C C C D D D D H H H H H R R R R S S S T U WA 01/23 x x x

Wag02/25 0.3 r r f r f r r f c r r f r r WA 01/22 x x x N A Wag02/24 2.3 r f r r f r r c r r f r r r I WA 01/21 x N E Wag02/23 5 5.9 r f r f r r c r r r r r WA 01/20 x x D N A

N WA 01/19 x x

Wag02/22 7.3 r f f r f c r r r B Wag02/21 9.7 r r r r r r r a r WA 01/18 x x WA 01/17 x x x Wag02/20 10 r r r a r r r r WA 01/16 x x x Wag02/19 11 r r c r f r f r r r r r r r WA 01/15 x x x

Wag02/18 N 12 r c r r r f r r f r r r r r r

A WA 01/14 x x x I

Wag02/17 N 14 r c r r f r r r f r r r r r r WA 01/13 x x x E

Wag02/16 D 15 r r c r f r r f r r r r r r WA 01/12 x x A

Wag02/15 B 17 r r c r r f r r r f r r r r r r WA 01/11 x x N

WA 01/10 x x A Wag02/14 18 f c r r f r r r f r r r r r I WA 01/9 x x T Wag02/13 18 r r c r f r r f r r r r r r r A WA 01/8 x x x P Wag02/12 18 r c r r r f r r f r r r r r r r R WA 01/7 x x x A Wag02/11 19 r c r r f r r r f r r r r r r WA 01/6 x x K 4

Wag02/10 N 19 r r c r r f r r r f r r r r r r WA 01/5 x x x x N Wag02/9 19 r c r r f r r r f r r r r r r WA 01/4 x cf x x x Wag02/8 20 r c r r f r r r f r r f r r r r WA 01/3 x x x Wag02/7 20 1 r c r f r f r r f r r WA 01/2 x x x WA 01/1 x x x x Wag02/6 21 r r c r r f r f r r r r r r N A Wag02/5 I 22 r c r r r r r r r r r T Appendix 1D: Wagna brickyard, section Wag02/4 A 23 r r c r r r r r r r r r r r r P

Wag02/3 R 24 r r c r r r r r r r r r r 2 in the southern part of the outcrop; stratigra- A Wag02/2 K 25 r c r f r r r r f r r phically important planktonic and benthic fora- Wag02/1 25 r r c r f r r r r r f r r r r miniferal species in the upper part of the Kar- Appendix 1C: Wagna brickyard; distribution of stratigraphically im- patian and in the lower Badenian.______portant calcareous nannoplankton and biostratigraphic zonation in section 3. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______) 1 7 s s i 9 u s t a s 1 n t a u , c e i b c i y n n o i r s a a l g s u t l i a j e l i s r u r s u u r i s r i i i a h o a i h d s r p b e t o r t m s p r

WAGNA S t p a s u a a m a o w i M e i l l l r n s u r e i ( s i u i E n n m o s i u r s o a c l i o a p s m m i n i a b t q a OLD a a r n f i r s c G i a r a s i l d a l o l n g e c r m r d h i i a Remarks l l a e i i i i s s s m i o n l u l m A a f r c i a f o c e r r e c y s g BRICKYARD t c n l e e e i l c r e p t r T s a r i s a o r j u n a a o d d d e u e l g e i t i i i a a a a e r d m g u S f m n t a c i l t p Z i p g

section 3 y i i a u o o o n n n n g u r i a l a c a i i r e i i l u r i o s s g l l l l s r n n n n i i a b p n a i d i i h t e d e a b u e u u u u r a a r r r g o t o s s a u r r l p m m b a n a h t b b b b s e i e e e o s m r t e u r r r r n a e e g i a r i h n k i l u a s s l g i g g d u o l s n o g l i i i o o o a a h a e h p n c f l h h u u p o i u r u o r n t b e e a e b b e e h p h s g y r a a i a p f i p r h h g l e u l b d t o a o a a o o a a c t t p p o r i o l l l r s r v i i r o a a r r r r s m s p i o u u m l l l t s s t c o Retznei a l o i s o q s G G G P P P P O U P P P A n m e n l o o i u e o o n c i i c a i s n a e . c c c c l c c u o i b Section 00 i i a n c c r l l w s t h m p h h c r q

WA 02/25 x x x x x x x x x x x i o o y e e . . a o . . e . m p p y Samples Stage r WA 02/24 x x x x x x x x corallinacean N C C C C H H H H R R R R S S S T U WA 02/23 x x x x x x x limestone with Re 00/8 Badenian NN5 f r r r a r r Re 00/7 r c r r f r r r r r r r r WA 2002/3 x x x x x x volcanic mica Re 00/6 c r r f r r r r r r r r WA 02/22 x x x x x x x x x x Re 00/5 c r r f r r r f r r r WA 2002/2 x x x x x x x x n a 4 Re 00/4 i r c r r f r r f f r r r r t N

WA 2002/1 sandstone and a N

Re 00/3A p r c r r r r r f r r r r r WA 02/21 x x sand r Re 00/3 a r c r r f r r r f r r r r WA 02/20 x x K Re 00/2 r c r r r f r r f r r r r r WA 02/19 x x N A

I Re 00/1 r c r r r f r r r r r r r r

WA 02/18 x x x N WA 02/17 x x x E D Appendix 1F: Retznei, Lafarge-Perlmooser Cement Factory, main quar- WA 02/16 x x x A B ry, section in the center of the quarry (Friebe 1988, 1993). Stratigraphically im- patch reef WA 02/15 x x x x WA 02/14 x x portant calcareous nannoplankton and biostratigraphic zonation. a = abundant, WA 02/13 x > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of to- WA 02/12 x x WA 02/11 x x tal abundance. WA 02/10 x x WA 02/9 x x x WA 02/8 x x WA 02/7 x x x

