Starch and Antioxidant Properties of Quebec-Bred Potato Genotypes

Total Page:16

File Type:pdf, Size:1020Kb

Starch and Antioxidant Properties of Quebec-Bred Potato Genotypes Starch and Antioxidant Properties of Quebec-bred Potato Genotypes Christina Larder Department of Plant Science Macdonald Campus of McGill University Montréal, Québec, Canada December 2015 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Master of Science ©Christina Larder, 2015 I Table of Contents Abstract ........................................................................................................................................ VII Résumé ....................................................................................................................................... VIII Acknowledgements ........................................................................................................................ X Contribution of Authors ................................................................................................................ XI List of Tables ............................................................................................................................... XII List of Figures .............................................................................................................................. XV List of Abbreviations ................................................................................................................. XVI Chapter 1: General Introduction ..................................................................................................... 1 1.1 Introduction ........................................................................................................................... 1 1.2 Hypothesis ............................................................................................................................. 2 1.3 Objectives .............................................................................................................................. 3 1.4 Scope ..................................................................................................................................... 3 Chapter 2: Literature Review .......................................................................................................... 4 2.1 Starch Composition ............................................................................................................... 4 2.3 Resistant Starch ..................................................................................................................... 5 2.3.3 Factors Affecting Resistant Starch Digestibility ............................................................ 7 2.4 Measuring Starch................................................................................................................... 8 2.5 Phosphorylated Starch ........................................................................................................... 9 2.7 Glycemic Index and Glycemic Load ................................................................................... 10 2.8 Measuring Glycemic Index and Load Using an In Vitro Method....................................... 13 2.8 Health Concerns of Starch................................................................................................... 14 2.9 Use of Freeze-Dried Material for Starch Analysis .............................................................. 16 2.10 Protein Content .................................................................................................................. 17 2.11 Measuring Protein ............................................................................................................. 18 II 2.12 Ascorbic Acid, Phenolics, and Antioxidant Capacity ....................................................... 18 2.13 Measurement of Antioxidant Capacity and Polyphenols .................................................. 21 2.13.1 DPPH .......................................................................................................................... 21 2.13.2 ABTS .......................................................................................................................... 21 2.13.3 Folin-Ciocalteu ........................................................................................................... 22 2.13.4 HPLC .......................................................................................................................... 22 2.14 Starch Digestion, Antioxidants and Polyphenols .............................................................. 23 2.15 Hormesis............................................................................................................................ 24 2.16 Hormetic Trials with Potato .............................................................................................. 25 2.16.1 Hydrogen Peroxide as a Hormetic agent .................................................................... 25 2.16.2 Hydrogen Peroxide as a Hormetic Agent for Potatoes ............................................... 26 Connecting Statement ................................................................................................................... 32 Chapter 3: Phytonutrient Evaluation of Quebec Potato Genotypes .............................................. 33 3.1 Introduction ......................................................................................................................... 33 3.2 Materials and Methods ........................................................................................................ 35 3.2.1 Source Material ............................................................................................................. 35 3.2.2 Sample Preparation ....................................................................................................... 35 3.2.3 Percent Moisture ........................................................................................................... 36 3.2.4 Resistant, Digestible and Total Starch .......................................................................... 36 3.2.5 Isolation of Starch and Phosphorous Content............................................................... 37 3.2.6 Amylose Content .......................................................................................................... 38 3.2.7 In Vitro Digestibility of Starch, Predicted Glycemic Index and Load ......................... 39 3.2.8 Total Soluble Protein .................................................................................................... 40 3.2.9 Methanolic Crude Extracts ........................................................................................... 40 3.2.10 ABTS .......................................................................................................................... 41 III 3.2.11 DPPH .......................................................................................................................... 41 3.2.12 Folin-Ciocalteau ......................................................................................................... 41 3.2.13 Ascorbic Acid and Polyphenolic Profile .................................................................... 42 3.2.14 Statistical Analysis ..................................................................................................... 42 3.3 Results ................................................................................................................................. 43 3.3.1 Moisture Content .......................................................................................................... 43 3.3.2 Starch Profile ................................................................................................................ 43 3.3.3 Glycemic Index ............................................................................................................. 44 3.3.4 Glycemic Load ............................................................................................................. 45 3.3.3 Phosphorylated Starch .................................................................................................. 45 3.3.6 Amylose ........................................................................................................................ 45 3.3.7 Protein Content ............................................................................................................. 46 3.3.8 Antioxidant Capacity Tests .......................................................................................... 46 3.3. 9 Ascorbic Acid and Polyphenolic Profile Using HPLC ............................................... 48 3.3.11 Antioxidant and HPLC Correlations for Raw and Cooked Potato Samples .............. 49 3.3.12 Starch Correlations ..................................................................................................... 50 3.3.13 Predictive Models for GL ........................................................................................... 51 3.3.9 Discussion ........................................................................................................................ 52 Connecting Statement ................................................................................................................... 68 Chapter 4: Somaclone Starch Quality, Antioxidant Capacity, Ascorbic Acid, and Phenolic Profile Over Two Growing Seasons ......................................................................................................... 69 4.1 Introduction ........................................................................................................................
