Digital Technical Journal, Volume 4, Number 3: NVAX-Microprocessor VAX Systems

Total Page:16

File Type:pdf, Size:1020Kb

Digital Technical Journal, Volume 4, Number 3: NVAX-Microprocessor VAX Systems Editorial Jane C. Blake, Editor Kathleen M. Stetson, Associate Editor Helen L. Patterson, Associate Editor Circulation Catherine M. Phillips, Administrator Sherry L. Gonzalez Production Terri Autieri, Production Editor Anne S. Katzeff, ppographer Peter R. Woodbury, Illustrator Advisory Board Samuel H. Fuller, Chairman Richard W Beane Richard J. Hollingsworth Alan G. Nemeth Victor A. Vyssotsky Gayn B. Winters The Digital TechnicalJournal is published quarterly by Digital Equipment Corporation, 146 Main Street MLO 1-3/B68,Maynard, Massachusetts 01754-2571. Subscriptions to the Journal are $40.00 for four issues and must be prepaid in U.S. funds. University and college professors and Ph.D. students in the electrical engineering and computer science fields receive complimentary subscriptions upon request. Orders, inquiries, and address changes should be sent to the Digital TechnicalJournal at the published-by address. Inquiries can also be sent electronically to [email protected]. Single copies and back issues are available for $16.00 each from Digital Press of Digital Equipment Corporation, 1 Burlington Woods Drive, Burlington, MA 01830-4597 Digital employees may send subscription orders on the ENET to RDVAX::JOURNAL or by interoffice mail to mailstop ML01-3/B68. Orders should include badge number, site location code, and address. All employees must advise of changes of address. Comments on the content of any paper are welcomed and may be sent to the editor at the published-by or network address. Copyright O 1992 Digital Equipment Corporation. Copying without fee is permitted provided that such copies are made for use in educational institutions by faculty members and are not distributed for commercial advantage. Abstracting with credit of Digital Equipment Corporation's authorship is permitted. All rights reserved. The information in the Journal is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in the Journal. ISSN 0898-901X Documentation Number EY-J884E-DP The following are tradeinarks of Digital Equipment Corporation: Alpha AXP, DEC, DECchip 21064, DECstation, DECwindows, Digital, the Digital logo, KA50, KA52, KA675, KA680, KA690, MicroV!, MS44, MS670, MS690, Q-bus, Q22-bus, Thinwire, TURBOchannel, lXI'RM, VAX, VAX-11/780, VAX 4000, VAX 6000, VAX 7000, VAX 10000, VAXcluster, VAX MACRO, VAXstation, VMS, and VXT 2000. MACH is a trademark and PAL is a registered trademark of Cover Design Advanced Micro Devices, Inc. The WRXmicroprocessor is Digital'sfastest VRX implementation SPEC, SPECfp, SPECint, and SPECmark are registered trademarks of and the common theme ofpapers in this issue. Our cover graphic the Standard Performance Evaluation Cooperative. joins the WHXproject code name with an image of speed - the SPICE is a trademark of the University of California at Berkeley. chip's most salient characteristic and theperjomzance advantage TPC Benchmark and tpsA-local are trademarks of the Transaction it brings to a range of new VAxsystm. Processing Performance Council. The cover design is by Deb Anderson of Quantic Communications,Znc. Book production was done by Quantic Communications,Inc. Contents 9 Foreiuord Robert id. Supnik NVAX-microprocessorVAX Systems I I The NVAX and NVAX+ High-perfomname VAX Microprocessors C;. Michael Uhler, Debra Bernstein, Larry L. Biro, John E Brown 111, Jolui H. Eclrnondson,Jeffrey D. Pickholtz, and Rebecca L. Stamnl 24 The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools Dale R. Donchin, Timothy C. Fischer, Thomas E Fox, Victor Peng. Ronald l? Preston, and William R. Wheeler 38 Logical Verificationof the NVAX CPU Chip Design Walker Anderson 47 The VRX 6000 Model 600 Processor Lawrence Chisvin, Gregg A. Boucliard, and Thomas M. Wenners GO Design ofthe VAX 4000 Mode1400, 500, and 600 Systm~s Jonathan C. Crowell, Kwong-Talc A. Chui, Thomas E. Kopec, Samyojita A. Naclkarni, ancl Dean A. Sovie 73 The Design of the VAX 4000 Model 100 and MicroVAX 3100 Model 90 Desktop Systems Jonathan C. Crowell and David W Maruska 82 The VAXstation4000 Model 90 Michael A. Callander, SK,Lauren M. Carlson, Anclrew R. Ladd, and Mitchell 0. Norcross 92 VAX 6000 Error Handling: A Pragmntic Approach Bri;in I'orter I Editor's Introduction paper on the new mid-r;~ngcVtjX 6000 niultipro- cessing s)lstem, Larry Chisvin, Gregg Bouchartl. and Tom Wenners explain the module design clecisions that s~~pportedthe goals of 6000-series compatibil- ity anrl time to market. Of particular interest are the sclieclule and performance benefits derived from developing a routing and control interface chip. The engineers for new low-end desksicle systems also chose to develop custom chips-a menlory controller chip, memory module, and an I/() con- troller Jon Crowell, Kwong Chui, Tom Kopec, Sam Nadkarni, ant1 Dean Sovie discuss the chip filnc- Jane C. Blake tions tliat were key to exceeding