(Amaranthaceae) in Italy. V. Atriplex Tornabenei
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Guide for Fourwing Saltbush (Atriplex Canescens)
Plant Guide saline-sodic soils (Ogle and St. John, 2008). It has FOURWING SALTBUSH excellent drought tolerance and has been planted in highway medians and on road shoulders, slopes, and other Atriplex canescens (Pursh) Nutt. disturbed areas near roadways. Because it is a good Plant Symbol = ATCA2 wildlife browse species, caution is recommended in using fourwing saltbush in plantings along roadways. Its Contributed by: USDA NRCS Idaho Plant Materials extensive root system provides excellent erosion control. Program Reclamation: fourwing saltbush is used extensively for reclamation of disturbed sites (mine lands, drill pads, exploration holes, etc,). It provides excellent species diversity for mine land reclamation projects. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description Fourwing saltbush is a polymorphic species varying from deciduous to evergreen, depending on climate. Its much- branched stems are stout with whitish bark. Mature plants range from 0.3 to 2.4 m (1 to 8 ft) in height, depending on ecotype and the soil and climate. Its leaves are simple, alternate, entire, linear-spatulate to narrowly oblong, Fourwing saltbush. Photo by Steven Perkins @ USDA-NRCS canescent (covered with fine whitish hairs) and ½ to 2 PLANTS Database inches long. Its root system is branched and commonly very deep reaching depths of up to 6 m (20 ft) when soil Alternate Names depth allows (Kearney et al., 1960). Common Alternate Names: Fourwing saltbush is mostly dioecious, with male and Chamise, chamize, chamiso, white greasewood, saltsage, female flowers on separate plants (Welsh et al., 2003); fourwing shadscale, bushy atriplex however, some monoecious plants may be found within a population. -
The Geranium Family, Geraniaceae, and the Mallow Family, Malvaceae
THE GERANIUM FAMILY, GERANIACEAE, AND THE MALLOW FAMILY, MALVACEAE TWO SOMETIMES CONFUSED FAMILIES PROMINENT IN SOME MEDITERRANEAN CLIMATE AREAS The Geraniaceae is a family of herbaceous plants or small shrubs, sometimes with succulent stems • The family is noted for its often palmately veined and lobed leaves, although some also have pinnately divided leaves • The leaves all have pairs of stipules at their base • The flowers may be regular and symmetrical or somewhat irregular • The floral plan is 5 separate sepals and petals, 5 or 10 stamens, and a superior ovary • The most distinctive feature is the beak of fused styles on top of the ovary Here you see a typical geranium flower This nonnative weedy geranium shows the styles forming a beak The geranium family is also noted for its seed dispersal • The styles either actively eject the seeds from each compartment of the ovary or… • They twist and embed themselves in clothing and fur to hitch a ride • The Geraniaceae is prominent in the Mediterranean Basin and the Cape Province of South Africa • It is also found in California but few species here are drought tolerant • California does have several introduced weedy members Here you see a geranium flinging the seeds from sections of the ovary when the styles curl up Three genera typify the Geraniaceae: Erodium, Geranium, and Pelargonium • Erodiums (common name filaree or clocks) typically have pinnately veined, sometimes dissected leaves; many species are weeds in California • Geraniums (that is, the true geraniums) typically have palmately veined leaves and perfectly symmetrical flowers. Most are herbaceous annuals or perennials • Pelargoniums (the so-called garden geraniums or storksbills) have asymmetrical flowers and range from perennials to succulents to shrubs The weedy filaree, Erodium cicutarium, produces small pink-purple flowers in California’s spring grasslands Here are the beaked unripe fruits of filaree Many of the perennial erodiums from the Mediterranean make well-behaved ground covers for California gardens Here are the flowers of the charming E. -
Review on Quercus Dalechampii Ten. and Quercus Petraea (Mattuschka) Liebl
