Potato Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Cellulose Binding Domain Protein Restores Female Fertility When Expressed in Transgenic Bintje Potato Richard W
Jones and Perez BMC Res Notes (2016) 9:176 DOI 10.1186/s13104-016-1978-6 BMC Research Notes RESEARCH ARTICLE Open Access A cellulose binding domain protein restores female fertility when expressed in transgenic Bintje potato Richard W. Jones* and Frances G. Perez Abstract Background: Expression of a gene encoding the family 1 cellulose binding domain protein CBD1, identified in the cellulosic cell wall of the potato late blight pathogen Phytophthora infestans, was tested in transgenic potato to deter- mine if it had an influence on plant cell walls and resistance to late blight. Results: Multiple regenerants of potato (cv. Bintje) were developed and selected for high expression of CBD 1 transcripts. Tests with detached leaflets showed no evidence of increased or decreased resistance to P. infestans, in comparison with the blight susceptible Bintje controls, however, changes in plant morphology were evident in CBD 1 transgenics. Plant height increases were evident, and most importantly, the ability to produce seed berries from a previously sterile cultivar. Immunolocalization of CBD 1 in seed berries revealed the presence throughout the tissue. While Bintje control plants are male and female sterile, CBD 1 transgenics were female fertile. Crosses made using pol- len from the late blight resistant Sarpo Mira and transgenic CBD1 Bintje as the female parent demonstrated the ability to introgress P. infestans targeted resistance genes, as well as genes responsible for color and tuber shape, into Bintje germplasm. Conclusions: A family 1 cellulose-binding domain (CBD 1) encoding gene from the potato late blight pathogen P. infestans was used to develop transgenic Bintje potato plants. -
Maintenance of the National Public in Vitro Potato Collection
Maintenance of the National public in vitro potato collection Dr Nigel Crump Victorian Certified Seed Potato Authority Inc Project Number: PT12007 PT12007 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the potato industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of: the potato industry the potato industry All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 3229 8 Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2013 Maintenance of the National public in vitro potato collection Horticulture Australia Project PT12007 June 2013 Horticulture Australia Project PT12007 N.S.Crump June 2013 ViCSPA Private Mail Bag 1 Healesville 3777 Acknowledgements The authors acknowledge the input of many industry representations including: Seed Potato Victoria, Processing Potato Association of Australia, Western Australia Seed Producers Association, Snack Brands Australia. Specially, Ian Simpson (Agtec Agriculture), Dale Spencer (WA), Colin Ayres (WA Grower), Mike Davies (APL WA), Luke Raggatt (AUSVEG), Leonie White (TIA, Tasmania), Brad Mills (HAL), David Carter, (Accredited lab – minituber producer), Kim Weir (NSW grower), Corina Horstra (VICSPA), Colin Birch (TIA, Tasmania), David Hotchkin (President VFF Thorpdale branch) Kay Spierings (Chair VICSPA). -
Identifying Novel Diagnostic SNP Markers for Potato (Solanum Tuberosum L.) Tuber Starch and Yield by Association Mapping
Identifying novel diagnostic SNP markers for potato (Solanum tuberosum L.) tuber starch and yield by association mapping Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨atzu K¨oln vorgelegt von Elske Maria Sch¨onhals aus Kirchheimbolanden K¨oln,2014 Die vorliegende Arbeit wurde am Max-Planck-Institut f¨ur Pflanzenz¨uchtungsforschung in der Abteilung f¨urPflanzenz¨uchtung und Genetik (Direktor Prof. Dr. Maarten Koornneef) angefertigt. Berichterstatter PD Dr. Christane Gebhardt (Gutachter) Prof. Dr. Martin H¨ulskamp Tag der m¨undlichen Pr¨ufung 28.05.2014 Science cannot solve the ultimate mystery of nature. And that is because, in the last analysis, we ourselves are part of nature and therefore part of the mystery that we are trying to solve. Max Planck (1932) Abstract The starch of potato (Solanum tuberosum L.) tubers is a renewable resource and an im- portant component of multiple food and non-food products. Optimized starch yield, the product of tuber starch content and tuber yield, is therefore the central selection criterion in breeding programs for starch potatoes. The aim of this work was the detection of di- agnostic single nucleotide polymorphism (SNP) markers for starch yield optimization by marker-assisted selection. A novel association mapping population of 282 potato genotypes formed the basis of this thesis. Within a collaborative project with breeders, this population was assembled and phenotyped in replicated field trials in Northern Spain for the starch yield determining traits tuber starch content, tuber yield, weight and number. The population was geno- typed for known diagnostic PCR markers, SSR markers and novel SNPs in candidate genes, which were reported in the literature to have a function in starch or yield accumulation in potato or other organisms. -
