WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S

Total Page:16

File Type:pdf, Size:1020Kb

WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). They are often found in deserts, semi-deserts, salt-marshes, coastal or inland saline and ruderal sites (Volkens 1893; Ulbrich 1934; Kühn et al. 1993). The family is temperate and subtropical, traditionally with 98 genera and c. 1400 species 1) Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University of Halle-Wittenberg, Neuwerk 21, 06108 Halle (Saale), Germany [E-mail: heike.heklau@botanik. uni-halle.de]. 2) Jodrell Laboratory, Royal Botanic Gardens Kew, TW9 3DS, Richmond, Surrey, United King- dom. 3) Swiss Federal Research Institute for Forest, Snow and Landscape, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland. 4) NCB Naturalis - Nationaal Herbarium Nederland, P.O. Box 9514, 2300 RA Leiden, The Nether- lands. Downloaded from Brill.com09/25/2021 11:45:20PM via free access 206 IAWA Journal, Vol. 33 (2), 2012 (Kühn et al. 1993). Amaranthaceae s.l., including Chenopodiaceae, number c. 2000 spe- cies (Mabberley 2008). Molecular studies by Cuénoud et al. (2002) and Kadereit et al. (2003) have shown that the Chenopodiaceae and Amaranthaceae form a monophyletic clade that has recently been united as Amaranthaceae s.l., based on the assumption that the Chenopodiaceae are paraphyletic to Amaranthaceae. However, Kadereit et al. (2003) noticed that the relationship between Amaranthaceae and Chenopodiaceae remains unclear. Branches at the base of the Amaranthaceae / Chenopodiaceae lineage are poorly resolved. The position of the monophyletic Polycnemoideae is still equivocal, and according to Kadereit et al. (2003) it is sister to Amaranthaceae s.str. The first wood anatomy studies of Chenopodiaceae describing their successive cam- bia were by Link (1807), Unger (1840), Gernet (1859), De Bary (1877), Gheorghieff (1887), Leisering (1899) and Pfeiffer (1926). In 1899 and 1908, in his systematic anat- omy of dicotyledons, Solereder ascertained similarities in the stem structure between Chenopodiaceae, Amaranthaceae and Nyctaginaceae. Metcalfe and Chalk (1950) reviewed the wood anatomy of Chenopodiaceae and re- corded data on vessel diameter and vessel element lengths in a few species and genera. Fahn et al. (1986) gave detailed accounts of the wood anatomy of 22 species of Cheno- podiaceae from the Middle East, and Schweingruber (1990) and Baas & Schwein- gruber (1987) included 14 species in their analysis of European woody plants. Most of the literature on Chenopodiaceae wood anatomy from 1900 until 1993 is listed in the bibliography by Gregory (1994), but there are also numerous anatomical studies of individual Chenopodiaceae in Russian (Arcichovskij & Osipov 1934; Il’in 1950; Butnik 1966, 1983; Vasilevskaja 1972; Novruzova & Chapari 1974; Lotova & Timonin 1985; Timonin 1987a & b, 1988) some of which are not included in Gregory’s bibliography. The wood anatomy of the more tropical and subtropical Amaranthaceae was the focus of attention of Rajput (2002) and Carlquist (2003). Until now a comparative analysis of wood characters of the Chenopodiaceae has not been made. This study examines the range of wood characters in the Chenopodiaceae, a family predominantly adapted to extreme habitats. MATERIAL AND METHODS The wood anatomy of 182 species from 86 genera (out of a total of 98) Chenopodiaceae genera (Kühn et al. 1993) was investigated (Table 1). These samples represent different life forms and plant sizes (after Ellenberg & Mueller-Dombois 1967): phanerophytes: microphanerophytes (2–5 m), nanophanero- phytes (< 2 m), and hemiphanerophytes (≤ 0.5 m), and herbs: chamaephytes, therophytes (annuals), and hemicryptophytes. In our samples of Chenopodiaceae the proportion of annuals and perennials is well balanced: 52% are annuals and 48% perennials. Hemiphanerophytes and nanophan- erophytes