Early view, On-line since 31st March 2016 Г О Д И Ш Н И К НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ КНИГА 2 – БОТАНИКА Том 100, 2015 A N N U A I R E DE L’UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI” FACULTE DE BIOLOGIE LIVRE 2 – BOTANIQUE Tome 100, 2015 СОФИЯ · 2016 ИЗДАТЕЛСТВО НА СУ „СВ. КЛИМЕНТ ОХРИДСКИ“ PRESSES UNIVERSITAIRES “ST. KLIMENT OHRIDSKI” Editor-in-Chief Prof. Maya Stoyneva-Gärtner, PhD, DrSc Editorial Board Prof. Dimiter Ivanov, PhD, DrSc Prof. Iva Apostolova, PhD Prof. Mariana Lyubenova, PhD Prof. Veneta Kapchina-Toteva , PhD Assoc. Prof. Aneli Nedelcheva, PhD Assoc. Prof. Anna Ganeva, PhD Assoc. Prof. Dimitrina Koleva, PhD Assoc. Prof. Dolya Pavlova, PhD Assoc. Prof. Juliana Atanasova, PhD Assoc. Prof. Melania Gyosheva, PhD Assoc. Prof. Rosen Tsonev, PhD Assistant Editor Main Assist. Blagoy Uzunov, PhD © СОФИЙСКИ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“ БИОЛОГИЧЕСКИ ФАКУЛТЕТ 2016 ISSN 0204-9910 (Print) ISSN 2367-9190 (Online) Early view, On-line since 31st March 2016 ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI” FACULTY OF BIOLOGY BOOK 2 – BOTANY Volume 100, 2015 ANNUAIRE DE L’UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI” FACULTE DE BIOLOGIE LIVRE 2 – BOTANIQUE Tome 100, 2015 REVIEW ON QUERCUS DALECHAMPII TEN. AND QUERCUS PETRAEA (MATTUSCHKA) LIEBL. IN THE VEGETATION OF BULGARIA Eva Filipova¹ & Asen Asenov²* ¹ Department of Ecology and EP, Faculty of Biology, St Kliment Ohridski University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria ² Department of Botany, Faculty of Biology, St Kliment Ohridski University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria Abstract. Quercus dalechampii Ten. -
Chisel-Toothed Kangaroo Rat (Dipodomys Microps Alfredi)
Version 2020-04-20 [A race of the] Chisel-toothed Kangaroo Rat (Dipodomys microps alfredi) Species Status Statement. Distribution This subspecies is endemic to Utah and occurs only on Gunnison Island in the Great Salt Lake. Durrant (1952, p. 274) considered this kangaroo rat to be the most distinctive of the mammal subspecies that are endemic to islands in the Great Salt Lake—so distinctive that he even considered the possibility that it may deserve full species status. Table 1. Utah counties currently occupied by this species. [a Race of the] Chisel-toothed Kangaroo Rat - alfredi BOX ELDER Abundance and Trends Oliver (field notes, 15 July 2014 and 22 October 2014) captured numerous individuals on the north and south sides of Gunnison Island. However, its population trends are unknown. Statement of Habitat Needs and Threats to the Species. Habitat Needs The chisel-toothed kangaroo rat (Dipodomys microps, full species) is a dietary and a habitat specialist, and typically lives in association with either saltbush (Atriplex sp.) or blackbrush (Coleogyne sp.). However in some places it is found in association with greasewood (Sarcobatus sp.), sagebrush (Artemisia sp.), and a few other desert shrubs. Native perennial grasses are thought to be well-tolerated by the species, but introduced annual grasses are considered to impact it negatively (see review of ecology in Hayssen 1991). Threats to the Species The State of Utah owns Gunnison Island, and the Utah Division of Wildlife Resources administers it as a bird nesting colony. Therefore many potential anthropogenic threats are already prevented. The principal threat to the existence of Dipodomys microps alfredi is the dewatering of the Great Salt Lake. -
Schutz Des Naturhaushaltes Vor Den Auswirkungen Der Anwendung Von Pflanzenschutzmitteln Aus Der Luft in Wäldern Und Im Weinbau
TEXTE 21/2017 Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forschungskennzahl 3714 67 406 0 UBA-FB 002461 Schutz des Naturhaushaltes vor den Auswirkungen der Anwendung von Pflanzenschutzmitteln aus der Luft in Wäldern und im Weinbau von Dr. Ingo Brunk, Thomas Sobczyk, Dr. Jörg Lorenz Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Tharandt Im Auftrag des Umweltbundesamtes Impressum Herausgeber: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Durchführung der Studie: Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Professur für Forstzoologie, Prof. Dr. Mechthild Roth Pienner Straße 7 (Cotta-Bau), 01737 Tharandt Abschlussdatum: Januar 2017 Redaktion: Fachgebiet IV 1.3 Pflanzenschutz Dr. Mareike Güth, Dr. Daniela Felsmann Publikationen als pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4359 Dessau-Roßlau, März 2017 Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3714 67 406 0 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren. UBA Texte Entwicklung geeigneter Risikominimierungsansätze für die Luftausbringung von PSM Kurzbeschreibung Die Bekämpfung -
Origin and Age of Australian Chenopodiaceae
ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. -
Understanding the Weedy Chenopodium Complex in the North Central States