WA 02/6 x x x N A WA 02/5 x x x I T

WA 02/4 x x x A P

WA 02/3 x x x R A

WA 02/2 x x x K WA 02/1 x cf x x Appendix 1E: Wagna brickyard, section 3 in the nor- thern part of the outcrop; important planktonic and benthic foraminiferal species in the upper part of the Karpatian and lower Badenian. The Styrian Unconformity and subdivision of Badenian sediments is demonstrated.______Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL e s n s u o u s s n Z a c i i n u i a i r i i r n g e e r d h i q t a o c a c e r s f t a l l a n t i l s o k r a a e u s l h a j s u e f n a c t t p p n i u i l m c a a a o i o s e l r h n r i r a f a t b u p r a r p e s s d r r m a s h o e o l a i m t e s u a l e o s i l n a d s l s h u s n u s i e r a m u c l s n h u p o m o r i c n e u r h e h

Retznei s y i a a f p t s h t a g o d t o b a c i a e c p t o r r g i f l s s o i r c o s i i N u a u d l l s t i b o s i a / e Section a i r l l l c o c a m l l n t e i r i n i o u o n i c r u i l e o c a a o i s e s e x e c c a c l o i o b g i a c

01 m c p r f m l w t m p g . e v w h m c r a s e o . o y i . . . . e . . e . . . h m Samples t . . y

S m C C C C D D D D D G H H H R R R R R S S S U R 01/39 2 r r r r r r r r a r r r r r r R 01/38 3 r r r r r r r r r r a r r r r r r R 01/37 4 r r r r r r r r r r a r r r r r R 01/36 5 r r r r r r r r a r r r r r R 01/35 6 r r r r r r r a r r r r r r r R 01/34 7 r r r r r r r r a r r r r r r R 01/33 8 r r r r r r r a r r r r r r R 01/32 9 r r r r r r c r r r r r r R 01/31 10 f r r r r r c r r r r r R 01/30 10.8 r f r r r r r c r r r r r r r R 01/29 11.3 f r r r r r r c r r r r r r )

R 01/28 1 12.2 r r r r a r r r r r r r 7 9

R 01/27 1 13.7 f r r r r r c r r r r r , i

R 01/26 n 14.7 f r r r r r c r r r r i t r

R 01/25 a 15.7 r f r r r r c r r r r r M R 01/24 ( 16.7 f r f r r r c r r r r r 5

R 01/23 N 17.7 f r r r c r r r r r r

R 01/21 N 19 f r r r r c r r r r r r R 01/20 20.1 f r r f c r r r r r R 01/19 20.8 f r r r r c r r r r r r r R 01/18 21.5 r f r r r f c r r r r r R 01/17 22.1 f r r r r f c r r r r r r N

R 01/16 A 22.5 f r r r r r r c r r r r r r

R 01/15 I 23.6 c r r r N

R 01/14 E 24.7 f r r r r r r r r a r r r r r

R 01/13 D 25.2 f/c r r r r r r r c r r r r r A

R 01/12 B 25.6 f r r r r r r r c r r r r r r R 01/11 26.7 f r r r r r c r r r r r R 01/10 27.7 f r r r r r c r r r r r R 01/9 28.5 f r r r r c r r r r r R 01/8 29.2 f r r R 01/7 29.8 f r r r c r r r r r R 01/6 30.2 f r r r r c r f r r r R 01/5 30.6 f r r r c r r r r R 01/4 31.6 r f r r r r r r c r r r r r R 01/3 33.4 f r r r r r c r r r r r r R 01/2 33.7 f r r r c r r r r r r R 01/1 35 r 69 r r r r r c r r r r r r Appendix 1G: Retznei, Lafarge-Perlmooser Cement Factory, main quarry, section R 01. Stratigraphically important calcareous nannoplankton and biostratigraphic zonation. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______s u h s s p u r u a s s n r o a c i n i u i a i r . i o i a r e g e r m d h p i q t p c a c i a e o c r s f p a l t l c a n i t l r s l i o s a r a e s u l h a j u e s e u f t c a t t p p n i i l a m a a c o e a i m o s e r n r r i r . r a f a t h b u r r e a e p a e d s s r m a s h r o e a s l a i s m a t a s u l e e s i l e d a h u h s l s u h s s e n u i r r a u m c l s a h p h o p u i r o p n c u h e r t s e e h y a i h s i p t f s h g t t s b t d o l a c i a e o c t p r i l f g p s o r i o o s s s i i o a u u Retznei o l l d i b t s o i s a r a s i c l l l o c a a m n l l d i r n e n i o u o i n c r u i l o o c a a a i o o e x s e b a c t c e l r c o o i b a Section 02 i c c m e p f m v w w m p g c l t a r m c n h r o s s e o . o y i . . . . i e . . e . . . h m o p . y Samples h Stage/Nannoplankton Zone C C C C D D D D D D G H H H P R R R R R S S S T U R 02/33 barren R 02/32 barren R 02/31 r r r r f c r r R 02/30 r c r r r r r f f r r r r r R 02/29 f r r r r f c r r r r

R 02/28 ) f r r f c r r r 1

R 02/27 7 f r f c r r r 9 R 02/26 1 r f r r f c r r , i n R 02/25 i r f/c r r r r r r f/c r r r t r

R 02/24 a r f r r r r f r r r r r M R 02/23 ( f r r r r c r r R 02/22 5 f r r c r r r r N

R 02/21 N r r r f c r r r R 02/20 r r r r f c r r r r R 02/19 r r r r c r r r r r R 02/18 f r r r r r r r r r c r r r r r r r r R 02/17 r r r c r r R 02/16 r r r r r f c r R 02/15 f r r f c r r r R 02/14 f r r c r r r r r R 02/13 r r r r r r r f c r r r r r R 02/12 f r r r r c r r r r r r N