make up a large proportion of perennials. Small trees (microphanerophytes) and perennial herbs (chamaephytes and hemicryptophytes) are very poorly represented. Most of our material was collected in natural sites. The sampling represents the main distribution areas of Chenopodiaceae: 14% from Australia, c. 26% from Asia Downloaded from Brill.com09/25/2021 11:45:20PM via free access Heklau et al. — Wood anatomy of Chenopodiaceae 207 (Mongolia, Russia, Kazakhstan, Iran, Iraq, Turkey), 10% from Africa (North Africa, Kenya, Somalia and South Africa), 41% from Europe (Central and South Europe), 8% from North America (USA and Mexico) and 1% from South America (Chile). The plant material was collected either by HH or FS from natural habitats or was taken from the herbaria in Halle (HAL), Jena (JE), Lisbon (LISU) or Kew (K). The herbarium material was very heterogeneous with regard to the part of the axial system of shrubs or sub-shrubs collected, and in the information on the herbarium labels. With annual plants we had no problems with the herbarium material and took the stem base or root collar. Ecological categories The samples were assigned to the following ecological categories on the basis of our field observations and the literature:Ruderal (i. e. disturbed habitats) — Cultivated in gardens — Littoral — Halophytes: coastal halophytes and inland halophytes (humid- temperate halophytes; steppe halophytes; desert halophytes; tropical/subtropical halophytes) — Steppe or prairie — Semi-desert — Desert — Tropical /subtropical shrub-land. Anatomical preparations We used traditional botanical microtechnique as described in Gerlach (1984). Fresh, fixed (in FAA) or dry plant parts of stems, branches, shoots or of roots were used to prepare microscope slides. Before cutting transverse, tangential and radial sections with a Reichert sliding microtome, the dry plant material was put in 70 % alcohol or in glycerine overnight or for several days. Safranin was used to stain lignified tissue red and astrablue or alcian blue to stain non-lignified cell walls blue. The sections were placed in alcian blue or in astrablue for 5 minutes, washed in water, placed in safranin (1% safranin in 50 % alcohol) for two minutes and transferred to 50 % alcohol. After dehydration through an alcohol series, the sections were placed in Histo-Clear® (dis- tilled essential oils – food grade) or xylene and mounted in Euparal or Canada balsam. For maceration wood splinters were boiled in 10 % HNO3 (nitric acid) for 1–2 min- utes, washed in water and stained with safranin. The splinters were dehydrated in the same way as described above, and teased apart with needles. Microscopic features We have broadly followed the IAWA list (1989), but have considered anomalous secondary thickening (‘cambial variants’) in more detail. The tangentially arranged apotracheal axial parenchyma can be described as con- junctive tissue (Carlquist 1988, 2001) and, together with the secondary phloem, as cap-like, arc-like and band-like. The shape of this complex of secondary phloem and tangential axial parenchyma in the secondary xylem changes from the base to the apex in most Chenopodiaceae. There is commonly a gradient in the stem from band-like in the hypocotyl and epicotyl to arc-like to cap-like axial parenchyma in the apical part. In branches and shoots there is less variability in conjunctive parenchyma and it is mostly cap-like or less often arc-like. These terms (cap-like, arc-like and band-like) indicate the Downloaded from Brill.com09/25/2021 11:45:20PM via free access 208 IAWA Journal, Vol. 33 (2), 2012 position in the axial system (root, basal stem, shoot or branch) where the cross section was taken. The occurrence and grouping of vessels varies with these positions in the stem and with the nature of the conjunctive parenchyma: from diffuse throughout the xylem when the parenchyma is banded (Fig.
