Species Assessment for White-Tailed Prairie Dog (Cynomys Leucurus)

Total Page:16

File Type:pdf, Size:1020Kb

Species Assessment for White-Tailed Prairie Dog (Cynomys Leucurus) SPECIES ASSESSMENT FOR WHITE -TAILED PRAIRIE DOG (CYNOMYS LEUCURUS ) IN WYOMING prepared by DOUGLAS A. KEINATH Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming December 2004 Keinath - Cynomys leucurus December 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphology............................................................................................................................. 4 Taxonomy and Distribution ..................................................................................................... 4 Taxonomy .......................................................................................................................................4 Range and Distribution....................................................................................................................5 Habitat Requirements............................................................................................................. 5 General ............................................................................................................................................5 Area Requirements..........................................................................................................................7 Landscape Pattern ...........................................................................................................................8 Movement and Activity Patterns ............................................................................................. 9 Migration.........................................................................................................................................9 Phenology......................................................................................................................................10 Reproduction and Survivorship..............................................................................................11 Breeding ........................................................................................................................................11 Fecundity and Survivorship ..........................................................................................................12 Population Demographics......................................................................................................13 Metapopulations and Genetic Concerns........................................................................................13 Food Habits...........................................................................................................................13 CONSERVATION .............................................................................................................................. 16 Conservation Status ..............................................................................................................16 Federal Endangered Species Act...................................................................................................16 Bureau of Land Management........................................................................................................17 Forest Service................................................................................................................................17 State Wildlife Agencies.................................................................................................................17 Heritage Ranks ..............................................................................................................................19 Biological Conservation Issues..............................................................................................20 Abundance and Abundance Trends...............................................................................................20 Distribution and Connectivity Trends ...........................................................................................23 Extrinsic Threats ...........................................................................................................................24 Anthropogenic Impacts...........................................................................................................24 Direct Killing.......................................................................................................................24 Habitat Alteration................................................................................................................25 Invasive Species......................................................................................................................27 Other Factors ..........................................................................................................................27 Intrinsic Vulnerability ...................................................................................................................28 Disease....................................................................................................................................28 Habitat and Area Restrictions.................................................................................................29 Dispersal Capability................................................................................................................30 Reproductive Capacity............................................................................................................30 CONSERVATION ACTION ................................................................................................................ 31 Existing Conservation Plans ..................................................................................................31 Wyoming in Context ..............................................................................................................31 Conservation Elements..........................................................................................................32 Element 1: Habitat Conservation ..................................................................................................32 Page 1 of 47 Keinath - Cynomys leucurus December 2004 Element 2: Disease Control...........................................................................................................35 Element 3: Shooting and Extermination Control ..........................................................................35 Element 4: Inventory and Monitoring...........................................................................................37 INFORMATION NEEDS ..................................................................................................................... 