Recommended publications
  • Sayıt Mahmut Erdoğan
    T.C. GIDA TARIM VE HAYVANCILIK BAKANLI ĞI Ü Ü Ğ AB UZMANLIK TEZ İ DÜNYA’DA GDO MEVZUATI, TİCARET İ VE UYGULAMALARININ KAR ŞILA ŞTIRILMASI VE TÜRK İYE LER GENEL MÜDÜRLÜ LER GENEL İ AB UZMAN YARDIMCISI (Kalın,16 Punto) K İŞ SAYIT MAHMUT ERDO ĞAN (Kalın,Punto) L İ Ş DANI ŞMAN VE DI VE Prof. Dr. MAH İNUR S. AKKAYA İĞİ ODTÜ FEN EDEB İYAT FAKÜLTES İ ÖĞRET İM ÜYES İ RL İ Ankara Eylül 2015 B AVRUPA T.C. GIDA TARIM VE HAYVANCILIK BAKANLI ĞI Avrupa Birli ği ve Dı ş İli şkiler Genel Müdürlü ğü DÜNYA’DA GDO MEVZUATI, TİCARET İ VE UYGULAMALARININ KAR ŞILA ŞTIRILMASI VE TÜRK İYE AB UZMANLIK TEZ İ SAYIT MAHMUT ERDO ĞAN AB UZMAN YARDIMCISI DANI ŞMAN Prof. Dr. MAH İNUR S. AKKAYA ODTÜ FEN EDEB İYAT FAKÜLTES İ ÖĞRET İM ÜYES İ Ankara – 2015 Eylül i ii ÖZET AB Uzmanlık Tezi DÜNYA’DA GDO MEVZUATI, T İCARET İ VE UYGULAMALARININ KAR ŞILA ŞTIRILMASI VE TÜRK İYE Sayıt Mahmut ERDO ĞAN Danı şman Prof. Dr. Mahinur S. AKKAYA Biyoteknoloji, 20. Yüzyılın sonlarından itibaren sağlık, tarım ve çevre gibi alanlar ba şta olmak üzere birçok farklı alanda de ğişim ve dönü şüm meydana getirmi ş olan modern bir disiplindir. Bu disiplin, moleküler biyoloji ve genetik mühendisli ğinin araçlarını kullanılarak canlıların genetik yapılarını belirli bir amaca yönelik olarak de ğiştirip geneti ği de ğiştirilmi ş organizmaları (GDO’lar) elde ederek insanlı ğın ihtiyacına sunmu ştur. Günümüzde bir yandan, insanlar ve hayvanlar için ilaç ve a şı çe şitleri ilaç biyoteknolojisi vasıtasıyla üretilmekte iken, di ğer yandan da tarımsal biyoteknoloji vasıtasıyla üretilmi ş olan; böceklere dirençli, herbisit toleransına sahip, besin de ğeri zenginle ştirilmi ş, kuraklı ğa ve tuzlulu ğa dirençli geneti ği de ğiştirilmi ş (GD) bitki çe şitlerinin ekimi yapılmaktadır.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0259700 A1 Elling Et Al
    US 2015025.9700A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0259700 A1 Elling et al. (43) Pub. Date: Sep. 17, 2015 (54) TRANSGENC PLANTS WITH RNA Publication Classification INTERFERENCE-MEDIATED RESISTANCE AGAINST ROOT-KNOT NEMATODES (51) Int. Cl. CI2N 5/82 (2006.01) (71) Applicant: WASHINGTON STATE CI2N IS/II3 (2006.01) UNIVERSITY, PULLMAN, WA (US) (52) U.S. Cl. CPC .......... CI2N 15/8285 (2013.01); C12N 15/I 13 (72) Inventors: Axel A. Elling, Pullman, WA (US); (2013.01); C12N 23 10/141 (2013.01); C12N Charles R. Brown, Pullman, WA (US) 2310/531 (2013.01) (21) Appl. No.: 14/626,070 (57) ABSTRACT Transgenic plants that are stably resistant to the nematode (22) Filed: Feb. 19, 2015 Meloidogyne Chitwoodi are provided, as are methods of mak ing such transgenic plants. The transgenic plants (such as Related U.S. Application Data potatoes) are genetically engineered to express interfering (60) Provisional application No. 61/948,761, filed on Mar. RNA that targets the Meloidogyn effector protein 6, 2014. Mc16D1OL. Patent Application Publication US 2015/025.9700 A1 OIGI9I?JÄI TOIGI9IDJÄI OIGI9I?IAI TOICI9IDJÄI OIC19I?IN TOICI9IDWI Patent Application Publication Sep. 17, 2015 Sheet 2 of 11 US 2015/025.9700 A1 e h; Figure 2A Figure 2B Figure 2C Figure 2D Figure 3 Patent Application Publication Sep. 17, 2015 Sheet 3 of 11 US 2015/025.9700 A1 COL E2 D1 D2 D4 COL E2 D1 D2 D4 Figure 4A Figure 4B 25000 ;20000 15000 s 10000 2 5000 DES E29 D54 D56 D57 DES E29 D54 D56 D57 Figure 5A Figure 5B 60 1800 50 3.