R 02/11 A r r r r r r c r

R 02/10 I f r r r r c r R 02/9 N r r r r r f c r r r R 02/8 E r r r r r c r r r r r r D

R 02/7 A f r r r r r r r c r r r r r

R 02/6 B r r r c r r R 02/5 r r r r r c r r r r r R 02/4 f r r r r r c r r r r R 02/3 r r r r r r r r r r r c r r r r R 02/2 f r r r r r r c r r R 02/1 r f r r r r r r r r c r r Appendix 1H: Retznei, Lafarge-Perlmooser Cement Factory, main quarry, section R 02. Stratigraphically important calcareous nannoplankton and biostratigraphic zonation. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions m u t a m a r t a u a i l s e a l i c n n i i . a n b r m a s m i o s s l r i p v t m a u s s a u a a u i s e o l a c a p c g i c s s i v m i s s n Y n i u s n m s c e s t r a i r / o u a w a h u n a z e u a u n p R / a i r s a l s e / n n c s b e y r e s q . o a a t i u p m o i p p n R v a a i a t l u l / s o e r n g / p r c i s l t v a s a l r i a a . a s e n / i i i s p t l r A c a y b s a r a e u a . p e a i i o s o i c g g r s l n n r n o l a p d s n a u e l g m k o a v s a u s p s p c p U i d n s i i s r a e g t i b a o o i a t c a t c e / u u a u t g u l r t a u i / p u v e n u e a d c e a u g l ? m s d n a t . Q x d r n m . p i s r f t a m n a u i r m a m m a s a r c l e s r e m p s l n a e a n t h a m p e a e a p r o / e a o a h g t e a u a a u u p l e d o o a l r a r a o n e a a . r u r i i i n N n e u i s o f n u i r b l i p e s s f d m r g i l c n I r b m i i n n n a r r i i n i e l e g c r e d n p m a i i i o e a i b r l a s s i i r i e e i o a g e m m a m e . m i l a r s A m e a l v c o u s y a d y y a h s p n s i r m f k a l o v p c d d a k i i i a a a g i r g g r r g a p a l a u r a e b u a e n i i n c n a n t . a a c g s r M i h s s a . e i m n h n n a d d a a d d a f p h a e n n a g a v d a a o i n o i i a a e b r a n i l n r r a i a r u l l m i g l l m g l p p g p - p i a c s r u u u s p n a l o n n a l r r l a a m r b y r n a r i r a g i i u c l h h o h s u u m m m o o m a I i i a l s a a v a a u t r u h e a a h e a a a l n n a l r a r s n o e n c e i p i n i p p i i i v l i i r n a o o n n i x m i i p i i o o g i e v g g m x t m o l E t t l l p r p r r r i i t t m m t l l h e g a r r o i o a o o e n s a a n d m c m s h i o o o l l l e u r o u u o y y i o a a a a s i s s e a a u i a u N i i p g s m m o e e m t n m l l l l l l i l r r r r r o h d o i o o l i r v s r r d d d u u v u d n n o o v h y i h h o r n n i a o Z i x a u u u u u o p e d d e e l r r p b u m g e c c a e o c o l m m u u t u t n t t t t r i i m r r a i m h m p p p m z e e e i h r a v e r T r u u t t b b p o t a i g o t c l p r m g d p r r r p i l t a a e e e x x x x t m i i o i g g p v a a a a l y y e E r r y a y e e e h h m n i i s s e i m m m n s a l m m a u a a a a o s s s p u e e e e r a R s A A A A A A A B A A A B B B B C C C C G G G H H H K K K M M P P P P P P P R R R R R R S S S T T T T T V R 02/32 x x x x x x x x x x x x x x x R 02/31 x x x x x x x x x x x x x x x x x x x x x x R 02/30 x x x x x R 02/29 x x x x x x x x x x x x x x x x x R 02/28 x x x x x x x x x x x x x x x x x x x R 02/26 x x x x x x x x x x x x x x x x x R 02/22 x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/20 x x x x x x x x x x x x x x x x x x x x R 02/15 x x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/10 x x x x x x R 02/05 x x x x x x x x x x x x x x x x x R 02/04 x x x x x x x x x x x x x x x x x x x x R 01/25 x x x x x x x x x x x x x x x x x x x x x x x x R 01/24 x x x x x x x x x x x x x x x x x x c x x x x x x x R 01/21 x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/20 x x x x x x x x x x x x x x x x x x x x x x x x x R 01/15 x R 01/10 x x x x x x x x x x x x x R 01/07 x x x x x x x x x x x x x R 01/02 x x x x x x x x x x x x x x x x x x x x x x x x x x "Geröll- mergel" RE2002-2 x x x x x x x x x Karpatian RE2002-1 x x x x x x x x x x x x Appendix 1I: Retznei, Lafarge-Perlmooser Cement Factory, main quarry, sections R 01 – R 02. Distribution of benthic foraminiferal species in the Badenian sediments. The isolated outcrop with Karpatian Steirischer Schlier (RE 2002-1) and Geröllmergel (RE 2002-2) is shown at the base of the table. e s a e y d a i s s k o u a l u s t ) l t t i s . n a f a e c i l a m r u l p a n n a a k t u u i o m t o c p r t o t s i h a c s o i s u r a Y y i b a s t o c i e t / r d n a r p a i s R s i b t / m a s a i a m e v a r t l g r o i o / s t s R l o s h u l m m r s o i a s / m n p s / i u a e s c i c e i u f g / l A r i u a a i i t i i s y i d r a o u l a a t r d a i s t u l n t b a c e e i c l / g a s n / U i u e i . i e c l s a a e n a t . a l e s b a t f r u d s t o n w a n e a a i t n x / s r d a i i o p s i i c a g e Q n a ( p t p i . i c o s c i r a n i y p t u r o d d a a a o r l a t r r n g d . u d l v e i l a p . a t p o e i e r a i h t t c u p e s l a g m d p n a a a u a a t u o d N a s / d l a o o s i e . p v u l l p m c g s d g e s i e I s l i t p u u r r e s a a o a n n n a a i m n . l n a l s v r m a a s c u s p i o . i i i u u t s a i u n r n r o i t m b r e a w b l l l A p e s i t u d a b h a b p a r r t t u e a a u b a o p h p g u p a p u a a g a l s p i o a a u ? u u u