NVAX Plus CPU Chip Functional Specification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engineering Specification for the KA43 Processor Module Revision 1.0 1–May–1989 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION
Engineering Specification for the KA43 Processor Module Revision 1.0 1–May–1989 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION COPYRIGHT (c) 1989 by DIGITAL EQUIPMENT CORPORATION This information shall not be disclosed to non-Digital personnel or generally distributed within Digital. Distribution is restricted to persons authorized and designated by the responsible en- gineer or manager. This document shall not be left unattended, and when not in use shall be stored in a locked storage container. The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may occur in this document. The information in this document does not describe any program or product currently available from Digital Equipment Corporation. Nor does Digital Equipment Corporation commit to imple- ment this specification in any program or product. Digital Equipment Corporation makes no commitment that this document accurately describes any product which it might ever make. Digital Equipment Corporation CONTENTS Preface . ........................................................... v Chapter 1 INTRODUCTION .............................................. 1 1.1 Scope of Document ................................................... 1 1.2 General Description .................................................. 1 1.3 Applicable Documents ................................................. 2 Chapter 2 KA43 ROM MEMORY ........................................ -
VAX-Computer
wdv-notes Stand: 24.JUL.1993 (4.) 188 VAX Computer: Modell-Übersicht. Wiss.Datenverarbeitung © 1980–1993 Karl-Heinz Dittberner FREIE UNIVERSITÄT BERLIN Hard Mit der folgenden Liste wird versucht, die ID-Bezeichnung, die relative (auf die Als Quellen wurden diverse DEC-Pu- alle von der Firma Digital Equipment VAX-11/780 bezogene) Leistungsfähig- blikationen verwendet sowie die Beschrei- Corporation (DEC) produzierten Modelle keit in VUPS, die in etwa dem MIPS bungen von SYS$GETSYI in der VMS- der Computer-Familien der VAX und der entspricht, die Typen der vorhandenen I/ Dokumentation und von $PRDEF, $VAX- Alpha AXP in einer konzentrierten Form O-Busse, der Modell-Name sowie der DEF und $ALPHADEF in der System zu erfassen. Tarnname (code name). Macro Library. Das Verzeichnis wurde im Die Übersicht ist nach Prozessor-Fa- Bei den Bus-Bezeichnungen bedeu- März 1993 der im UseNET von Paul Hardy milien und innerhalb dieser nach Subtypen ten: U = UniBus, M = MassBus, C = CI- (Email: [email protected]) veröffentlichten (X bzw. S) gegliedert. Angegeben sind für Bus, Q = Q-Bus, B = BI-Bus, D = DSSI, X Liste angepaßt. Alle zur Zeit noch aktuel- die einzelnen Computer-Modelle die SID- = XMI, T = TurboChannel, S = SCSI, F = len Modelle sind hinter dem Code-Namen Bezeichnung, die den CPU-Typ enthält, FutureBus+, E = EISA-Bus. mit einem * versehen. SID X ID VUPS Bus Model Name Code Name SID X ID VUPS Bus Model Name Code Name —— 1977: 700 series ———————————————————————————— —— 1991: NVAX+ chip series ———– Decimal SID = 385875968 ———————— 0100xxxx – 780 1.0 -
VAX VMS at 20
1977–1997... and beyond Nothing Stops It! Of all the winning attributes of the OpenVMS operating system, perhaps its key success factor is its evolutionary spirit. Some would say OpenVMS was revolutionary. But I would prefer to call it evolutionary because its transition has been peaceful and constructive. Over a 20-year period, OpenVMS has experienced evolution in five arenas. First, it evolved from a system running on some 20 printed circuit boards to a single chip. Second, it evolved from being proprietary to open. Third, it evolved from running on CISC-based VAX to RISC-based Alpha systems. Fourth, VMS evolved from being primarily a technical oper- ating system, to a commercial operat- ing system, to a high availability mission-critical commercial operating system. And fifth, VMS evolved from time-sharing to a workstation environment, to a client/server computing style environment. The hardware has experienced a similar evolution. Just as the 16-bit PDP systems laid the groundwork for the VAX platform, VAX laid the groundwork for Alpha—the industry’s leading 64-bit systems. While the platforms have grown and changed, the success continues. Today, OpenVMS is the most flexible and adaptable operating system on the planet. What start- ed out as the concept of ‘Starlet’ in 1975 is moving into ‘Galaxy’ for the 21st century. And like the universe, there is no end in sight. —Jesse Lipcon Vice President of UNIX and OpenVMS Systems Business Unit TABLE OF CONTENTS CHAPTER I Changing the Face of Computing 4 CHAPTER II Setting the Stage 6 CHAPTER -