    [Show full text]
  • 2018 Consortium Funded Progress Reports
    Northwest Potato Research Consortium Annual and Final Reports for FY 2017-18 and FY 2016-17, respectively Reports are presented here as submitted by the lead principle investigator on each project. Funded Scientists Project Title Page # Weed Science Targeted Herbicide Programs for Weed Control in Pam Hutchinson, Joel Felix, Potatoes: Educating Potato Growers and Ag Tim Miller, Steven Seefeldt, 1 Industry about Herbicide Resistance and Weed and Ian Burke Shifts Plant Pathology Kasia Duellman, Phill Characterizing Fusarium species associated with Wharton, James Woodhall, and refining management of potato dry rot in the 9 Ken Frost, Debra Inglis, Pacific Northwest Don McMoran Dennis Johnson, Ken Frost, Development of Verticillium Wilt-Suppressive Soils Mike Thornton, Phill and Evaluation of Fungicidal and Biorational 11 Wharton Products for Northwest Potato Production Assessing Efficacy of Disinfection of Fresh Pack Miller Research 42 Water on Bacterial Load and Tuber Decay Comparison of Metam Sodium Fumigation Methods Miller Research and Alternatives to Metam Sodium 53 Fumigation for Potato Pest Management Use of metconazole for improved yields and fungicide Miller Research 74 resistance management Evaluation of phosphorous acid fungicide programs for improved pink rot management Miller Research 87 and assessment of mefenoxam resistance in pink rot pathogen populations in the PNW Identifying a potential pathogenic cause of the Kylie Swisher disease symptoms and early plant 96 senescence in the Columbia Basin potatoes in 2016 Identification
    [Show full text]
  • From the Ground up the First Fifty Years of Mccain Foods
    CHAPTER TITLE i From the Ground up the FirSt FiFty yearS oF mcCain FoodS daniel StoFFman In collaboratI on wI th t ony van l eersum ii FROM THE GROUND UP CHAPTER TITLE iii ContentS Produced on the occasion of its 50th anniversary Copyright © McCain Foods Limited 2007 Foreword by Wallace McCain / x by All rights reserved. No part of this book, including images, illustrations, photographs, mcCain FoodS limited logos, text, etc. may be reproduced, modified, copied or transmitted in any form or used BCE Place for commercial purposes without the prior written permission of McCain Foods Limited, Preface by Janice Wismer / xii 181 Bay Street, Suite 3600 or, in the case of reprographic copying, a license from Access Copyright, the Canadian Toronto, Ontario, Canada Copyright Licensing Agency, One Yonge Street, Suite 1900, Toronto, Ontario, M6B 3A9. M5J 2T3 Chapter One the beGinninG / 1 www.mccain.com 416-955-1700 LIBRARY AND ARCHIVES CANADA CATALOGUING IN PUBLICATION Stoffman, Daniel Chapter Two CroSSinG the atlantiC / 39 From the ground up : the first fifty years of McCain Foods / Daniel Stoffman For copies of this book, please contact: in collaboration with Tony van Leersum. McCain Foods Limited, Chapter Three aCroSS the Channel / 69 Director, Communications, Includes index. at [email protected] ISBN: 978-0-9783720-0-2 Chapter Four down under / 103 or at the address above 1. McCain Foods Limited – History. 2. McCain, Wallace, 1930– . 3. McCain, H. Harrison, 1927–2004. I. Van Leersum, Tony, 1935– . II. McCain Foods Limited Chapter Five the home Front / 125 This book was printed on paper containing III.