b e a h a a i u q c t l n t u p m s l c p a u l l o a a n b s c s l b M i p e d t s i i m p l l l i u e n i s l i d d d a t b l s b s s s e n m r s s a a c o c o r a e n . e i i i r u s i s m a - e l i o i l a l e e r s d f o g e r n a n i e s a o l e e l a l e c o i c s c t i a a u s s s y a m a i i b l g a u n t i a l d I a n p i c p g i l a d f p s i h p d d u p e d l i s r l p s o s s m m n a a n p s a n m o l a i i l m i n n d n a i a a i o o i o E a c i a e b e l n n o e l l u n l a a a o o n e k n o i u l o o l i o e u a a a a a a a e o a s i n n n s s i w i s t t n t i i y n i l b e i u i o i i o h l b u u b c c c l i i N a d n i b n l u d d l l o d d l l l n n n n n n d n n l d r t s s r r a a i i i s i i d d g i i t i i i i i i i i i i c n l i r s p a n d d o o o o u Z i i e e i p u u u e e z c c r o t o o c n c c g o c c v v v v m v u v v v v t a o t o y t y l l e e n n b b b b b l i i i i s i i i i i i i i h h i r l T l l t g v g t r n m t n u a i r n r n l l l l l l l l l o r o r e m p n b i m a a o o o o o b b b b p p a y e y u y n a l l l l l l l r u E e e a a h h h i i i o o e y a i o o o o o o o o u h l l p u a a a e i o a M M M M G G H H H L L L L L L R s B B B B B B B B B C C C C C C C C C C C D D E E E E F G G G G G G G G G G R 02/32 x x x x R 02/31 x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/30 x x x x x x x R 02/29 x x x x x x x x x x x x x x x x x x R 02/28 x x x x x x x x x x x x x x x x x x x x x x R 02/26 x x x x x x x x x x x x x x x x x x x x x x x R 02/22 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/20 x x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/15 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/10 x x x x x x x x x x x x x x x x x x x x x x x x x R 02/05 x x x x x x x x x x x x x x x x x x x x x x x x R 02/04 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/25 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/24 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/21 x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/20 x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/15 x x R 01/10 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/07 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/02 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x "Geröll- mergel" RE2002-2 x x x x x x x x x x x x x x x x x x x Karpatian RE2002-1 x x x x x x x x x x x x x x Appendix 1I continue Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL i l a . ) u t s . . i p e a c r p l s t n a s / p r u l i e . a s c a e i u i t . p m l b v y a . g s r l / p p p a a o i n p e u l o Y s e a s r i s n n r . i f s r s i i / e m / r c h n a R s a a i p r i i / s r s u o v t a s u u / s r i n . c s s n a o s a / r i R u a s a n m e c / i t a q f a r a n l s t b / i t p l l e r n t a h s s s a s a t u A v a i a n e s a a o s u i o r s a a k p e i l u i t r b r a i p s a e t s e u p e t a n l / a n u b s b s b U F i a . a s c t c n a i u i n a g r c t g v . r u l l d c t a o / s a c a r r o g l n o m e a i a a n , y p a i v a a s q e i a t / b a l a e t Q p e n s t r u a l a a d n i a . t k / b a d s r r e c i o d o a t r l e a p s r n a x a a h a g i n l r i l t C a p a o r a n b i p n a g d m s p e a o c l t a a c s i e h r / l r l e o f s n c l e o e r i N r e p o d s a a n i r a e a u m u u i n e e p f n l i h o I u c a r a l d a l u o l a u p r e x e u m i t b r g i i o a t i r a a a b l e n e / u u n t s o c o u u d s g a i i i b f a a i n m c r a c n u i A b e e g c l i l o o t s c f e i l i i c o l r v n i s r r r l u x . i o a l g i e s c m l r l n s i t l n g m f n b b . c a o t t u k s s a i m i u a n a c u e a a a v e a a f s M b n l f e a e a a s i i e u r m o o u e r y n s r l e t i a l o l i L g i r e i p a h d r s s s n l d l l r a n n a c p m n a n - a a l c ( i a r d r m d g u e g l m p s p i i u s s i i i l y t t a d s n m l l p n e o o o u i g l a a o u i i i i r i r I a o d p n a o p o r l d r a a a b p l l e i l g i o l i o u u c a i n i s d d d a a a a a a a a a m u n n n n n e n o i r r c l o p i t n a o E r r a n i i i i o a a e o o n l t e o d d a a p e o n n n n n n i o o c n n n l l r l l l a t n o b i i s a a g s r i i i i i i i r i i o i i i o f a a i n s i e u N o u n n n n n n l l o i g n n n n o r r r r r r r r u r u m l l r o p e s s a i i o l e e l d d o o o o n r q c s m m o e o o o Z u u r n o e e o o o o e e e e e e e n n o t u p o e l g o o i i i d p p i a a a o i i u u e a n o o a a g n n c u l m m m h h h g g g g g g v h h r g g g T h d i l o o u d d n n n s n p l p r r h i i i i i i i i i g l h i g e r r r e t i i m m a a e e g g g p p p p p r u r E e e e o o o o o i o v v v v v v v v v s a a a a l l l l o s u y y y i i i i p i i i i p p a a a n a N N N N N N N N O O P P P P P P P P P P P P P P P Q R R S S R s S S S S S S S S S u U U U U U U U U U V V V R 02/32 x x x R 02/31 x x x x x x x x x x x x x x x x x x x x R 02/30 x x x R 02/29 x x x x x x x x x x x x x x x R 02/28 x x x x x x x x x x x x x x x x x x R 02/26 x x x x x x x x x x x x x x x x x x R 02/22 x x x x x x x x x x x x x x x x x x x x x R 02/20 x x x x x x x x x x x x x x x x x x x x x x