38 TABLES AND FIGURES ..................................................................................................................... 40 Table 1: State estimates of acreage of white-tailed prairie dog colonies ......................................40 Table 2: Population estimates for selected white-tailed prairie dog complexes...........................40 Figure 1: North American range and potential distribution of white-tailed prairie dogs ............41 Figure 2: Map of Natural Heritage ranks for white-tailed prairie dog ..........................................42 LITERATURE CITED ........................................................................................................................ 43 Page 2 of 47 Keinath - Cynomys leucurus December 2004 Introduction White tailed prairie dog range presently occurs 4 western states; Wyoming (71%), Colorado (16%), Utah (12%) and Montana (1%). This species is typically found in shrub-steppe and grassland environments in cool intermountain basins. White tails are one of five species of Cynomys, they have many characteristics that make them unique. Historically, white tails have been much maligned by white settlers in the west. Aggressive, government sponsored poisoning campaigns coupled with unregulated shooting and, most recently, the introduction of an exotic disesase (Plague, Yersinia pestis ) have worked in unison to reduce population sizes from what they once presumably were. Currently, white-tailed prairie dogs still occur across most of their historic range, but in smaller, isolated patches and at much-reduced abundance. Combined with this restriction in distribution, they are experiencing numerous external threats to their persistence, disease, habitat alteration, and direct killing for sport and pest control being of most immediate importance. Existing regulatory mechanisms at both the federal and state levels are inadequate to protect the white-tailed prairie dog. It is incumbent on the BLM to act on this animal's behalf using existing sensitive species policies within the Bureau. Minimally necessary conservation elements include: 1. reducing conversion of land to uses not compatible with local persistence of prairie dogs and minimizing impacts of semi-compatible uses (e.g., resource extraction and livestock grazing), 2. investigating the spread of disease among prairie dogs and minimizing its
Recommended publications
  • Plant Guide for Fourwing Saltbush (Atriplex Canescens)
    Plant Guide saline-sodic soils (Ogle and St. John, 2008). It has FOURWING SALTBUSH excellent drought tolerance and has been planted in highway medians and on road shoulders, slopes, and other Atriplex canescens (Pursh) Nutt. disturbed areas near roadways. Because it is a good Plant Symbol = ATCA2 wildlife browse species, caution is recommended in using fourwing saltbush in plantings along roadways. Its Contributed by: USDA NRCS Idaho Plant Materials extensive root system provides excellent erosion control. Program Reclamation: fourwing saltbush is used extensively for reclamation of disturbed sites (mine lands, drill pads, exploration holes, etc,). It provides excellent species diversity for mine land reclamation projects. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description Fourwing saltbush is a polymorphic species varying from deciduous to evergreen, depending on climate. Its much- branched stems are stout with whitish bark. Mature plants range from 0.3 to 2.4 m (1 to 8 ft) in height, depending on ecotype and the soil and climate. Its leaves are simple, alternate, entire, linear-spatulate to narrowly oblong, Fourwing saltbush. Photo by Steven Perkins @ USDA-NRCS canescent (covered with fine whitish hairs) and ½ to 2 PLANTS Database inches long. Its root system is branched and commonly very deep reaching depths of up to 6 m (20 ft) when soil Alternate Names depth allows (Kearney et al., 1960). Common Alternate Names: Fourwing saltbush is mostly dioecious, with male and Chamise, chamize, chamiso, white greasewood, saltsage, female flowers on separate plants (Welsh et al., 2003); fourwing shadscale, bushy atriplex however, some monoecious plants may be found within a population.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Plant Guide for Yellow Rabbitbrush (Chrysothamnus Viscidiflorus)
    Plant Guide valuable forage especially during late fall and early winter YELLOW after more desirable forage has been utilized (Tirmenstein, 1999). Palatability and usage vary between RABBITBRUSH subspecies of yellow rabbitbrush (McArthuer et al., 1979). Chrysothamnus viscidiflorus (Hook.) Nutt. Yellow rabbitbrush provides cover and nesting habitat for Plant Symbol = CHVI8 sage-grouse, small birds and rodents (Gregg et al., 1994). Black-tailed jackrabbits consume large quantities of Contributed by: USDA NRCS Idaho Plant Materials yellow rabbitbrush during winter and early spring when Program plants are dormant (Curie and Goodwin, 1966). Yellow rabbitbrush provides late summer and fall forage for butterflies. Unpublished field reports indicate visitation from bordered patch butterflies (Chlosyne lacinia), Mormon metalmark (Apodemia mormo), mourning cloak (Nymphalis antiopa), common checkered skipper (Pyrgus communis), and Weidemeyer’s admiral (Limenitis weidemeyerii). Restoration: Yellow rabbitbrush is a seral species which colonizes disturbed areas making it well suited for use in restoration and revegetation plantings. It can be established from direct seeding and will spread via windborne seed. It has been successfully used for revegetating depleted rangelands, strip mines and roadsides (Plummer, 1977). Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description General: Sunflower family (Asteraceae). Yellow rabbitbrush is a low- to moderate-growing shrub reaching mature heights of 20 to 100 cm (8 to 39 in) tall. The stems Al Schneider @ USDA-NRCS PLANTS Database can be glabrous or pubescent depending on variety, and are covered with pale green to white-gray bark.