Recommended publications
  • Seed Germination of the Halophyte Anabasis Setifera (Amaranthaceae) from Saudi Arabia
    Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Journal: Botany Manuscript ID cjb-2018-0053.R1 Manuscript Type: Article Date Submitted by the Author: 19-May-2018 Complete List of Authors: Basahi, Mohammed; Shaqra University College of Science and Arts Sajir, biology; Anabasis setifera,Draft halophyte, Temperature, Germination, seed germination Keyword: recovery Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 27 Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Mohammed A Basahi College of Science and Arts Sajir Shaqra University P.O. Box 33, Shaqra 11961 Saudi Arabia [email protected] Draft00966582223689 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 27 Abstract The main objective of this study was to determine the effects of temperature, light/darkness, and salinity (NaCl) on seed germination of Anabasis setifera Moq. and the effects of alleviating salinity stress using distilled water. One-hundred percent of seeds completed germination at 15/5, 20/10, and 20°C, and a higher percentage of seeds completed germinationin light than in the dark at 20/10 and 25/15°C. The percentage of seeds that completed the germination decreased as salinity increased from 0 to 700 mM NaCl. Seeds that did not complete germination in the 800 or 700 mM NaCl solutions completed its germinationDraft after being transferred to distilled water, with a recovery rate of 94.5% and 75.5%, respectively, at 25/15°C. The inhibitory effect of NaCl on the completion of germination in this species probably occurs via an osmotic effect.
    [Show full text]
  • Plant Guide for Fourwing Saltbush (Atriplex Canescens)
    Plant Guide saline-sodic soils (Ogle and St. John, 2008). It has FOURWING SALTBUSH excellent drought tolerance and has been planted in highway medians and on road shoulders, slopes, and other Atriplex canescens (Pursh) Nutt. disturbed areas near roadways. Because it is a good Plant Symbol = ATCA2 wildlife browse species, caution is recommended in using fourwing saltbush in plantings along roadways. Its Contributed by: USDA NRCS Idaho Plant Materials extensive root system provides excellent erosion control. Program Reclamation: fourwing saltbush is used extensively for reclamation of disturbed sites (mine lands, drill pads, exploration holes, etc,). It provides excellent species diversity for mine land reclamation projects. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description Fourwing saltbush is a polymorphic species varying from deciduous to evergreen, depending on climate. Its much- branched stems are stout with whitish bark. Mature plants range from 0.3 to 2.4 m (1 to 8 ft) in height, depending on ecotype and the soil and climate. Its leaves are simple, alternate, entire, linear-spatulate to narrowly oblong, Fourwing saltbush. Photo by Steven Perkins @ USDA-NRCS canescent (covered with fine whitish hairs) and ½ to 2 PLANTS Database inches long. Its root system is branched and commonly very deep reaching depths of up to 6 m (20 ft) when soil Alternate Names depth allows (Kearney et al., 1960). Common Alternate Names: Fourwing saltbush is mostly dioecious, with male and Chamise, chamize, chamiso, white greasewood, saltsage, female flowers on separate plants (Welsh et al., 2003); fourwing shadscale, bushy atriplex however, some monoecious plants may be found within a population.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • California Vegetation Map in Support of the DRECP
    CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California
    [Show full text]
  • The Ploidy Races of Atriplex Confertifolia (Chenopodiaceae)