x R 02/15 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x R 02/10 x x x x x x x x x x x x x x R 02/05 x x x x x x x x x x x x x x x x x x R 02/04 x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/25 x x x x x x x x x x x x x x x x x x x x x x R 01/24 x x x x x x x x x x x x x x x x x x x x x x x x R 01/21 x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/20 x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/15 x x R 01/10 x x x x x x x x x x x x x x x x x x x x x x x x x R 01/07 x x x x x x x x x x x x x x x x x x x x x R 01/02 x x x x x x x x x x x x x x x x x x x x x x x x x x x x "Geröll- mergel" RE2002-2 x x x x x x x x x x x x x x x x x x Karpatian RE2002-1 x x x x x x x x x Appendix 1I continue a m o Y t R s a o s R a t a i r t l a s c a A c i a a r a v u c a r r t a i U n n s e / l i a m i u u a d o a u i b s t Q p c i r c b s s c a b n i c s i i / i s u i o i i s m i a a e s / o b o n r p N s s d a i m i y u l s a s n r a s u I s i e l t s a i r o s a e s n a i o d u q r i l s u a e o n n n i o c t s u i r u t e a v u A s h l r o e t o o l l a a t r d e e a e i a t b r s m k i r i e a l Remarks a i r t n n a a m p l u s e e y c t i l a i e a u a i y u c n a a a o o a M e d w c l i g n c . e a e l i l i s t i u b s u h c e i l u s i v n p u . q n e n n a d v - s p n a p i s m l i n r i r u l f i s s s a a b o g p n l s u s g m o t a b q t n e i m l a i e t t I i s a i h c c c i c o o u i o o . t i i l n e m t n r c r e e k l e a a o l l u r l l f g i c a n i l l i l i n c b l v e u s s s s E r c a a t a l l a a s o l t y e u r r p c a a a a i a t r r c o u i r g m o u g n q u e e e e l l t t s a a e N a p n a a b p t l l a l i n t t u a a m n b c f o p s r b d t e d l d d d l o o i l t t t l i i i i a a a Z e e a a a a r r r o o a a a a a t t t t r r e c m i i i i u a a a a a a a a e i o o o r n n i a a a a a i o r n i T l l o l l o d i i i l l c e n e l l l s n n n n n o n l n n n n n n n n n n n n o i b a a a a b E a a i i i i i i i i i i i i i i i i a a a i i m m y y r l l l t u u l t t t u e r r t t r r r r r r r r r r r r r r b b r r r r o l l l l u a a a R e b o o o o b b u u o o n e e e e e e e e o e e e e e e e e o o o v e e e e q l r r r r r t t n l r r i r r f f g t t t t i g g g g g g g g g g g g g g g g i m m i i i i l i i i i i i i i i i i i o o o o o g g o o o i i i i o o o o o o k d s h u u h i u u u b b b b b b b b b a e e b b b b b b b b b b b b b b a e b b b c b s r c l r c l n n n n r r b n o a o o o o o o o o o o o o o o o o o o o o o o a a a l l l l l l l l l l l l l l l r l l l l l l l l a r a a r r a a o o e e e u l e u a C G G G G G G G G G G G G G G G G G G G G G G G O P P P P P T T T T T T B B B B b s R 02/32 x x x x x x x x x x x x strongly corroded/pyrityzed R 02/31 x x x x x x x x x x x x x x x x x x x x x Orbulina horizon R 02/30 x x x x x x x x x x x x x x gypsum R 02/29 x x x x x x x x x x x x x x x x x x x x x x x Globigerina horizon R 02/28 x x x x x x x x x x x x x x x x x x x x R 02/26 x x x x x x x x x x x x x x x x x x x x x x x Globigerina horizon R 02/22 x x x x x x x x x x x x x x x x x x x x G. bykovae horizon R 02/20 x x x x x x x x x x x x x x x x x x x Orbulina horizon R 02/15 x x x x x x x x x x x x x x x x x x x x x R 02/10 x x x x x x x x x x x x x x x x x x R 02/05 x x x x x x x x x x x x x x x x R 02/04 x x x x x x x x x x x x x x x x x x R 01/25 x x x x x x x x x x x x x x x x x x x x x x x x x x x R 01/24 x x x x x x x x x x x x x x x x Globigerinoides horizon R 01/21 x x x x x x x x x x x x x x x R 01/20 x x x x x x x x x x x x x R 01/15 x x x x x x x x x x x x x smektite? with pumice R 01/10 x x x x x x x x x x Globigerinoides horizon R 01/07 x x x x x x amount of glauconite R 01/02 x x x x x x x x x x x x x x x x x x corallinacean marl "Geröllmergel" RE2002-2 x x x x x x x silt with pebbles Karpat RE2002-1 x x x x x cf cf x cf x dark calcareous shale Appendix 1J: Retznei, Lafarge-Perlmooser Cement Factory, main quarry, sections R 01 – R 02. Distribution of planktonic foraminiferal species in the Badenian sediments. The isolated outcrop with Karpatian Steirischer Schlier (RE 2002-1) and Geröllmergel (RE 2002-2) is shown at the base of the table. The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions ) 1 7 9 1 , i n a i s t e r u i i n a a h s t a s r w p u r M r u r e o ( a n l i s r o c i e a p i a e t r s u o i i d a g r m d i i g a e i l p e l i d f i a o o r r s n l t e r p i r b e a l o d j a o e i s l g p e u f m t a m n c p e Z n i o a r l r a t a e a r m i o s e l a r e i y n f f p h t r e b t u a r a a o s e e r e m a n h s r t l s o h i i m t e s d e a s a h i k s e u i d s i c l s t p u s s n t u i r a t a h m p n u a l s h t s a u o a r i o r u c n e t r l e i a h s c p a i a h i f e o i h t g l r r c u l b t d o a e s u m t p o r g i f p i s r o n d p s s p e h i i o a u u l l t i s b c o n e i t a s a r l l i a a s u o o r l p q n r r n e l o u l i d o n a c r r i i e o i o a i a o i n p t e u r a s e c a a t c c c l o i a b g c i c n c v c w l . . p r l e g s w t h m p h m n m Katzengraben c a a s a . . a d d o . o y i e . . . . . e . . . m t . r o p .