    [Show full text]
  • Infection in Kangaroo Rats (Dipodomys Spp.): Effects on Digestive Efficiency
    Great Basin Naturalist Volume 55 Number 1 Article 8 1-16-1995 Whipworm (Trichuris dipodomys) infection in kangaroo rats (Dipodomys spp.): effects on digestive efficiency James C. Munger Boise State University, Boise, idaho Todd A. Slichter Boise State University, Boise, Idaho Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Munger, James C. and Slichter, Todd A. (1995) "Whipworm (Trichuris dipodomys) infection in kangaroo rats (Dipodomys spp.): effects on digestive efficiency," Great Basin Naturalist: Vol. 55 : No. 1 , Article 8. Available at: https://scholarsarchive.byu.edu/gbn/vol55/iss1/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 55(1), © 1995, pp. 74-77 WHIPWORM (TRICHURIS DIPODOMYS) INFECTION IN KANGAROO RATS (DIPODOMYS SPP): EFFECTS ON DIGESTIVE EFFICIENCY James C. Mungerl and Todd A. Slichterl ABSTRACT.-To dcterminc whether infections by whipworms (Trichuris dipodumys [Nematoda: Trichurata: Trichuridae]) might affect digestive eHlciency and therefore enel"/,,'Y budgets of two species ofkangaroo rats (Dipodomys microps and Dipodumys urdU [Rodentia: Heteromyidae]), we compared the apparent dry matter digestibility of three groups of hosts: those naturally infected with whipworms, those naturally uninfected with whipworms, and those origi~ nally naturally infected but later deinfected by treatment with the anthelminthic Ivermectin. Prevalence of T. dipodomys was higher in D. rnicrops (.53%) than in D. ordU (14%). Apparent dry matter digestibility was reduced by whipworm infection in D.
    [Show full text]
  • Texosporium Sancti-Jacobi, a Rare Western North American Lichen
    4347 The Bryologist 95(3), 1992, pp. 329-333 Copyright © 1992 by the American Bryological and Lichenological Society, Inc. Texosporium sancti-jacobi, a Rare Western North American Lichen BRUCE MCCUNE Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902 ROGER ROSENTRETER Bureau of Land Management, Idaho State Office, 3380 Americana Terrace, Boise, ID 83706 Abstract. The lichen Texosporium sancti-jacobi (Ascomycetes: Caliciales) is known from only four general locations worldwide, all in western U.S.A. Typical habitat of Texosporium has the following characteristics: arid or semiarid climate; nearly flat ground; noncalcareous, nonsaline, fine- or coarse-textured soils developed on noncalcareous parent materials; little evidence of recent disturbance; sparse vascular plant vegetation; and dominance by native plant species. Within these constraints Texosporium occurs on restricted microsites: partly decomposed small mammal dung or organic matter infused with soil. The major threat to long-term survival of Texosporium is loss of habitat by extensive destruction of the soil crust by overgrazing, invasion of weedy annual grasses and resulting increases in fire frequency, and conversion of rangelands to agriculture and suburban developments. Habitat protection efforts are important to perpetuate this species. The lichen Texosporium sancti-jacobi (Tuck.) revisited. The early collections from that area have vague Nadv. is globally ranked (conservation status G2) location data while more recent collections (1950s-1960s) by the United States Rare Lichen Project (S. K. were from areas that are now heavily developed and pre- sumably do not support the species. New sites were sought Pittam 1990, pers. comm.). A rating of G2 means in likely areas, especially in southwest Idaho, northern that globally the species is very rare, and that the Nevada, and eastern Oregon.