the perh)rrn;~nce Editor goal of three times that of the previous V!4000. For tlie low-encl VXX 4000 Moclel 100 system anel The WM microprocessor is a high-performance, the MicroVla 3100 desktop servers, designers saveel single-chip implementation of the VAX architecture. significant time by "borrowing" existing compo- It is today's fastest Vru; microprocessor and the Cl'L1 nents from proven systems. Jon Crowell ant1 I>ave at the hart of the mid-range, low-end, and work- Maruska relate decisions that allowed them to dou- station systems described in this issue of the Digital ble performance and complete the work within the Technic~zlJourncll. extraorclinarily short time of nine months. The WtLY chip is not only fast, with cycle times as The newest Vastation workstation, b;~sedon low as 11 ns, but also holds a unique position in the WAX, is the Model 90. lMike Callander, L;u~ren Digital family of microprocessors: NVAX is both an Carlson, Andy Ladd, and Mitch Norcross present upgrade path for existing VAX systems and a migra- their design methodology. Most significant for tion path to Alpha &YP systems. In their paper on clevelopment was the tlecision to implement new the WAS anel WAX+ chips, Mike Uliler, Debra logic in programmable technology, which allowed Bernstein, Larry Biro. John Brown, John Edmond- bug fixes in minutes rather than weeks. son, Jeff Picklioltz, ancl Rebecca Stamm present an Not ;tbout system design but rather error han- overview of the complex microprocessor tlesigns dling in 6000 systems, Brian Porter's paper and relate how RlSC techniques are used in this CIS<: describes an approach tliat reduces the aniount of machine to achieve dramatic increases in perfor- unique coding traclitionally required for error han- mance over previous implementations. dling. He details the development of sophisticatecl Increases in performrlnce are also attributable to error 11;1ntlling routines tliat ;~ccornmodate the the CMOS-4 0.75-micrometer process technology in complexity of the symmetric multiprocessing VAS which the WAX is implemented. In their paper 6000 models. about the verification of the physical design, Dale The editors thank Mike llhler of the Semi- Donchin, Tim Fischer, Frank Fox, Victor Peng, Ron contluctor Engineering C;roi~p,who ensuretl tli;rt I-'reston, and Hill Wheeler describe tlie methods and the standarcls of excellence ;rpplietl to NVN; <level- the CAD tools created to manage the complexity of opment were applied to the development of this a chip with 1.3 n~illiontransistors. issue. Also, this issue is notable editorially because The rigorous use of the Chi) tools and tliorougli it is the first in wliicli papers have been form;illy simulation-based testing resultetl in highly h~nc- refereed. 1 thank Gene Hoffnagle: editor of the tional first-pass chips. In his paper about tlie logical IBN Sjatems .lournal, for encouraging the use of verification, Walker Antlerson discusses the suc- the referee process in any journal worthy of the cessful strategies used to ensure no "show stopper" name. 1>TI issues will continue to be refereed so bugs existed in the design. Highlighting major that wc may offer engineering ant1 academic read- strategies, he reviews the behavioral moclels and ers informative and relevant teclinical cliscussions. pse11dor;rndoni exercisers at the core of the verifi- cation effort. Each system design team chose a different approacli to take advantage of WAX performance and to meet system-specific requirements. In a Biographies I Walker Anderson Principal engineer Walker Anderson is a member of the Models, Tools, ancl Verification Group in the Semiconductor Engineering Group. Currently a co-leader of the logical verification team for a fim~rechip design, he led the NVAX logical verification effort. Before joining Digital in 1988, Walker was a diagnostic and testability engineer in a CPU development group at Data General Corporation for eight years. He holds a B.S.E.E. (1980) from Cornell University and an M.B.A. (1985) from Boston Universitj! Debra Bernstein Debra Bernstein is a consultant engineer in the Semi- conductor Engineering Group. She worked 011 the CI'U design and architect~~re for the NVkY ~nicroprocessorand the VAx 8700/8800 systems and is currently co-architecture leader for a future Alpha AXP processor. Deb received a B.S. in computer science (1982, cum laude) from the University of Massachusetts in hnherst. She holds one patent, has two patent applications pending, and has coauthored several technical papers. Larry L. Biro Larry Biro joined the Electronic Storage Development (ESD) Group in 1983, after receiving an M.S.E.E. from Rensselaer Polytechnic Institute. While in ESD, he contributed to the advanced development of solid-state disk I products. Larry. ,ioined the Semiconductor Engineering- Grou[> as a custom cir- cuit designer on the NVAX E-box. Later, as a member of the NVAX+ chip imple- mentation team, Larry designed the clock and reset logic, coortlinated back-end verification efforts, and co-led the chip debugging.
