Foraoe Plants for ( Fltiyation on Alkali Soils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Vegetation Map in Support of the DRECP
CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California -
The Ploidy Races of Atriplex Confertifolia (Chenopodiaceae)
Western North American Naturalist Volume 71 Number 1 Article 10 4-20-2011 The ploidy races of Atriplex confertifolia (Chenopodiaceae) Stewart C. Sanderson USDA Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Sanderson, Stewart C. (2011) "The ploidy races of Atriplex confertifolia (Chenopodiaceae)," Western North American Naturalist: Vol. 71 : No. 1 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol71/iss1/10 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 71(1), © 2011, pp. 67–77 THE PLOIDY RACES OF ATRIPLEX CONFERTIFOLIA (CHENOPODIACEAE) Stewart C. Sanderson1 ABSTRACT.—Previous accounts of polyploidy in the North American salt desert shrub Atriplex confertifolia (shad- scale) have dealt with the distribution of polyploidy and the morphological and secondary chemical differences between races. The present study amplifies these studies and reveals additional ploidy-flavonoid races, with ploidy levels known to extend from 2x to 12x, and all except 2x and 12x represented by races with and without 6-methoxylation of flavonol compounds. Results of this study show that diploids across their range have about 113% as much DNA per genome as do polyploids and that parallel variation in monoploid genome size between diploids and accompanying polyploids can be shown in different parts of the species’ range. -
Appendix F3 Rare Plant Survey Report
Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5 -
2015-2021 Restoration of Tunbridge Gully
CASE STUDY 040 PROJECT TIMELINE (DETAILED) Flora, Vegetation Studies – Proposed Weed and River and Tunbridge Gully Project area which found 2015-2021 Botanical Assessment of Hotham River Project was Juncus acutus was invading the project area. 2015 undertaken by Mattiske Consulting Pty Ltd of the Hotham Stage 1 weed control was conducted March - April 2017 Species planted include: REGIONAL GOALS across the Tunbridge Gully Project area. Eucalyptus patens – Swan River Blackbutt Boddington District High School (BDHS) students grew Eucalyptus rudis – Flooded Gum P People seedlings for the July 2016 planting event. Eucalyptus wandoo – White Gum 2016 Melaleuca rhaphiophylla – Swamp Paperbark Total amount of seedlings planted: 350 B Melaleuca cuticularis – Saltwater Paperbark Biophysical Total number of volunteers: 24 Spraying for Juncus acutus – Glyphosate 360 (frog Hakea undulata – Baby leafed hakea friendly) and Wetter. All areas of the Hotham River and Hakea lissocarpha – Honey Bush Tunbridge Gully project were sprayed. Juncus pallidus – Pale rush Juncus pauciflorus – Loose Flower Rush Total amount of seedlings planted: 520 Juncus subsecundus – Finger rush Total number of volunteers - 66 2017 Melaleuca incana – Grey honey myrtle Species planted include: Melaleuca rhaphiophylla – Swamp paperbark Allocasuarina humilis – Dwarf Sheoak One monitoring transect established in May 2017 Calothamnus quadrifidus – One Sided Bottlebrush Photo monitoring points established Casuarina obesa – Swamp Sheoak Spraying for Juncus acutus – Glyphosate 360 (frog -
Salinity-Induced Changes in Anatomy, Stomatal Counts and Photosynthetic
270 S. Afr. J. Bot. 1996,62(5): 270-276 Salinity. induced changes in anatomy, stomatal counts and photosynthetic rate of AtripZex semibaccata R. Br. A.J. de Villiers,* I. von Te ichman, M.W. van Rooyen and G.K. Theron Department of Botany. University of Pretoria, Pretoria, 0002 Republic of South Africa Reaived J April 1996: reviJed 2 Jul.\' /996 Anatomical changes in the roots and leaves of Atriplex semibaccata R. Br., induced by salinity stress, as well as photosynthetic and stomatal response to salinity. were investigated. As salinity increased, decreases were observed in rool diameter and leaf size, as well as in the number of chloroplasts in the chlorenchyma and bundle sheath cells. Development of these two cell types was also inhibited. Net leaf photosynthetic rate and leaf stomatal conductance decreased with increasing salinity, while the interceJlular CO 2 concentration increased. 80th stomatal closure and inhibition of biochemical processes probably caused the reduced leaf photosynthetic rates. The stomatal indices suggest that the trend towards an increase in number of stomata per unit leaf area with an increase in salinity was not due to decreased epidermal cell size. Keywords: Anatomy, Atriplex semibaccata, Chenopodiaceae, photosynthetic rate, salinity, stomatal counts. "To whom correspondence should be addressed Introduction des. This knowledge could aid the selection of species suited for Atriptex semibaccata R. Br. is a ruderal perennial glycophytc and reclamation purposes on saline soils. The aim of this study was a member of the Chenopodiac~ae (Shomer-Ilan et at. 1981), a to determine the changes in root and leaf anatomy, photosyn family including many species which have a high sah wierancc thetic rate and stomatal counlS of Atriplex semibaccata, induced and many members of which, although growing on salt-laden by increased soil salinity. -