section S N B C C C C C C C D D H H H H H H H P R R R R S S S U C2/1 r f r r f r r r r c r r

C2/01 5 r r f r r r r r r r c r r N

C1/01 N r c r r f r r r r A I N

B04 N f r r r f r r r f c r B03 E r r r f r r r r r r r f c r D

B02 A r c r r r f r r r f r r r B B01 r c r r r r f r r r r r f r r r A06 r r f r f r c r r r r f r r 4

A05 N c r r f r r r N A A04 I r c r r r r f r r r r r r r r N T

A03 A r c r r r r f r r r r r r f r r P

A02 R c r r f r r A

A01 K r c r f f r r r r f r Appendix 1K: Katzengraben. Stratigraphically important calcareous nannoplankton and bio- stratigraphic zonation. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______riquetrorhabdulus milowii Calcidiscus leptoporus Coccolithus miopelagicus Coccolithus pelagicus Cyclicargolithus floridanus Helicosphaera ampliaperta Helicosphaera carteri Helicosphaera scissura Helicosphaera walbersdorfensis Helicosphaera waltrans Pontosphaera multipora Reticulofenetra bisecta Reticulofenestra gelida Reticulofenestra haqii Reticulofenestra minuta Reticulofenestra pseudoumbilica Rhabdosphaera sicca Sphenolithus heteromorphus Sphenolithus moriformis T Umbilicosphaera jafarii PERBERSDORF 1 Stage Nannoplankton Zones (Martini, 1971) 246.00-247.00 m r f f f f f a r f f 299.00-304.00 m f f r f f c f r f f 346.00-352.00 m f r f r r r a r r

364.00-370.00 m 5 r r f r f r r f f c r f r r

382.00-388.00 m N r f r f r f c r f r r

388.00-394.00 m N f f f f c f f 461.00-467.00 m r r f f f r r f c r r

492.00-490.00 m N r f r f r r r f f c f f f r r A

496 m I r c r r r r r r r r

520.00-523.00 m N r r c f f f r r r r r r r f r r

527.40-534.00 m E 557.00-563.00 m D A

628.20-632.20 m B 661.1 m Volcanic level No nannofossils 689 m 689.00-694.00 m 4 729.00-732.50 m N N 746 m c r r 785.80-794.00 m r c r f r r r r 809.00-811.00 m r c r f r r r r r 850.00-856.00 m r r c f f r r f r r r r 868.00-874.00 m r c r f r r r f r 933.00-939.00 m KARPATIAN r c r f r f r 947.5-1311m barren Appendix 1L: Perbersdorf deep well 1; distribution of stratigraphically important calcareous nan- noplankton. a = abundant, > 90% ; c = common, 50% – 90%; f = few, 10% – 50%; r = rare, < 10% of total abundance.______s a r e r e 1 t f i e F n i e r M l R e m p n O altispira globosa i b a r m D h m o a cf. cf. TION t S u F p S n R e c e i E x r D n o B o o ZONA e b l t R C k p E n m P a l a P S Orbulina suturalis Praeorbulina glomerosa circularis Globigerinoides trilobus Globigerinoides quadrilobatus Globigerinoides bisphericus Globoquadrina Globoquadrina Globorotalia transsylvanica Globorotalia peripheroronda Praeorbulina transitoria Paragloborotalia mayeri Globorotalia bykovae Praeorbulina sicana Praeorbulina glomerosa 216-223 3 220 x x x 246-247 246 x x x x x x x x x 247-248 247 x x x x x x x 252-258 255 x x x x x cf. 270-276 1 275 x x x x x x x x x x x 276-282 3 279 x x x x x x x x x x x 276-282 2 280 x x x x x x x x x 282-288 285 x x x x x x 288-293 291 x x x x x x 299-304 302 x x x x 304-310 307 x x x x x 310-316 2 314 x x x x x 310-316 1 315 x x x x Lagenidae Zone - NN5 316-322 2 320 x x x 316-322 1 321 x x x x 328-334 3 331 x x x x x x 328-334 2 332 x x x x x 328-334 1 333 x x x Appendix 1M: Perbersdorf deep well 1; distri- bution of important planktonic foraminifera.______Johann HOHENEGGER, Fred RÖGL, Stjepan ĆORIĆ, Peter PERVESLER, Fabrizio LIRER, Reinhard ROETZEL, Robert SCHOLGER & Karl STINGL s e a r r 1 t e e f F i e r M l n R s i a e p n r e O i b r m e 1 t m f D a i h m e a r t F S n u i o p S