    Western North American Naturalist Volume 71 Number 1 Article 10 4-20-2011 The ploidy races of Atriplex confertifolia (Chenopodiaceae) Stewart C. Sanderson USDA Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Sanderson, Stewart C. (2011) "The ploidy races of Atriplex confertifolia (Chenopodiaceae)," Western North American Naturalist: Vol. 71 : No. 1 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol71/iss1/10 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 71(1), © 2011, pp. 67–77 THE PLOIDY RACES OF ATRIPLEX CONFERTIFOLIA (CHENOPODIACEAE) Stewart C. Sanderson1 ABSTRACT.—Previous accounts of polyploidy in the North American salt desert shrub Atriplex confertifolia (shad- scale) have dealt with the distribution of polyploidy and the morphological and secondary chemical differences between races. The present study amplifies these studies and reveals additional ploidy-flavonoid races, with ploidy levels known to extend from 2x to 12x, and all except 2x and 12x represented by races with and without 6-methoxylation of flavonol compounds. Results of this study show that diploids across their range have about 113% as much DNA per genome as do polyploids and that parallel variation in monoploid genome size between diploids and accompanying polyploids can be shown in different parts of the species’ range.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Chenopodiaceae)
    Ann. Bot. Fennici 45: 241–254 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 August 2008 © Finnish Zoological and Botanical Publishing Board 2008 Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae) M. Ángeles Alonso & Manuel B. Crespo* CIBIO, Instituto de la Biodiversidad, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain (*corresponding author’s e-mail: [email protected]) Received 3 Apr. 2007, revised version received 31 May 2007, accepted 8 June 2007 Alonso, M. Á. & Crespo, M. B. 2008: Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae). — Ann. Bot. Fennici 45: 241–254. Five South American species of Sarcocornia (Chenopodiaceae) are accepted, four of which are new combinations in that genus: S. ambigua (Michx.) M.A. Alonso & M.B. Crespo, S. andina (Phil.) Freitag, M.A. Alonso & M.B. Crespo, S. magellanica (Phil.) M.A. Alonso & M.B. Crespo, and S. neei (Lag.) M.A. Alonso & M.B. Crespo. Synonyms and types are cited for the accepted taxa, and three lectotypes, an epitype and a neotype are designated to establish a correct usage of the names. Main diagnostic characters, ecological features and distributions are also reported for each taxon, and a key is provided to facilitate identification. Key words: Chenopodiaceae, nomenclature, Salicornioideae, Sarcocornia, taxonomy Introduction the world (except in eastern Asia), though a few are restricted to arid continental areas where they Sarcocornia (subfamily Salicornioideae, occur on the shores of salt lakes and marshes, and Chenopodiaceae) includes erect to prostrate even in basins between high mountain ranges (cf. dwarf shrubs, sometimes creeping and rooting at Kadereit et al.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Characterization of the Wild Trees and Shrubs in the Egyptian Flora
    10 Egypt. J. Bot. Vol. 60, No. 1, pp. 147-168 (2020) Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ Characterization of the Wild Trees and Shrubs in the Egyptian Flora Heba Bedair#, Kamal Shaltout, Dalia Ahmed, Ahmed Sharaf El-Din, Ragab El- Fahhar Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt. HE present study aims to study the floristic characteristics of the native trees and shrubs T(with height ≥50cm) in the Egyptian flora. The floristic characteristics include taxonomic diversity, life and sex forms, flowering activity, dispersal types,economic potential, threats and national and global floristic distributions. Nine field visits were conducted to many locations all over Egypt for collecting trees and shrubs. From each location, plant and seed specimens were collected from different habitats. In present study 228 taxa belonged to 126 genera and 45 families were recorded, including 2 endemics (Rosa arabica and Origanum syriacum subsp. sinaicum) and 5 near-endemics. They inhabit 14 habitats (8 natural and 6 anthropogenic). Phanerophytes (120 plants) are the most represented life form, followed by chamaephytes (100 plants). Bisexuals are the most represented. Sarcochores (74 taxa) are the most represented dispersal type, followed by ballochores (40 taxa). April (151 taxa) and March (149 taxa) have the maximum flowering plants. Small geographic range - narrow habitat - non abundant plants are the most represented rarity form (180 plants). Deserts are the most rich regions with trees and shrubs (127 taxa), while Sudano-Zambezian (107 taxa) and Saharo-Arabian (98 taxa) was the most. Medicinal plants (154 taxa) are the most represented good, while salinity tolerance (105 taxa) was the most represented service and over-collecting and over-cutting was the most represented threat.