    [Show full text]
  • 2015 Consortium Research Reports
    Northwest Potato Research Consortium Cooperative Effort of the Potato Commissions of ID, OR, & WA Current Projects -- Growing year 2014, Commission fiscal year 2014-15 http://nwpotatoresearch.com/ (**Contact information for each scientist is listed at the end of this document.**) Pests and Pest Management Research ZC/Potato Psyllid Research Evaluation of potato insect pest management programs Alan Schreiber (ADG, Inc.), Erik Wenninger (U of I), Silvia Rondon & Stuart Reitz (OSU), Tim Waters (WSU) OBJECTIVES: 1. Generate efficacy data on products/programs for control of potato psyllids. 2. Examine the effects of insecticides that target potato psyllid on chemical control strategies for other insect pests. 3. Determine if potato psyllid control foments outbreaks of other insect pests. 4. Determine the effect of potato psyllid control on natural enemies. Comparative biology of potato psyllid haplotypes and implications for Northwest potato growers Dave Horton, Joe Munyaneza, Rodney Cooper, Kylie Swisher (USDA-ARS) OBJECTIVES: 1. Examine overwintering biology of haplotypes. 2. Bittersweet nightshade as an alternate host. 3. Examine vector efficiency of haplotypes. 4. Develop means for visually separating haplotypes on yellow sticky cards. Population genetics of the potato psyllid in the inland Northwest Bill Snyder, Zhen "Daisy" Fu (WSU) OBJECTIVES: 1. Working with the WSU core genomics facility, sequence the entire genome of a representative of a population of northwest psyllids. 2. Use the RAD-tag approach to determine relatedness among psyllids collected from potato and nightshade, across collection points in WA, OR and ID. 3. Determine whether distinct genetic groups that we have identified differ in their likelihood of carrying the zebra chip pathogen, and whether these groups exist in different parts of the inland northwest.
    [Show full text]
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • Minnesota Area Ii Potato Research and Promotion Council
    MINNESOTA AREA II POTATO RESEARCH AND PROMOTION COUNCIL AND NORTHERN PLAINS POTATO GROWERS ASSOCIATION 2021 RESEARCH REPORTS Table of Contents 3. Evaluation of MN13142: An Advanced Breeding Clone with Long Dormancy & Other Desirable Traits S. Gupta, J. Crants, M. McNearney & C. Rosen 11. Evaluating Bruising in Storage Among New Fresh-Market and Processing Varieties D. Haagenson 20. Management of Colorado Potato Beetle 2020 I. MacRae 34. Managing PVY Vectors 2020 I. MacRae 41. Developing Remote Sensing-based Yield Mapping Technologies for Potato in Minnesota Y. Miao 51. Adjusting Planting Date for the Management of Verticillium Wilt J. Pasche 59. Support of Irrigated Potato Research for North Dakota and Minnesota 2020 J. Pasche 61. Late Blight Spore Trapping Network for Minnesota A. Robinson & J. Pasche 68. Measuring Nitrogen Uptake in Russet Burbank A. Robinson 72. ND Fresh Market Potato-Cultivar/Selection Trial Results for 2020 A. Robinson, S. Thompson, E. Brandvik & P. Ihry 76. Effect of Branded Versus Broadcast Application of ESN, Turkey Manure & Different Approaches to Measuring Plant N Status on Tuber Yield & Quality in Russet Burbank Potatoes C. Rosen, J. Crants, B. Bohman & M. McNearney 86. Yield & Quality Responses of Ivory Russet & Russet Burbank Potatoes to P Rate, Banded P Application, Soil Fumigation & Mycorrhizal Inoculation in High-P Soils C. Rosen, J. Crants & M. McNearney 98. Evaluation of Mosaic Products as P, S, MG, and Zn Sources for Russet Burbank Potatoes C. Rosen, J. Crants, & M. McNearney 103. Evaluation of NACHURS Products in Russet Burbank Potatoes C. Rosen, J. Crants & M. McNearney 110. Data Report for Potato Breeding Program Data Report 2020 L.