From the Ground up the First Fifty Years of Mccain Foods
CHAPTER TITLE i From the Ground up the FirSt FiFty yearS oF mcCain FoodS daniel StoFFman In collaboratI on wI th t ony van l eersum ii FROM THE GROUND UP CHAPTER TITLE iii ContentS Produced on the occasion of its 50th anniversary Copyright © McCain Foods Limited 2007 Foreword by Wallace McCain / x by All rights reserved. No part of this book, including images, illustrations, photographs, mcCain FoodS limited logos, text, etc. may be reproduced, modified, copied or transmitted in any form or used BCE Place for commercial purposes without the prior written permission of McCain Foods Limited, Preface by Janice Wismer / xii 181 Bay Street, Suite 3600 or, in the case of reprographic copying, a license from Access Copyright, the Canadian Toronto, Ontario, Canada Copyright Licensing Agency, One Yonge Street, Suite 1900, Toronto, Ontario, M6B 3A9. M5J 2T3 Chapter One the beGinninG / 1 www.mccain.com 416-955-1700 LIBRARY AND ARCHIVES CANADA CATALOGUING IN PUBLICATION Stoffman, Daniel Chapter Two CroSSinG the atlantiC / 39 From the ground up : the first fifty years of McCain Foods / Daniel Stoffman For copies of this book, please contact: in collaboration with Tony van Leersum. McCain Foods Limited, Chapter Three aCroSS the Channel / 69 Director, Communications, Includes index. at [email protected] ISBN: 978-0-9783720-0-2 Chapter Four down under / 103 or at the address above 1. McCain Foods Limited – History. 2. McCain, Wallace, 1930– . 3. McCain, H. Harrison, 1927–2004. I. Van Leersum, Tony, 1935– . II. McCain Foods Limited Chapter Five the home Front / 125 This book was printed on paper containing III. -
Pest Management Strategic Plan for Organic Potato Production in the West
Pest Management Strategic Plan for Organic Potato Production in the West Summary of workshops held on February 16, 2006 Buhl, Idaho and January 9, 2008 Portland, Oregon Issue Date December 19, 2008 Lead Authors: Jennifer Miller, Ronda Hirnyck, Lisa Downey-Blecker Editor: Diane Clarke This project was sponsored by the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture, Cooperative State Research, Education, and Extension Service. Additional funding was provided by the Organic Farming Research Foundation and the Bullitt Foundation. Table of Contents Work Group .........................................................................................................................3 Summary of the Most Critical Needs in Organic Potato Production in the West ................5 Introduction ..........................................................................................................................6 Production Overview .........................................................................................................11 California ...............................................................................................................11 Colorado .................................................................................................................12 Columbia Basin ......................................................................................................12 Idaho ......................................................................................................................13 -
1212 Regeneration and Agrobacterium-Mediated Transformation of Three Potato Cultivars (Solanum Tuberosum Cv. Desiree, Agria