Thesis May Never Have Been Completed
UvA-DARE (Digital Academic Repository) Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure Goodwin, D.T. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Goodwin, D. T. (2016). Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 Digital Equipment Corporation (DEC) (DEC) Corporation Digital Equipment David Thomas David Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin 1 Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. -
The Design of the VAX 4000 Model 100 and Microvax 3100 Model 90 Desktop Systems by Jonathan C. Crowell and David W. Maruska
The Design of the VAX 4000 Model 100 and MicroVAX 3100 Model 90 Desktop Systems By Jonathan C. Crowell and David W. Maruska 1 Abstract The MicroVAX 3100 Model 90 and VAX 4000 Model 100 systems were designed to meet the growing demand for low-cost, high-performance desktop servers and timesharing systems. Both systems are based on the NVAX CPU chip and a set of VLSI support chips, which provide outstanding CPU and I/O performance. Housed in like desktop enclosures, the two systems provide 24 times the CPU performance of the original VAX-11/780 computer. With over 2.5 gigabytes of disk storage and 128 megabytes of main memory, the complete base system fits in less than one cubic foot of space. The system design was highly leveraged from existing designs to help meet an aggressive schedule. 2 Introduction The demand for low-cost, high-performance desktop servers and timesharing systems is increasing rapidly. The MicroVAX 3100 Model 90 and VAX 4000 Model 100 systems were designed to meet this demand. Both systems are based on the NVAX CPU chip and a set of very large-scale integration (VLSI) support chips, which provide outstanding CPU and I/O performance.[1] Each member of the MicroVAX 3100 family of systems constitutes a low- cost, general-purpose, multiuser VAX system in an enclosure that fits on the desktop. This enclosure supports all the required components of a typical system, including the main memory, synchronous and asynchronous communication lines, thick-wire and ThinWire Ethernet, and up to five small computer system interface (SCSI)-based storage devices. -
VAX 6000 Model 600 System Technical User's Guide
VAX 6000 Model 600 System Technical User’s Guide Order Number: EK–660EA–TM.001 This manual serves as a reference on how to write software to this machine and covers the information needed to do field-level repair or programming customized to the CPU. It includes information on interrupts, error handling, and detailed theory of operation. Digital Equipment Corporation First Printing, January 1992 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Copyright ©1992 by Digital Equipment Corporation All Rights Reserved. Printed in U.S.A. The postpaid READER’S COMMENTS form on the last page of this document requests the user’s critical evaluation to assist in preparing future documentation. The following are trademarks of Digital Equipment Corporation: DEC PDP VAXcluster DEC LANcontroller ULTRIX VAXELN DECnet UNIBUS VMS DECUS VAX XMI DWMVA VAXBI dt This document was prepared using VAX DOCUMENT, Version 1.2 Contents PREFACE xv CHAPTER 1 THE VAX 6000 MODEL 600 SYSTEM 1–1 1.1 SYSTEM ARCHITECTURE 1–2 1.2 SAMPLE SYSTEM 1–4 1.3 SYSTEM FRONT -
Database Integration