    [Show full text]
  • 2019 Potato Crop Year Research Reports
    MINNESOTA AREA II POTATO RESEARCH AND PROMOTION COUNCIL AND NORTHERN PLAINS POTATO GROWERS ASSOCIATION 2020 RESEARCH REPORTS Table of Contents 3. Vine Desiccation as an Effective Disease Management Strategy to Control Verticillium Wilt of Potato N. Gudmestad 9. Evaluation of a Promising Minnesota Clone for N Response, Agronomic Traits & Storage Quality S. Gupta, J. Crants, M. McNearney & C. Rosen 16. Measuring Bruise Susceptibility Among New Fresh Market & Processing Varieties in Storage D. Haagenson 19. Baseline Evaluation of Pollinator Landscape Plantings Bordering Commercial Potato I.MacRae 25. Management of Colorado Potato Beetle in Minnesota & North Dakota I. MacRae 30. Managing PVY Vectors, 2019 I. MacRae 37. Carryover of Imazamox in Soil of Potato Fields A. Robinson 43. Evaluation of Fresh Potato Cultivars in the Field and Storage A. Robinson & D. Haagenson 46. Late Blight Spore Trapping Network for Minnesota A. Robinson & N. Gudmestad 52. ND Fresh Market Potato-Cultivar/Selection Trial Results for 2019 A. Robinson, E. Brandvik & P. Ihry 56. A Novel Approach to Manage Nitrogen Fertilizer for Potato Production Using Remote Sensing C. Rosen, J. Crants, M. McNearney & B. Bohman 65. Effects of Application Timing & Banded Versus Broadcast Application of ESN on Russet Burbank Potatoes C. Rosen, J. Crants & M. McNearney 79. Evaluation of Aspire, MicroEssentials S10 & MicroEssentials SZ as Sources of Potassium, Phosphate, Sulfur, Boron & Zinc for Russet Burbank Potatoes C. Rosen, J. Crants, & M. McNearney 87. Evaluation of Co-Granulated Formulation of K & B for Russet Burbank Potato Production C. Rosen, J. Crants & M. McNearney 94. Optimizing Planting Configuration, Planting Density, & N Rate for Russet Burbank Potato Production C.
    [Show full text]
  • Potato Glossary
    A Potato Glossary A Potato Glossary by Richard E. Tucker Last revised 15 Sep 2016 Copyright © 2016 by Richard E. Tucker Introduction This glossary has been prepared as a companion to A Potato Chronology. In that work, a self-imposed requirement to limit each entry to a single line forced the use of technical phrases, scientific words, jargon and terminology that may be unfamiliar to many, even to those in the potato business. It is hoped that this glossary will aid those using that chronology, and it is hoped that it may become a useful reference for anyone interested in learning more about potatoes, farming and gardening. There was a time, a century or more ago, when nearly everyone was familiar with farming life, the raising of potatoes in particular and the lingo of farming in general. They were farmers themselves, they had relatives who farmed, they knew someone who was a farmer, or they worked on a nearby farm during their youth. Then, nearly everyone grew potatoes in their gardens and sold the extra. But that was a long ago time. Now the general population is now separated from the farm by several generations. Only about 2 % of the US population lives on a farm and only a tiny few more even know anyone who lives on a farm. Words and phrases used by farmers in general and potato growers in particular are now unfamiliar to most Americans. Additionally, farming has become an increasingly complex and technical endeavor. Research on the cutting edge of science is leading to new production techniques, new handling practices, new varieties, new understanding of plant physiology, soil and pest ecology, and other advances too numerous to mention.