UNDERSTANDING THE WEEDY CHENOPODIUM COMPLEX IN THE NORTH CENTRAL STATES BY SUKHVINDER SINGH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Patrick J. Tranel, Chair Associate Professor Aaron G. Hager Associate Professor Geoffrey A. Levin Assistant Professor Matthew E. Hudson ABSTRACT The genus Chenopodium consists of several important weed species, including Chenopodium album, C. berlandieri, C. strictum, and C. ficifolium. All of these species share similar vegetative morphology and high phenotypic plasticity, which makes it difficult to correctly identify these species. All of these weedy Chenopodium species have developed resistance to one or more classes of herbicides. An experiment was conducted to determine if there is variability in response of Chenopodium species present in the North Central states to glyphosate. Our results indicate variable responses within and among the Chenopodium species. Species such as C. berlandieri and C. ficifolium had higher levels of tolerance to glyphosate than did various accessions of C. album. In another experiment, 33 populations of Chenopodium sampled across six North Central states were screened with glyphosate. The results showed variable responses to glyphosate within and among the Chenopodium populations. In general, the Chenopodium populations from Iowa were more tolerant, but some biotypes from North Dakota, Indiana and Kansas also had significantly high tolerance to glyphosate. Given there are species other than C. album that have high tolerance to glyphosate, and there are Chenopodium populations across the North Central states that showed tolerance to glyphosate, one intriguing question was to whether the Chenopodium populations were either biotypes of C. -
The Mallows of Ohio
Feb., 1912.] The Mallows of Ohio. 465 THE MALLOWS OF OHIO. MARY B. LINNELL. MALVACEAE Mallow Family. Mucilaginous, innocent herbs or shrubs with alternate, pal- mately-veined leaves and small deciduous stipules. Flowers hypogynous, regular, often large and showy, usually bisporangiate; calyx usually of 5 sepals more or less united, often with bracts at the base; corolla of 5 petals, convolute; andrecium of numerous stamens, the filaments united into a tube around the gynecium and also united with the base of the petals; ovulary with several cavities, styles united below, distinct above; stigmas usually as many as the cavities of the ovulary. Fruit a capsule with several cavities; the carpels falling away entire or else loculicidally dehiscent. Synopsis of Genera. I. Stamen-column anther-bearing at the tip; carpels 5-20 in a ring around a prominent central axis from which they separate when ripe. A. Carpels 1-seeded. 1. Flowers bisporangiate. (1) Stigmas linear, on the inner face of the styles. a. Involucre of 1-3 bracts. (a) Carpels beakless; petals obcordate. Malva. (b) Carpels beaked; petals truncate. Callirrhoe. b. Involucre of 6-9 bracts. Althaea. (2) Stigmas terminal, capitate. Sida. 2. Flowers monosporangiate, diecious. Napaea. B. Carpels 2—several seeded. Abutilon. II. Stamen-column naked at the 5-toothed tip; carpels forming a loculi- cidal capsule. A. Involucre of many bracts. Hibiscus. Key. 1. Flowers without an involucre. 2. 1. Flowers with involucre below the calyx. 4. 2. 'Leaves not lobed; flowers bisporangiate. 3. 2. Leaves deeply lobed; flowers diecious. Napaea. 3. Leaves broadly cordate, abruptly acuminate. Abutilon. -
Species Assessment for White-Tailed Prairie Dog (Cynomys Leucurus)
SPECIES ASSESSMENT FOR WHITE -TAILED PRAIRIE DOG (CYNOMYS LEUCURUS ) IN WYOMING prepared by DOUGLAS A. KEINATH Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming December 2004 Keinath - Cynomys leucurus December 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphology............................................................................................................................. 4 Taxonomy and Distribution ..................................................................................................... 4 Taxonomy .......................................................................................................................................4 Range and Distribution....................................................................................................................5 Habitat Requirements............................................................................................................. 5 General ............................................................................................................................................5 -
Comitetul De Redacţie