Capitulo 3 Tesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Flowering phenology of invasive alien plant species compared to native 2 species in three mediterranean-type ecosystems 3 4 Oscar Godoy*1,4, David M. Richardson2, Fernando Valladares1,3 & Pilar Castro-Díez4 5 6 1 Laboratorio Internacional de Cambio Global (Linc-Global). Instituto de los Recursos 7 Naturales, Centro de Ciencias Medioambientales. CSIC. Serrano 115 dpdo E-28006 8 Madrid Spain. ! 9 2 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch 10 University, Private Bag X1, Matieland 7602, South Africa. 11 3 Departamento de Biología y Geología. Área de Biodiversidad & Conservación, 12 Universidad Rey Juan Carlos, ESCET, Tulipán s/n E-28933, Móstoles, Madrid, Spain. 13 4 Departamento Interuniversitario de Ecología. Sección de Alcalá. Edificio de Ciencias. 14 Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain. 15 16 *Correspondence author: [email protected] 17 18 19 20 21 22 23 24 25 26 27 28 29 1 1 Fenología de floración de las especies de plantas exóticas invasoras en 2 tres ecosistemas mediterráneos en comparación con las especies 3 nativas. 4 5 Resumen 6 • Antecedentes y Objetivos: La fenología de floración es un componente esencial 7 del éxito de las especies invasoras, ya que una elevada fecundidad incrementa su 8 potencial invasor. Por tanto, estudiamos la relación existente entre los patrones 9 de floración de las especies invasoras y nativas en tres regiones con clima 10 mediterráneo: California, España y la Región Sudafricana de El Cabo 11 • Métodos: 227 pares de especies invasoras-nativas fueron utilizados 12 • Resultados clave: Las especies invasoras tienen diferentes patrones de floración 13 en comparación con las especies nativas en las tres regiones. -
Mcgrath State Beach Plants 2/14/2005 7:53 PM Vascular Plants of Mcgrath State Beach, Ventura County, California by David L
Vascular Plants of McGrath State Beach, Ventura County, California By David L. Magney Scientific Name Common Name Habit Family Abronia maritima Red Sand-verbena PH Nyctaginaceae Abronia umbellata Beach Sand-verbena PH Nyctaginaceae Allenrolfea occidentalis Iodinebush S Chenopodiaceae Amaranthus albus * Prostrate Pigweed AH Amaranthaceae Amblyopappus pusillus Dwarf Coastweed PH Asteraceae Ambrosia chamissonis Beach-bur S Asteraceae Ambrosia psilostachya Western Ragweed PH Asteraceae Amsinckia spectabilis var. spectabilis Seaside Fiddleneck AH Boraginaceae Anagallis arvensis * Scarlet Pimpernel AH Primulaceae Anemopsis californica Yerba Mansa PH Saururaceae Apium graveolens * Wild Celery PH Apiaceae Artemisia biennis Biennial Wormwood BH Asteraceae Artemisia californica California Sagebrush S Asteraceae Artemisia douglasiana Douglas' Sagewort PH Asteraceae Artemisia dracunculus Wormwood PH Asteraceae Artemisia tridentata ssp. tridentata Big Sagebrush S Asteraceae Arundo donax * Giant Reed PG Poaceae Aster subulatus var. ligulatus Annual Water Aster AH Asteraceae Astragalus pycnostachyus ssp. lanosissimus Ventura Marsh Milkvetch PH Fabaceae Atriplex californica California Saltbush PH Chenopodiaceae Atriplex lentiformis ssp. breweri Big Saltbush S Chenopodiaceae Atriplex patula ssp. hastata Arrowleaf Saltbush AH Chenopodiaceae Atriplex patula Spear Saltbush AH Chenopodiaceae Atriplex semibaccata Australian Saltbush PH Chenopodiaceae Atriplex triangularis Spearscale AH Chenopodiaceae Avena barbata * Slender Oat AG Poaceae Avena fatua * Wild -
Reference Plant List
APPENDIX J NATIVE & INVASIVE PLANT LIST The following tables capture the referenced plants, native and invasive species, found throughout this document. The Wildlife Action Plan Team elected to only use common names for plants to improve the readability, particular for the general reader. However, common names can create confusion for a variety of reasons. Common names can change from region-to-region; one common name can refer to more than one species; and common names have a way of changing over time. For example, there are two widespread species of greasewood in Nevada, and numerous species of sagebrush. In everyday conversation generic common names usually work well. But if you are considering management activities, landscape restoration or the habitat needs of a particular wildlife species, the need to differentiate between plant species and even subspecies suddenly takes on critical importance. This appendix provides the reader with a cross reference between the common plant names used in this document’s text, and the scientific names that link common names to the precise species to which writers referenced. With regards to invasive plants, all species listed under the Nevada Revised Statute 555 (NRS 555) as a “Noxious Weed” will be notated, within the larger table, as such. A noxious weed is a plant that has been designated by the state as a “species of plant which is, or is likely to be, detrimental or destructive and difficult to control or eradicate” (NRS 555.05). To assist the reader, we also included a separate table detailing the noxious weeds, category level (A, B, or C), and the typical habitats that these species invade. -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
Plant Species Identity and Richness Influence Microbial Respiration of Soil Microorganisms on Various Functional Groups in Northeastern Patagonia, Argentina