    [Show full text]
  • (Amaranthaceae) in Italy. V. Atriplex Tornabenei
    Phytotaxa 145 (1): 54–60 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.145.1.6 Studies on the genus Atriplex (Amaranthaceae) in Italy. V. Atriplex tornabenei DUILIO IAMONICO1 1 Laboratory of Phytogeography and Applied Geobotany, Department PDTA, Section Environment and Landscape, University of Rome Sapienza, 00196 Roma, Italy. Email: [email protected] Abstract The typification of the name Atriplex tornabenei (a nomen novum pro A. arenaria) is discussed. An illustration by Cupani is designated as the lectotype, while a specimen from FI is designated as the epitype. Chorological and morphological notes in comparison with the related species A. rosea and A. tatarica are also provided. A nomenclatural change (Atriplex tornabenei subsp. pedunculata stat. nov.) is proposed. Key words: Atriplex tornabenei var. pedunculata, epitype, infraspecific variability, lectotype, Mediterranean, nomenclatural change, nomen novum Introduction Atriplex Linnaeus (1753: 1054) is a genus of about 260 species distributed in arid and semiarid regions of Eurasia, America and Australia (Sukhorukov & Danin 2009). Several names (at species, subspecies, variety and form ranks) were described related to the high phenotipic variability of this critical genus (Al-Turki et al. 2000). As conseguence, misapplication of names and nomenclatural disorders exist and need clarification. In this paper, the identity of the A. tornabenei Tineo ex Gussone (1843: 589) is discussed as part of the treatment of the genus Atriplex for the new edition of the Italian Flora (editor, Prof. S. Pignatti) and within the initiative “Italian Loci Classici Census” (Domina et al.
    [Show full text]
  • The Carpology and Taxonomy of Some Chinese Corispermum (Amaranthaceae S.L.)
    Phytotaxa 172 (2): 081–093 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.172.2.3 The carpology and taxonomy of some Chinese Corispermum (Amaranthaceae s.l.) ALEXANDER P. SUKHORUKOV1,2, MINGLI ZHANG1,3* & MAYA V. NILOVA2 1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; [email protected] 2 Department of Higher Plants, Biological Faculty, Moscow Lomonosov State University, 119234, Moscow, Russia; [email protected] 3 Institute of Botany, Chinese Academy of Sciences, Beijing, China. *Corresponding author Abstract Corispermum iljinii from Qinghai and Ningxia provinces and C. nanum from Xizang (Tibet) are described as new species. The new variety C. dutreuilii var. montanum is described. Lectotypes of C. declinatum, C. elongatum and C. macrocarpum have been designated. The fruit anatomy of 16 Chinese taxa has been investigated for the first time. Both molecular and carpological data support the specific status of C. ellipsocarpum. The general fruit structure of Corispermoideae is specified and discussed. Key words: Chenopodiaceae, China, distribution, fruit anatomy, lectotypification, new taxon Introduction The genus Corispermum (Linnaeus 1753: 4) comprises at least 70 annual taxa distributed in Eurasia and North America. Central Asia appears to be one of the richest regions in Corispermum species. Twenty-seven species are recorded in temperate China (Zhu et al. 2003). All of them belong to various groups distinguished in having a perianth with 1(−2) hyaline segments. Concerning the other reproductive characters, especially in fruit morphology, the Chinese taxa highlight an high differentiation.
    [Show full text]
  • Understanding the Weedy Chenopodium Complex in the North Central States
    UNDERSTANDING THE WEEDY CHENOPODIUM COMPLEX IN THE NORTH CENTRAL STATES BY SUKHVINDER SINGH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Patrick J. Tranel, Chair Associate Professor Aaron G. Hager Associate Professor Geoffrey A. Levin Assistant Professor Matthew E. Hudson ABSTRACT The genus Chenopodium consists of several important weed species, including Chenopodium album, C. berlandieri, C. strictum, and C. ficifolium. All of these species share similar vegetative morphology and high phenotypic plasticity, which makes it difficult to correctly identify these species. All of these weedy Chenopodium species have developed resistance to one or more classes of herbicides. An experiment was conducted to determine if there is variability in response of Chenopodium species present in the North Central states to glyphosate. Our results indicate variable responses within and among the Chenopodium species. Species such as C. berlandieri and C. ficifolium had higher levels of tolerance to glyphosate than did various accessions of C. album. In another experiment, 33 populations of Chenopodium sampled across six North Central states were screened with glyphosate. The results showed variable responses to glyphosate within and among the Chenopodium populations. In general, the Chenopodium populations from Iowa were more tolerant, but some biotypes from North Dakota, Indiana and Kansas also had significantly high tolerance to glyphosate. Given there are species other than C. album that have high tolerance to glyphosate, and there are Chenopodium populations across the North Central states that showed tolerance to glyphosate, one intriguing question was to whether the Chenopodium populations were either biotypes of C.
    [Show full text]