I DATABASE INTEGRATION ALPHA SERVERS & WORKSTATIONS Digital ALPHA 21164 CPU Technical Journal Editorial The Digital TechnicalJournal is a refereed Cyrix is a trademark of Cyrix Corporation. Jane C. Blake, Managing Editor journal published quarterly by Digital dBASE is a trademark and Paradox is Helen L. Patterson, Editor Equipment Corporation, 30 Porter Road a registered trademark of Borland Kathleen M. Stetson, Editor LJ02/D10, Littleton, Massachusetts 01460. International, Inc. Subscriptionsto the Journal are $40.00 Circulation (non-U.S. $60) for four issues and $75.00 EDA/SQL is a trademark of Information Catherine M. Phillips, Administrator (non-U.S. $115) for eight issues and must Builders, Inc. Dorothea B. Cassady, Secretary be prepaid in U.S. funds. University and Encina is a registered trademark of Transarc college professors and Ph.D. students in Corporation. Production the electrical engineering and computer Excel and Microsoft are registered pde- Terri Autieri, Production Editor science fields receive complimentary sub- marks and Windows and Windows NT are Anne S. Katzeff, Typographer scriptions upon request. Orders, inquiries, trademarks of Microsoft Corporation. Joanne Murphy, Typographer and address changes should be sent to the Peter R Woodbury, Illustrator Digital TechnicalJournal at the published- Hewlett-Packard and HP-UX are registered by address. Inquiries can also be sent elec- trademarks of Hewlett-Packard Company. Advisory Board tronically to [email protected]. Single copies INGRES is a registered trademark of Ingres Samuel H. Fuller, Chairman and back issues are available for $16.00 each Corporation. Richard W. Beane by calling DECdirect at 1-800-DIGITAL Donald Z. Harbert (1-800-344-4825). -
Circuit Implementation of a 300-Mhz 64-Bit Second-Generation CMOS Alpha CPU by William J
Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU by William J. Bowhill, Shane L. Bell, Bradley J. Benschneider, Andrew J. Black, Sharon M. Britton, Ruben W. Castelino, Dale R. Donchin, John H. Edmondson, Harry R. Fair, III, Paul E. Gronowski, Anil K. Jain, Patricia L. Kroesen, Marc E. Lamere, Bruce J. Loughlin, Shekhar Mehta, Robert O. Mueller, Ronald P. Preston, Sribalan Santhanam, Timothy A. Shedd, Michael J. Smith, Stephen C. Thierauf ABSTRACT A 300-MHz, custom 64-bit VLSI, second-generation Alpha CPU chip has been developed. The chip was designed in a 0.5-um CMOS technology using four levels of metal. The die size is 16.5 mm by 18.1 mm, contains 9.3 million transistors, operates at 3.3 V, and supports 3.3-V/5.0-V interfaces. Power dissipation is 50 W. It contains an 8-KB instruction cache; an 8-KB data cache; and a 96-KB unified second-level cache. The chip can issue four instructions per cycle and delivers 1,200 mips/600 MFLOPS (peak). Several noteworthy circuit and implementation techniques were used to attain the target operating frequency. INTRODUCTION The Alpha 21164 chip is a 300-megahertz (MHz), quad-issue, custom very large-scale integration (VLSI) implementation of the Alpha architecture that delivers peak performance of 1,200 million instructions per second (mips)/600 million floating-point operations per second (MFLOPS). The chip is designed in a 0.5-micrometer (um) complementary metal-oxide semiconductor (CMOS) technology using four levels of metal. The die measures 16.5 millimeters (mm) by 18.1 mm and contains 9.3 million transistors. -
DEC: the Mistakes That Led to Its Downfall
DEC: The mistakes that led to its downfall David T. Goodwin, Roger G. Johnson Birkbeck College, University of London [email protected] , [email protected] In 1987 Digital Equipment Corporation (DEC) was the number two computer manufacturer in the world with its founder being named the “‘most successful entrepreneur in the history of American business” by Fortune magazine. This paper looks at the later history of Digital Equipment Corporation and asks how an organisation that was so successful in 1988 could sink to become a takeover target for a PC hardware company ten years later. The management styles and company culture have been extensively described in Edgar Schein’s book “DEC is dead, long live DEC” but there is much more to the story. The technology that the company developed and the business decisions made in the development and the direction of that technology had a major bearing on the fate of the company. Many mistakes were made over the last fifteen years of the company’s existence and this paper offers a suggestion as to what those mistakes were. In this paper, extensive use is made of interviews with people involved at the time as well as material from the Ken Olsen Archives at Gordon College which contain many of the memos that Ken Olsen sent in his long career at DEC. It considers DEC as a case study set in the context of literature on business change and the impact of downsizing. It looks at DEC’s initial attempt to break into the business market for personal computers in 1983, the personalities involved and the competing products that the company developed. -