Biodiversity International Journal Research Article Open Access Plant species identity and richness influence microbial respiration of soil microorganisms on various functional groups in northeastern Patagonia, Argentina Abstract Volume 2 Issue 2 - 2018 Studies on basal soil respiration (i.e., under undisturbed conditions) are very important because they can be used as indirect indicators of the biological activity Cardillo DS,1 Busso CA,1,2 Ambrosino ML,1,3 in those soils; this ecological process is recognized as the major source of carbon Torres YA,2,4 Ithurrart LS,1,2 Palomo R1 flux from the soil surface, and one of the crucial components of the carbon cycle in 1Consejo Nacional de Investigaciones Científicas y Técnicas de terrestrial ecosystems. The objectives of this study were to determine the microbial la República Argentina (CONICET), Argentina respiration of soil microorganisms at various levels of plant species richness and 2Departamento de Agronomía, Universidad Nacional del Sur developmental morphology stages in various perennial grass (Nassella longiglumis, (UNS), Argentina 3 N. tenuis, Amelichloa ambigua), and herbaceous (Atriplex semibaccata) and woody Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Argentina (Larrea divaricata, Schinus fasciculatus) dicots grown in experimental plots during 4Comisión de Investigaciones Científicas de la Provincia de 2013 and 2014. There were 54 experimental plots. On each of 6 blocks, there was a Buenos Aires (CIC), Argentina plot (1.25x1.25m) for each of the 6 species (monocultures) and one plot each having combinations of 2, 4 or 6 species. Six hundred and twenty nine plants were reserved to Correspondence: Carlos Busso, Agonomy Department, replace dead plants in the plots [629+1944 plants from the plots (54 plots x 36 plants National Council for Scientific and Technological Research of per plot)=2573 plants in total]. -
An Illustrated Key to the Amaranthaceae of Alberta
AN ILLUSTRATED KEY TO THE AMARANTHACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1998a [Amaranthaceae], 1998b [Chenopodiaceae]) and the Flora North America Associaton (2008). Taxonomy follows VASCAN (Brouillet, 2015). Please let us know if there are ways in which the key can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). AMARANTHACEAE Amaranth Family [includes Chenopodiaceae] Key to Genera 01a Flowers with spiny, dry, thin and translucent 1a (not green) bracts at the base; tepals dry, thin and translucent; separate ♂ and ♀ fowers on same the plant; annual herbs; fruits thin-walled (utricles), splitting open around the middle 2a (circumscissile) .............Amaranthus 01b Flowers without spiny, dry, thin, translucent bracts; tepals herbaceous or feshy, greenish; fowers various; annual or perennial, herbs or shrubs; fruits various, not splitting open around the middle ..........................02 02a Leaves scale-like, paired (opposite); stems feshy/succulent, with fowers sunk into stem; plants of saline habitats ... Salicornia rubra 3a ................. [Salicornia europaea] 02b Leaves well developed, not scale-like; stems not feshy; plants of various habitats. .03 03a Flower bracts tipped with spine or spine-like bristle; leaves spine-tipped, linear to awl- 5a shaped, usually not feshy; tepals winged from the lower surface .............. -
The Ploidy Races of Atriplex Confertifolia (Chenopodiaceae)
Western North American Naturalist 71(1), © 2011, pp. 67–77 THE PLOIDY RACES OF ATRIPLEX CONFERTIFOLIA (CHENOPODIACEAE) Stewart C. Sanderson1 ABSTRACT.—Previous accounts of polyploidy in the North American salt desert shrub Atriplex confertifolia (shad- scale) have dealt with the distribution of polyploidy and the morphological and secondary chemical differences between races. The present study amplifies these studies and reveals additional ploidy-flavonoid races, with ploidy levels known to extend from 2x to 12x, and all except 2x and 12x represented by races with and without 6-methoxylation of flavonol compounds. Results of this study show that diploids across their range have about 113% as much DNA per genome as do polyploids and that parallel variation in monoploid genome size between diploids and accompanying polyploids can be shown in different parts of the species’ range. Polyploidy, therefore, appears to have developed independently in sev- eral areas of the western United States. Hexaploids are generally not as common as octoploids in shadscale, which could be an indication of diploidization of older tetraploid races. RESUMEN.—Informes anteriores sobre la poliploidía en el arbusto Atriplex confertifolia (“shadscale”) del desierto de sal norteamericano, han tratado la distribución de la poliploidía, las diferencias químicas secundarias y las diferencias morfológi- cas entre razas. El presente estudio amplía los estudios previos y revela razas ploidía-flavonoides adicionales, con niveles de ploidía que se sabe que van de 2x a 12x, y todos, con excepción de 2x y 12x, están representados en razas con y sin 6-metoxi- lación de compuestos de flavonoles. Durante el estudio descubrí que los diploides a lo largo de su rango de distribución tienen alrededor del 113% más ADN por genoma que los polploides.