AJCS 6(7):1212-1220 (2012) ISSN:1835-2707 Regeneration and Agrobacterium -mediated transformation of three potato cultivars (Solanum tuberosum cv. Desiree, Agria and Marfona) by human proinsulin gene Kimia Kashani 1, Mokhtar Jalali Javaran 1* , Mehdi Mohebodini 2, Ahmad Moieni 1, Maryam Sheikhi Deh Abadi 1 1Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 2Department of Horticulture Science, Faculty of Agriculture, University of Mohaghegh Ardabili, Iran * Corresponding author: [email protected] Abstract It is expected that the increasing outbreaks of diabetes mellitus along with introducing alternative of present insulin consumption methods, will result in increasing the demand of such a drug in future. Plant systems have high potential to produce safe, economical, inexpensive and large-scale biopharmaceuticals and potato is one of the most important bioreactors, globally. Most Agrobacterium - mediated transformation procedures referred to in the literatures have proven to be inefficient for the transformation of Agria and Marfona potato cultivars. In this study a novel one- step method was demonstrated for the transformation of the internodal explants of these cultivars. Using this method, human proinsulin gene was expressed in the transgenic potato plants. In this research, the DNA sequence of Immunoglobulin G binding protein taken from Staphylococcus aureus was infused to the human proinsulin gene and this construct was then transferred to the nuclear genome of potato via Agrobacterium -mediated transformation. Assessment of the transgenic plants was carried out in 3 levels of DNA, RNA and protein. Gel analysis of the PCR and RT-PCR products showed a single 500 bp band in the transgenic potato lines. -
2018 Potato Postharvest Processing Evaluation Report
Postharvest Processing Evaluation of Alaska Grown Potatoes A Specialty Crop Block Grant Project Introduction Potatoes have long been a staple produce of Alaskan agriculture. Between the years 2009-2016 Alaska growers have produced between 130,000 to 155,000 cwt annually amounting to over 2 million dollars in sales each year (2017 Alaska Annual Bulletin). There has been increasing interest in the use of Alaska Grown potatoes for processing in the local chipping and restaurant market, but this effort hasn’t been supported with data on the processing quality of our locally produced potatoes. To better meet the needs of the food service industries and to promote a growing market for producers, the Alaska Plant Materials Center (PMC) undertook a postharvest evaluation on our collection of potato varieties grown on site in Palmer, Alaska. The results of this research present timely and relevant data to Alaskan growers, processors and consumers. On a national level, the processing industry accounts for nearly 60% of potatoes produced annually. This trend has caused potato breeders to select for processing qualities, and quite a few processing cultivars have been recently registered and released for use. Although some of these newer varieties are grown here in Alaska, they have not been evaluated and compared to the data collected by growers in other regions or compared to established varieties that are known to do well here. Even if the physical qualities of the varieties were comparable to those grown elsewhere, Alaska is unlikely to compete in the national processing market because of our distance from any commercial processing facility and the small “family farm” scale of operation. -
International Union for the Protection of New Varieties of Plants Geneva
E TG/23/6 ORIGINAL: English DATE: 2004-03-31 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA * POTATO (Solanum tuberosum L.) GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY Alternative Names: * Latin English French German Spanish Solanum tuberosum L., Potato Pomme de terre Kartoffel Papa, Patata S. tuberosum L. sensu lato ASSOCIATED DOCUMENTS These guidelines should be read in conjunction with document TG/1/3, “G eneral Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants” (hereinafter referred to as the “General Introduction”) and its associated “TGP” documents. * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest infor mation.] TG/23/6 Potato, 2004 -03 -31 - 2 - TABLE OF CONTENTS 1. SUBJECT OF THESE TES T GUIDELINES ................................ ................................ ................................ .. 3 2. MATERIAL REQUIRED ................................ ................................ ................................ ............................... 3 3. METHOD OF EXAMINATIO N................................ ................................ ................................ ..................... 3 3.1 Duration of Tests ................................ ................................ ............................... -
Seed Potatoes You Would Like to Request from the Plant Materials Center (PMC) to Plant on Your Farm in 2020