e Remarks r M l n R R e F e pudica costai bulbacea laviculata barbatula m p e n E x O altispira globosa i r b D a c i r m o B cf. cf. cf. cf. cf. o D h m e h o a b cf. cf. TION t l t R C S u F p S p n E n R e e c e m P i E x r D B a n o B o o S ZONA e b l t R C aginulina legumen k p E n Uvigerina pygmoides Uvigerina macrocarinata Uvigerina uniseriata Uvigerina Uvigerina aculeata Uvigerina Uvigerina semiornata Uvigerina grilli Uvigerina Uvigerina acuminata Uvigerina graciliformis Uvigerina parviformis Uvigerina Pappina primiformis Uvigerina Uvigerina sp. (striate) V Colominella paalzowi Cylindroclavulina rudis Psammolingulina papillosa Pseudogaudryina sturi m P a l a 216-223 3 220 x x x P S 246-247 246 x x x x x x x Orbulina suturalis Praeorbulina glomerosa circularis Globigerinoides trilobus Globigerinoides quadrilobatus Globigerinoides bisphericus Globoquadrina Globoquadrina Globorotalia transsylvanica Globorotalia peripheroronda Praeorbulina transitoria Paragloborotalia mayeri Globorotalia bykovae Praeorbulina sicana Praeorbulina glomerosa 334-340 3 337 x x x x x x x 247-248 247 x x x x x x Orbulina bloom 334-340 2 338 x x x x x x x x 252-258 255 x x x x 334-340 1 339 x x x x x x x 270-276 1 275 x x x x x x 346-352 349 x x x x x x x 276-282 3 279 x x x x x 352-358 2 356 x x 276-282 2 280 x x x x x x 352-358 1 357 x x x x x x 282-288 285 x x cf. x x 358-364 361 x 288-293 291 x x x x x x x 364-370 367 x x x x x x x 299-304 302 x cf. x x x x 370-376 373 x x x x 304-310 307 x x x 376-382 2 380 310-316 2 314 x cf. x x 376-382 1 381 310-316 1 315 x x x x x 382-388 2 386 316-322 2 320 x 382-388 1 387 316-322 1 321 x x x x x 388-394 2 392 x 328-334 3 331 x x x cf. x x 388-394 1 393 x 328-334 2 332 x cf. x x x 394-400 397 328-334 1 333 400-405.5 2 403.5 334-340 3 337 x x cf. x x x x x 400-405.5 1 404.5 334-340 2 338 cf. x x x 405.5-411.5 2 409.5 334-340 1 339 x x cf. x x 405.5-411.5 1 410.5 346-352 349 x cf. x x 411.5-417 414 352-358 2 356 poor assemblage 417-422 419 352-358 1 357 x x x cf. x x x 422-427.4 425 x x x cf. 358-364 361 x poor assemblage 427.4-432.8 2 430.8 364-370 367 x x x 427.4-432.8 1 431.8 370-376 373 x x x x x 432.8-438.5 435.5 376-382 2 380 x x cf. x x x 438.5-444 2 442 cf. 376-382 1 381 x x cf. x x x x 438.5-444 1 443 382-388 2 386 x x x cf. x Lagenidae Zone - NN5 444-450.5 2 448.5 x 382-388 1 387 x x x x x x 444-450.5 1 449.5 388-394 2 392 x x x x x x x 450.5-456 2 454 388-394 1 393 x x x 450.5-456 1 455 x x 394-400 397 x x x x x 456-461 458.5 x 400-405.5 2 403.5 x cf. x x x 461-467 464 400-405.5 1 404.5 x x x x ? 467-473 470 405.5-411.5 2 409.5 x x poor assemblage 473-479 476 405.5-411.5 1 410.5 x x cf. x 479-485 482 x 411.5-417 414 485-491 2 489 417-422 419 485-491 1 490 422-427.4 425 cf. cf. cf. 491-496.5 493.5 427.4-432.8 2 430.8 x x 496.5-502.5 4 498.5 427.4-432.8 1 431.8 x cf. x poor assemblage 496.5-502.5 3 499.5 432.8-438.5 435.5 x 496.5-502.5 2 500.5 438.5-444 2 442 cf. x x 496.5-501.5 1 501.5 438.5-444 1 443 cf. x poor assemblage 508.5-514 x x x 444-450.5 2 448.5 x x cf. x x x 514-520 2 518 444-450.5 1 449.5 x x x x x x x x 514-520 1 519 450.5-456 2 454 x x 520-523 521.5 450.5-456 1 455 x x x x x 523-527.7 525.5 456-461 458.5 x cf. x 527.7-534.2 530.5 461-467 464 cf. x x 534.2-540 537 467-473 470 x x cf. x x x x x 545-551 548 473-479 476 x 557-565 561 479-485 482 x 568-574 571 485-491 2 489 x 587-591 589 x x 485-491 1 490 x x x 606.5-612.7 609.5 x ? 491-496.5 493.5 620.2-626.2 623.2 496.5-502.5 4 498.5 x 666.1-669.3 667.6 496.5-502.5 3 499.5 x x 496.5-502.5 2 500.5 x 675.4-676.8 675 poor assemblage 689-694.8 692 496.5-501.5 1 501.5 x 718-721 719.5 508.5-514 511 x x x one - NN4

721-727 724 T 514-520 2 518 x 746-749 747.5 514-520 1 519 x 749-752.4 2 750.4 520-523 521.5 x x 749-752.4 1 751.4 523-527.7 525.5 poor assemblage

752.4-758.8 755.6 Lagenidae 527.7-534.2 530.5 cf. x x x x x 764-769 766.5 534.2-540 537 x 545-551 548 x 780.1-783.4 781.6 Bathysiphon 557-565 561 783.4-786.7 785 assemblage 786.7-794 790 568-574 571 796-800.9 798.5 587-591 589 800.9-805.2 2 803.2 x 606.5-612.7 609.5 Bathysiphon 800.9-805.2 1 804.2 620.2-626.2 623.2 805.2-809 807 x assemblage 809-811 810.5 666.1-669.3 667.6 barren 838-844 841 675.4-676.8 675 x x x x x 844-850 847 689-694.8 692 x x 850-856 853 718-721 719.5 Bathysiphon 856-862 859 721-727 724 assemblage 4