    [Show full text]
  • Biological Survey of a Prairie Landscape in Montana's Glaciated
    Biological Survey of a Prairie Landscape in Montanas Glaciated Plains Final Report Prepared for: Bureau of Land Management Prepared by: Stephen V. Cooper, Catherine Jean and Paul Hendricks December, 2001 Biological Survey of a Prairie Landscape in Montanas Glaciated Plains Final Report 2001 Montana Natural Heritage Program Montana State Library P.O. Box 201800 Helena, Montana 59620-1800 (406) 444-3009 BLM Agreement number 1422E930A960015 Task Order # 25 This document should be cited as: Cooper, S. V., C. Jean and P. Hendricks. 2001. Biological Survey of a Prairie Landscape in Montanas Glaciated Plains. Report to the Bureau of Land Management. Montana Natural Heritage Pro- gram, Helena. 24 pp. plus appendices. Executive Summary Throughout much of the Great Plains, grasslands limited number of Black-tailed Prairie Dog have been converted to agricultural production colonies that provide breeding sites for Burrow- and as a result, tall-grass prairie has been ing Owls. Swift Fox now reoccupies some reduced to mere fragments. While more intact, portions of the landscape following releases the loss of mid - and short- grass prairie has lead during the last decade in Canada. Great Plains to a significant reduction of prairie habitat Toad and Northern Leopard Frog, in decline important for grassland obligate species. During elsewhere, still occupy some wetlands and the last few decades, grassland nesting birds permanent streams. Additional surveys will have shown consistently steeper population likely reveal the presence of other vertebrate declines over a wider geographic area than any species, especially amphibians, reptiles, and other group of North American bird species small mammals, of conservation concern in (Knopf 1994), and this alarming trend has been Montana.
    [Show full text]
  • Chisel-Toothed Kangaroo Rat (Dipodomys Microps Alfredi)
    Version 2020-04-20 [A race of the] Chisel-toothed Kangaroo Rat (Dipodomys microps alfredi) Species Status Statement. Distribution This subspecies is endemic to Utah and occurs only on Gunnison Island in the Great Salt Lake. Durrant (1952, p. 274) considered this kangaroo rat to be the most distinctive of the mammal subspecies that are endemic to islands in the Great Salt Lake—so distinctive that he even considered the possibility that it may deserve full species status. Table 1. Utah counties currently occupied by this species. [a Race of the] Chisel-toothed Kangaroo Rat - alfredi BOX ELDER Abundance and Trends Oliver (field notes, 15 July 2014 and 22 October 2014) captured numerous individuals on the north and south sides of Gunnison Island. However, its population trends are unknown. Statement of Habitat Needs and Threats to the Species. Habitat Needs The chisel-toothed kangaroo rat (Dipodomys microps, full species) is a dietary and a habitat specialist, and typically lives in association with either saltbush (Atriplex sp.) or blackbrush (Coleogyne sp.). However in some places it is found in association with greasewood (Sarcobatus sp.), sagebrush (Artemisia sp.), and a few other desert shrubs. Native perennial grasses are thought to be well-tolerated by the species, but introduced annual grasses are considered to impact it negatively (see review of ecology in Hayssen 1991). Threats to the Species The State of Utah owns Gunnison Island, and the Utah Division of Wildlife Resources administers it as a bird nesting colony. Therefore many potential anthropogenic threats are already prevented. The principal threat to the existence of Dipodomys microps alfredi is the dewatering of the Great Salt Lake.
    [Show full text]
  • Small Mammals of the National Reactor Testing Station, Idaho Dorald M
    Great Basin Naturalist Volume 33 | Number 4 Article 6 12-31-1973 Small mammals of the National Reactor Testing Station, Idaho Dorald M. Allred Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Allred, Dorald M. (1973) "Small mammals of the National Reactor Testing Station, Idaho," Great Basin Naturalist: Vol. 33 : No. 4 , Article 6. Available at: https://scholarsarchive.byu.edu/gbn/vol33/iss4/6 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. SMALL MAMMALS OF THE NATIONAL REACTOR TESTING STATION, IDAHO^ Dorald M. Allred= Abstract.— During studies of ectoparasites in 12 plant communities in 1966 and 1967, five types of traps were used to capture 2,478 mammals of the follow- ing 1 1 species: Dipodomys ordii, Euiamias minimus, Microtus montanus, Onychomys leucogaster, Perognathus parvus, Peromyscus maniculatus, Reithro- dontomys megalotis, Sorex merriami, Spermophilus townsendii, Neotoma cinerea, and Thomomys talpoides. The most abundant species was D. ordii and the least, M. montanus. Plant communities which contained the greatest number of species were the Chrysothamnus-Artemisia and Chrysothamnus-grass Tetradymia. Fewest species were found in the grass and Juniperus communities. Greatest populations were in the Juniperus and grass communities, and lowest populations in the Artemisia-Chrysothamnus, Artemisia- Atriplex, and Chrysothamnus-grass-Tetrady- mia associations. Between June 1966 and September 1967, ectoparasites were col- lected from mammals at the National Reactor Testing Station by personnel of Brigham Young University.