5310 S. Bodenburg Spur Palmer, Alaska 99645-7646 Main: 907.745.4469 Fax: 907.746-1568 November 29, 2018 Dear Grower, Please consider the varieties and quantities of generation zero (G0) seed potatoes you would like to request from the Plant Materials Center (PMC) to plant on your farm in 2020. In order to establish our greenhouse production plans for 2019 at the PMC, we will accept order requests through January 31, 2019. We encourage you to renew your seed stocks as often as possible with disease free seed from the PMC to maintain high quality seed in Alaska potato production. In this regard, we are here to serve you and provide the industry with a healthy start. Review the attached list or visit http://plants.alaska.gov/PotatoSeedProduction.html for ordering information. If you do not see a variety on the list that interests you, please contact us to see if we can produce the variety or recommend a similar one. Based on production logistics, we are setting a minimum order limit of two pounds per variety. The price is $15.00 per pound. Orders will not be accepted from growers with a delinquent account. Please ensure that past balances are paid before ordering new material. Feel free to contact the PMC office at (907) 745-4469 to verify your account status if necessary. Thank you for your understanding in this matter. Please do not hesitate to contact me with any questions. Sincerely, Christine Macknicki Potato Program Technician (907) 745-8021 [email protected] Available Public Varieties AC Red Island Catriona Katahdin Red -
Potatoes in the Home Garden
for the Gardener Growing Potatoes in the Home Garden f you could cultivate a vegetable crop that could be grown in almost every climate (except hot tropical zones) from sea level to 15,000 feet, could be eaten for breakfast, lunch, dinner, and snacks, prepared in a myriad of ways, be easily kept Iwithout processing or refrigeration for up to 6-8 months, produced high yields (2-5 pounds per square foot) and was extremely nutritious (high in protein, vitamin C, niacin, B vitamins, iron and energy) but low in calories (sans butter and sour cream), you would wouldn’t you? If you did you would be in the minority of home gardeners. Most gardeners eschew the illustrious “spud” (Solanum tuberosum), thinking it doesn’t warrant space in the small garden and that home grown potatoes don’t taste much better than their store-bought counterparts. Not true! Wrong on both counts. Solanum tuberosum (the Andean potato) originated in the highlands of the Andes mountain ranges of South America (Peru, Columbia, Ecuador, Bolivia) at elevations up to 15,000 feet. Potatoes have been in cultivation for more than 2000 years and there are more than 2,000-3,000 Beveridge Melisa varieties extant today. It is an herbaceous perennial in its native habitat, but treated as a tender annual in the temperate zones and damaged by frost at 28-30°F. The plant’s only edible portions are the tubers produced underground, apically (at the tip) on stolons (horizontal underground stems; see drawing at right). While potatoes produce viable seed, the genetic makeup of sexually- produced plants is so diverse and variable (heterozygous) that production from this seed is negligible. -
Potato - Wikipedia, the Free Encyclopedia
Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area -
Selected List of Vegetable Varieties for Gardeners in New York State
Selected List of Vegetable Varieties for Gardeners in New York State 2021 (Revised 11/20) Vegetable varieties listed in this report should be well adapted for New York State community, school and home gardens. It is recognized that varieties not listed here may be satisfactory or even perform better under certain conditions. We encourage gardens to rate the varieties at: vegvariety.cce.cornell.edu Visit our Vegetable Varieties for Gardeners in New York State website for detailed descriptions and some seed sources of more than 7,000 vegetable varieties including those listed in this report. Compare varieties, read ratings and reviews by fellow gardeners, and offer your own observations of which varieties perform best in your garden. Note: Future reports will be largely based on variety ratings from this site. vegvariety.cce.cornell.edu Cornell Garden-Based Learning Horticulture School of Integrative Plant Sciences Cornell University Ithaca, NY 14853-0327 www.gardening.cornell.edu Selected List of Vegetable Varieties for Gardeners in NYS – A. Helmholdt – page 2 of 8 Key to Notation At least 4 NY gardeners’ ratings averaging # New varieties to this year’s list * >3.5 stars at: vegvariety.cce.cornell.edu Downy mildew resistant or A Alternaria stem resistant DM tolerant Tolerance to Bean Common Mosaic Powdery mildew resistant or BCMV PM Virus BV1 & NY15 tolerant Bacterial leaf spot resistant strains 1, 2, BLS R Rust resistant and 3 are noted CTV Tolerance to citrus tristeza virus SE Sugar enhanced F Fusarium resistant SH2 Supersweet LBR Late