    [Show full text]
  • Potatoes in Practice 2012 Event Guide
    3RWDWRHV3RWDWRHVPotatoes LQ3UDFWLFHLQ3UDFWLFHin Practice 2012 ThursdayThursday 12th 12th9th August August 9.30am9.30am to to 4.30pm 4.30pm4.30pm BalrudderyBalruddery Farm Farm InvergowrieInvergowrieInvergowrie DundeeDundee DD2 DD2DD2 5LJ 5LJ5LJ SupportedSupported by by FieldField Trials Trials & && Demonstrations, Demonstrations,Demonstrations, SeminarsSeminars and and Exhibitors Exhibitors Guide Guide ProgrammeContents Welcome to Potatoes in Practice 2012 Welcome to Potatoes in Practice 2012.................................................... 1 The James Hutton Institute, SAC, Agrii (formerly Masstock Arable) and the Potato Programme ................................................................................................ 2 Council welcome you to Potatoes in Practice 2012. This event is Britain’s premier field based event dedicated to the potato industry, attracting more international Site Plan ..................................................................................................... 4 visitors each year. Seminars .................................................................................................... 6 This is the fourth year PiP has been held at the James Hutton Institute’s Balruddery Farm. The event is supported by Potato Review. Exhibitor List .............................................................................................. 8 This is a unique opportunity for farmers, advisers and others to view government and industry- Field Trials and Demonstrations ...........................................................
    [Show full text]
  • Evaluation of 18 Specialty Potatoes in Southwest Michigan Dr
    Midwest Vegetable Trial Report for 2014 Evaluation of 18 Specialty Potatoes in Southwest Michigan Dr. Ron Goldy and Virginia Wendzel Southwest Michigan Research and Extension Center Benton Harbor, Michigan Objective The purpose of this trial is to evaluate the performance of 18 specialty potato selections for their adaptability to southwest Michigan growing conditions. This is the third year for evaluating specialty potatoes in an attempt to encourage farmer’s market vendors to make them part of their offerings. Summary Nineteen potato cultivars were evaluated for their production potential in southwest Michigan. A range in yield and tuber quality was found in the entries. Entries included russets, fingerlings, and other tuber types; therefore, the trial as a whole was not subjected to statistical analysis. The three russet tuber types (Rio Grande Russet, Canela Russet, and Russet Burbank) were subjected to analysis. Rio Grande Russet had a statistically higher total yield compared to Russet Burbank. The three entries were similar in other traits evaluated. Methods Fertilizer Prior to planting, polymer-coated urea (44-0-0), 0-0-60, 95% sulfur, and Granubor were broadcast and incorporated at 70, 200, 28, and 15 pounds/acre, respectively. After planting, nutrients were applied through a drip system using Nitro Plus (18N-5Ca-1.5Mg and a proprietary growth regulator) and 28% nitrogen (28-0-0). Nitro Plus was applied at 15 gallons per acre on June 16, 23, 30, and July 7. The 28% was applied July 14, 21, 28, August 3, 11, and 18 for a total nitrogen rate of 164 pounds per acre.
    [Show full text]
  • Leeds Thesis Template
    i Effect of variety, harvest and storage time, defoliation and nitrogen application on the physical and biochemical properties of potato tubers in relation to bruise susceptibility Regiane Scharf Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Food Science and Nutrition October, 2014 ii The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2014 The University of Leeds and Regiane Scharf iii Publications List of accepted abstracts Scharf, R., Watson, N., McManus, C., Orfila, C., Povey, M. J. W. and Ho, P. 2012. Assessment of potato bruising. Sutton Bridge Storage Day, 29 November 2012, Sutton Bridge, UK. Scharf, R., Orfila, C. and Ho, P. 2013. Extraction of ‘free’ and ‘trapped’ phenolics from potato fibre. Industry day, 14 January 2013, Leeds, UK. Scharf, R., Orfila, C. and Ho, P. 2013. Effect of harvest period on the mechanical properties and microstructure of potatoes. ESPCA/São Paulo School of Advanced Science, Advances in Molecular Structuring of Food Materials, 1-5 April 2013, Pirassununga, Brazil. Scharf, R. and Orfila, C. 2013. Cell wall microstructure of potato cortex tissue and correlations with bruise susceptibility upon harvest and storage. The XIIIth Cell Wall Meeting, 7-12 July 2013, Nantes, France. Scharf, R. 2013. The relationship between bruising index, tuber deformability and composition of phenolic acids.
    [Show full text]