Analele Ştiinţifice ale Universităţii „Al. I. Cuza” Iaşi, s. Biologie animală, Tom LIII, 2007 LEAF-MINING INSECTS ENCOUNTERED IN THE FOREST RESERVE OF HÂRBOANCA, VASLUI COUNTY Alina-Maria STOLNICU “Alexandru Ioan Cuza” University, Iasi, the Faculty of Biology, Carol I Blvd., no. 22, 700505, Iaşi, Romania e-mail: [email protected] Abstract. As a result of a series of studies conducted within the Forest Reserve of Hârboanca (Vaslui) between June 2005 and October 2006, there were identified 60 species of leaf-mining insects, belonging to 14 families, from three different orders: Lepidoptera (83%), Diptera (12%) and Hymenoptera (5%). The “mines” caused by the larvae of these insects were identified on 34 different species of hosting plants, mostly wooden plants. The leaf-mining Lepidoptera and Hymenoptera larvae are more likely to grow on wooden plants, while those belonging to the Diptera order prefer herbaceous plants. One of the species, Phyllonorycter issikii (Kumata) found here was signaled for the first time in Romanian fauna, while other ten species were encountered for the first time in Moldavia. Keywords: leaf-mining insects, Forest Reserve of Hârboanca, Romanian, fauna. Rezumat. Insecte miniere semnalate în Rezervaţia Forestieră Hârboanca (Vaslui). În urma studiilor efectuate în Rezervaţia Forestieră Hârboanca (Vaslui) în perioada iunie 2005 - octombrie 2006 s-au identificat 60 de specii de insecte miniere care aparţin la 14 familii, grupate în 3 ordine: Lepidoptera (83%), Diptera (12%) şi Hymenoptera (5%). Minele provocate de larvele insectelor miniere au fost identificate pe 34 de specii de plante-gazdă, majoritatea fiind de esenţă lemnoasă. Larvele lepidopterelor şi himenopterelor miniere se dezvoltă mai mult pe plantele lemnoase, în schimb dipterele preferă plantele ierboase. -
Amaranthaceae Amaranth Family
Amaranthaceae Amaranth Family Mostly ruderal annuals, there are 900 species in 65 genera. A single genus reaches Nova Scotia. Their flowers are inconspicuous, green and apetalous, subtended by papery bracts. Flowers are unisexual Page | 108 although the plants are monoecious. The terminal inflorescence is brushlike or axillary. A single lens- shaped achene is produced. Some are flowering ornamentals, such as Celosia and Love-lies-bleeding (Amaranthus caudatus) and others are used for grain. Amaranthus L. Three of 50 species have been introduced into Nova Scotia. Key to species A. A. Plants slender, branching diffusely; flowers in small axillary clusters; Amaranthus albus seeds small, <0.8mm wide. aa. Plants robust, erect; flowers in large terminal inflorescences; seeds >1mm B wide. B. Leaves green beneath; sepals pointed. A. hybridus bb. Leaves whitish beneath; sepals truncate. A. retroflexus Amaranthus albus L. Tumbleweed; amarante blanche An erect herb, its stems are freely branching. Leaves are elliptic or oblanceolate, borne on petioles. Flowers are arranged in dense axillary clusters. July to October, on disturbed soils. Uncommon and appearing as a garden weed or about railways. Collected from Truro, Wentworth, Windsor and Kentville. Ranges from western Canada to Mexico. Introduced throughout most of the continent. 3-2 Amaranthaceae Amaranthus hybridus L. Green Amaranth; amarante verte Tall and robust, its stem reaches to 2m in height, often branching freely. Stems are scaly or lightly pubescent Page | 109 especially in the inflorescence. Flowers are reddish, not showy. Leaves are elliptic and petiolate. August to October. A weed of disturbed soils and cultivated fields. It is limited to a few well-established populations: Morristown and other communities in Kings Co. -
Beta Vulgaris (Common Beet) Class:Magnoliopsida Order
Beta vulgaris (Common Beet) Class:Magnoliopsida Order: Caryophyllales Family: Amaranthaceae Genus: Beta Species: Beta vulgaris Beet seeds Common Varieties: Bull’s Blood, Golden, Chioggia, Detroit Dark Red How to Save Seed Beets are a biennial crop, meaning they require two years to complete their full growing cycle. However, most growers never see this second stage of life because beets are harvested for food during the first year. The second year heralds seed production. To save the seeds from beta vulgaris, the beets themselves must be overwintered. This process, unique to perennial and biennial crops, requires that the taproot of the beta vulgaris (the edible part of the beet) be stored in a protected place during the winter months. A Seed Saving Guide asserts that the optimal temperature range for winter storage is between 35-38F at 90-95% humidity. The roots may be stored in sawdust or wood shavings to minimize rot. This allows the plant to enter a period of dormancy—during this time, the plant’s energy will be diverted to the next year’s seed production. In Spring, plant the overwintered beets outside in a well-watered trench. Because beets are wind-pollinated, they should be planted in a block formation rather than a straight row to ensure proper pollination. The Seed Saver’s Exchange Seed Saving Guide specifies that the isolation distance (the distance between different varieties of beets) must be over 800 feet. Adhering to this distance is critical—without it, there is potential for varieties to cross-pollinate, meaning the genetic integrity of the beet variety will be compromised.