862-868 865 N 746-749 747.5 x x N

868-874 871 - 749-752.4 2 750.4 cf. x

n 749-752.4 1 751.4 x x x 874-880 877 a i t

880-886 883 a 752.4-758.8 755.6 x x x x p r 764-769 766.5 x x 886-896 891 a 902-908 905 K 780.1-783.4 781.6 cf. x x 914-920 917 783.4-786.7 785 x x x x x 924.7-930.8 927.8 786.7-794 790 x x 933-939 796-800.9 798.5 x x 959.5-965.5 1 965 800.9-805.2 2 803.2 cf. x x x 976-982 800.9-805.2 1 804.2 cf. x x x x 982-988 805.2-809 807 cf. x x 809-811 810.5 x x

988-994 n a i

994-1000 t 838-844 841 x x x x a

p 844-850 847 x x x

1000-1006 ? ? ? r a 850-856 853

1009-1015 K 1025.8-1032.0 - 856-862 859 x n a 1043.4-1049.2 i 862-868 865 x x g

1963-1068 n 868-874 871 x a n

t 874-880 877 x x

1114.3-1120.3 t

1191-1193 O 880-886 883 x x x 1290.0-1295.7 886-896 891 x x 1352-1354 902-908 905 x 1397.5-1403,5 Appendix 1N: Perbersdorf deep well 1; distribution of important benthic Appendix 1M continue foraminifera and remarks on faunal events.______The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions s e a r r 1 t e e f F i e r M l n R i e p n O i b m m D a h m a r t S u o p S Remarks n R e F pudica costai bulbacea laviculata barbatula e E x r D c i o B cf. cf. cf. cf. cf. o e h b l t R C p n E e m P B a S aginulina legumen Uvigerina pygmoides Uvigerina macrocarinata Uvigerina uniseriata Uvigerina Uvigerina aculeata Uvigerina Uvigerina semiornata Uvigerina grilli Uvigerina Uvigerina acuminata Uvigerina graciliformis Uvigerina parviformis Uvigerina Pappina primiformis Uvigerina Uvigerina sp. (striate) V Colominella paalzowi Cylindroclavulina rudis Psammolingulina papillosa Pseudogaudryina sturi 914-920 917 x x 924.7-930.8 927.8 x x 933-939 959.5-965.5 1 965 976-982 982-988 silicified stems 988-994 994-1000 1000-1006 contamination 1009-1015 1025.8-1032.0 barren 1043.4-1049.2 1063-1068 1114.3-1120.3 silicified stems 1191-1193 1290.0-1295.7 1352-1354 barren 1397.5-1403,5 contamination Appendix 1N continue a s s i o r r a e l s s i u m u s c t s o r n a l i a a u m e c 1 r g c a b i c i t i y u r a o n r r p a a F c t l g s e t i a s a t e s i s s a n s a r i u u i s R i r t i v s e h o o e u l l n a d i s e s p b j d i o r r t n a r O p c y t a r r a s n a e t a o a m u i e e i a l l a s a t / a s i r e D . a v i u l e d a a s t f i n r h s t a s b c s m m m o a b t q u n r n S l Y n i c n a i o i p r g a n l n i i o k o o c n i o u a l l i i n r s s R s i r H a o n e a a i y r m i l m m h f i r b l a r a y g r g t i b c e e e e i t l E P b t r l r r c g u t m u . u n u i n k a d d d i a f i T t i i a i a a A r c y c d m r a o e u e v r a a i c y n i i u o n o n o n c s g a p a m u r E a i l l a R i d i i r l a a a l l l l s n n n a p p a a P i i a i d a a a c a a a a u n n n t t u u u G r r i i i r g I l a u l l u n n n n o n n n d a a o o b b b i i i i i i i i e e e o r r n q r r r r u u u a T r r r r r r r n n i g g g i i d l d c c c o i i o o i o o o g m e e e e e e e A i i i p p u u n t t t b b e b b e b b e a a g g i g g g g g R i i i i i i i l p p r e r b n n n o o o o a a a o o l l l l r l l v v v v v y v v r r r a a y s a T e e e G G P O G G G G P P U U U P U U U U P L L L P P C P S 1410 x x x x x x x 1430 x x x x x x x x x x x 1450 x x x x x x x x x x x 1470 x x x x x 1490 x x x x x x 1510 x x x x x x x x x x x x cf. 1530 x x x x x x x x x cf. x 1550 x x x x x x x x x x x 1570 x x x x x x 1590 x x x x x x x x x cf. 1610 x x x x x x x x cf. x x 1630 x x x x x x x x x x 1650 x x x x x x 1670 x x x x x x 1690 x x x x 1710 x 1730 x x

1750 x x n a i

1770 x n e

1790 d a

1810 x x x x B 1830 x x x d x x 1850 x x x 1870 x x 1890 x x x x x x x x x 1910 x x x d x x x 1930 x x x x 1950 x x x x 1970 x x x x 1990 x x x d x x x x 2010 x 2030 x x x d x x 2050 x 2070 2090 2110 2130 x 2150 x 2170 2190 x x 2210 x x n a

2230 x i t

2250 x a p r

2270 a 2310 d d d K core 2308-2318m 2330 d 2370 2410 barren 2450 2490 d d 2530 n

2570 a i

2610 g n a

2650 n t 2690 t barren O 2730 2770 2810 2850 2890 2930 tectonized metamorphic shales Appendix 1O: Petersdorf deep well 1; distribution of impor- tant planktonic and benthic foraminifera in the lower part of the well.