Digital Technical Journal, Volume 4, Number 3: NVAX-Microprocessor VAX Systems
Editorial Jane C. Blake, Editor Kathleen M. Stetson, Associate Editor Helen L. Patterson, Associate Editor Circulation Catherine M. Phillips, Administrator Sherry L. Gonzalez Production Terri Autieri, Production Editor Anne S. Katzeff, ppographer Peter R. Woodbury, Illustrator Advisory Board Samuel H. Fuller, Chairman Richard W Beane Richard J. Hollingsworth Alan G. Nemeth Victor A. Vyssotsky Gayn B. Winters The Digital TechnicalJournal is published quarterly by Digital Equipment Corporation, 146 Main Street MLO 1-3/B68,Maynard, Massachusetts 01754-2571. Subscriptions to the Journal are $40.00 for four issues and must be prepaid in U.S. funds. University and college professors and Ph.D. students in the electrical engineering and computer science fields receive complimentary subscriptions upon request. Orders, inquiries, and address changes should be sent to the Digital TechnicalJournal at the published-by address. Inquiries can also be sent electronically to [email protected]. Single copies and back issues are available for $16.00 each from Digital Press of Digital Equipment Corporation, 1 Burlington Woods Drive, Burlington, MA 01830-4597 Digital employees may send subscription orders on the ENET to RDVAX::JOURNAL or by interoffice mail to mailstop ML01-3/B68. Orders should include badge number, site location code, and address. All employees must advise of changes of address. Comments on the content of any paper are welcomed and may be sent to the editor at the published-by or network address. Copyright O 1992 Digital Equipment Corporation. Copying without fee is permitted provided that such copies are made for use in educational institutions by faculty members and are not distributed for commercial advantage. -
Vaxstation-Overview.Pdf
VA$station - Wikipedia, the free encyclopedia Page 1 of 3 VAXstation From Wikipedia, the free encyclopedia The VAXstation was a family of workstation computers developed and manufactured by Digital Equipment Corporation DEC) using processors implementing the VA$ instruction set architecture ISA). Contents ( 1 VA$station I ( 2 VA$station II ( 2.1 VA$station II/,P$ ( . VA$station 2000 ( 0 VA$station 3100 Series ( 4.1 VA$station 3100 1odel 30 ( 4.2 VA$station 3100 1odel .2 ( 4.. VA$station 3100 1odel 40 ( 4.0 VA$station 3100 1odel 02 ( 4.3 VA$station 3100 1odel 45 ( 3 VA$station 3200 and VA$station 3500 ( 5 VA$station 3520 and VA$station .30/ ( 7 VA$station 4000 Series ( 7.1 VA$station 4000 1odel 30 ( 7.2 VA$station 4000 1odel 60 ( 7.. VA$station 4000 1odel 90 ( 7.0 VA$station 4000 1odel 90A ( 7.3 VA$station 4000 1odel 65 ( 2 VA$station 8000 ( 9 V$T 2000 ( 10 VA$station 100 ( 10.1 VA$station 500 ( 11 Software ( 12 References VAXstation I Introduced in 8ctober 1984, it was code named 9 Seahorse 9, and used the KD32 CP: module containing a 4 1Hz 250 ns) 1icroVA$ I processor. VAXstation II Code named 9Mayflower 9, it used the KA630 CP: module containing a 5 1Hz 200 ns) 1icroVA$ 78032 microprocessor. It was essentially a 1icroVA$ II in a workstation configuration. VAXstation II/GPX Introduced in December 1985, it was code named 9 Caylith 9, and was a variant of the VA$station II with hardware- enhanced, high-performance color graphics. -
VAX 6000 Model 600 System Technical User's Guide
VAX 6000 Model 600 System Technical User’s Guide Order Number: EK–660EA–TM.001 This manual serves as a reference on how to write software to this machine and covers the information needed to do field-level repair or programming customized to the CPU. It includes information on interrupts, error handling, and detailed theory of operation. Digital Equipment Corporation First Printing, January 1992 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Copyright ©1992 by Digital Equipment Corporation All Rights Reserved. Printed in U.S.A. The postpaid READER’S COMMENTS form on the last page of this document requests the user’s critical evaluation to assist in preparing future documentation. The following are trademarks of Digital Equipment Corporation: DEC PDP VAXcluster DEC LANcontroller ULTRIX VAXELN DECnet UNIBUS VMS DECUS VAX XMI DWMVA VAXBI This document was prepared using VAX DOCUMENT, Version 1.2 Contents PREFACE xv CHAPTER 1 THE VAX 6000 MODEL 600 SYSTEM 1–1 1.1 SYSTEM ARCHITECTURE 1–2 1.2 SAMPLE SYSTEM 1–4 1.3 SYSTEM FRONT VIEW