    [Show full text]
  • (Amaranthaceae) in Italy. V. Atriplex Tornabenei
    Phytotaxa 145 (1): 54–60 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.145.1.6 Studies on the genus Atriplex (Amaranthaceae) in Italy. V. Atriplex tornabenei DUILIO IAMONICO1 1 Laboratory of Phytogeography and Applied Geobotany, Department PDTA, Section Environment and Landscape, University of Rome Sapienza, 00196 Roma, Italy. Email: [email protected] Abstract The typification of the name Atriplex tornabenei (a nomen novum pro A. arenaria) is discussed. An illustration by Cupani is designated as the lectotype, while a specimen from FI is designated as the epitype. Chorological and morphological notes in comparison with the related species A. rosea and A. tatarica are also provided. A nomenclatural change (Atriplex tornabenei subsp. pedunculata stat. nov.) is proposed. Key words: Atriplex tornabenei var. pedunculata, epitype, infraspecific variability, lectotype, Mediterranean, nomenclatural change, nomen novum Introduction Atriplex Linnaeus (1753: 1054) is a genus of about 260 species distributed in arid and semiarid regions of Eurasia, America and Australia (Sukhorukov & Danin 2009). Several names (at species, subspecies, variety and form ranks) were described related to the high phenotipic variability of this critical genus (Al-Turki et al. 2000). As conseguence, misapplication of names and nomenclatural disorders exist and need clarification. In this paper, the identity of the A. tornabenei Tineo ex Gussone (1843: 589) is discussed as part of the treatment of the genus Atriplex for the new edition of the Italian Flora (editor, Prof. S. Pignatti) and within the initiative “Italian Loci Classici Census” (Domina et al.
    [Show full text]
  • Mammal Inventory for Hubbell Trading Post National Historic Site
    National Park Service U.S. Department of the Interior Natural Resource Program Center Mammal Inventory for Hubbell Trading Post National Historic Site Natural Resource Technical Report NPS/SCPN/NRTR—2010/376 ON THE COVER The deer mouse was one of the most abundant mammal species found during this inventory. Photograph by: John Good Mammal Inventory for Hubbell Trading Post National Historic Site Natural Resource Technical Report NPS/SCPN/NRTR—2010/376 Shauna Haymond Holistic Wildlife Services NM, LLC 112 Hampton Roads Avenue Hampton, VA 23661 Richard E. Sherwin Department of Biology, Chemistry, and Environmental Science Christopher Newport University 1 University Place Newport News, VA 23606-2998 September 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natu- ral resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientif- ically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Evolutionary Diversification of the Gall Midge Genus Asteromyia
    Molecular Phylogenetics and Evolution 54 (2010) 194–210 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context John O. Stireman III a,*, Hilary Devlin a, Timothy G. Carr b, Patrick Abbot c a Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA b Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA c Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235, USA article info abstract Article history: Gall-forming insects provide ideal systems to analyze the evolution of host–parasite interactions and Received 3 April 2009 understand the ecological interactions that contribute to evolutionary diversification. Flies in the family Revised 17 August 2009 Cecidomyiidae represent the largest radiation of gall-forming insects and are characterized by complex Accepted 9 September 2009 trophic interactions with plants, fungal symbionts, and predators. We analyzed the phylogenetic history Available online 16 September 2009 and evolutionary associations of the North American cecidomyiid genus Asteromyia, which is engaged in a complex and perhaps co-evolving community of interactions with host-plants, fungi, and parasitoids. Keywords: Mitochondrial gene trees generally support current classifications, but reveal extensive cryptic diversity Adaptive diversification within the eight named species. Asteromyia likely radiated after their associated host-plants in the Aste- Fungal mutualism Insect-plant coevolution reae, but species groups exhibit strong associations with specific lineages of Astereae. Evolutionary asso- Cryptic species ciations with fungal mutualists are dynamic, however, and suggest rapid and perhaps coordinated Parasitoid changes across trophic levels.
    [Show full text]