Recommended publications
  • Engineering Specification for the KA43 Processor Module Revision 1.0 1–May–1989 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION
    Engineering Specification for the KA43 Processor Module Revision 1.0 1–May–1989 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION COPYRIGHT (c) 1989 by DIGITAL EQUIPMENT CORPORATION This information shall not be disclosed to non-Digital personnel or generally distributed within Digital. Distribution is restricted to persons authorized and designated by the responsible en- gineer or manager. This document shall not be left unattended, and when not in use shall be stored in a locked storage container. The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may occur in this document. The information in this document does not describe any program or product currently available from Digital Equipment Corporation. Nor does Digital Equipment Corporation commit to imple- ment this specification in any program or product. Digital Equipment Corporation makes no commitment that this document accurately describes any product which it might ever make. Digital Equipment Corporation CONTENTS Preface . ........................................................... v Chapter 1 INTRODUCTION .............................................. 1 1.1 Scope of Document ................................................... 1 1.2 General Description .................................................. 1 1.3 Applicable Documents ................................................. 2 Chapter 2 KA43 ROM MEMORY ........................................
    [Show full text]
  • Validated Products List, 1995 No. 3: Programming Languages, Database
    NISTIR 5693 (Supersedes NISTIR 5629) VALIDATED PRODUCTS LIST Volume 1 1995 No. 3 Programming Languages Database Language SQL Graphics POSIX Computer Security Judy B. Kailey Product Data - IGES Editor U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 July 1995 QC 100 NIST .056 NO. 5693 1995 NISTIR 5693 (Supersedes NISTIR 5629) VALIDATED PRODUCTS LIST Volume 1 1995 No. 3 Programming Languages Database Language SQL Graphics POSIX Computer Security Judy B. Kailey Product Data - IGES Editor U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 July 1995 (Supersedes April 1995 issue) U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director FOREWORD The Validated Products List (VPL) identifies information technology products that have been tested for conformance to Federal Information Processing Standards (FIPS) in accordance with Computer Systems Laboratory (CSL) conformance testing procedures, and have a current validation certificate or registered test report. The VPL also contains information about the organizations, test methods and procedures that support the validation programs for the FIPS identified in this document. The VPL includes computer language processors for programming languages COBOL, Fortran, Ada, Pascal, C, M[UMPS], and database language SQL; computer graphic implementations for GKS, COM, PHIGS, and Raster Graphics; operating system implementations for POSIX; Open Systems Interconnection implementations; and computer security implementations for DES, MAC and Key Management.
    [Show full text]
  • Mi!!Lxlosalamos SCIENTIFIC LABORATORY
    LA=8902-MS C3b ClC-l 4 REPORT COLLECTION REPRODUCTION COPY VAXNMS Benchmarking 1-’ > .— u) 9 g .— mi!!lxLOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos. New Mexico 87545 — wAifiimative Action/Equal Opportunity Employer b . l)lS(”L,\l\ll K “Thisreport wm prcpmd J, an xcttunt ,,1”wurk ,pmwrd by an dgmcy d the tlnitwl SIdtcs (kvcm. mm:. Ncit her t hc llniml SIJIL.. ( Lwcrnmcm nor any .gcncy tlhmd. nor my 08”Ihcif cmployccs. makci my wur,nly. mprcss w mphd. or JwImL.s m> lcg.d Iululity ur rcspmuhdily ltw Ilw w.cur- acy. .vmplctcncs. w uscftthtc>. ttt”any ml’ormdt ml. dpprdl us. prudu.i. w proccw didowd. or rep. resent%Ihd IIS us wuukl not mfrm$e priwtcly mvnd rqdtts. Itcl”crmcti herein 10 my sp.xi!l tom. mrcial ptotlucr. prtxcm. or S.rvskc hy tdc mmw. Irdcnmrl.. nmu(a.lurm. or dwrwi~.. does nut mmwsuily mnstitutc or reply its mdursmwnt. rccummcnddton. or favorin: by the llniwd States (“mvcmment ormy qxncy thctcd. rhc V!C$VSmd opinmm d .mthor% qmxd herein do nut net’. UMrily r;~lt or died lhow. ol”the llnttcd SIJIL.S( ;ovwnnwnt or my ugcncy lhure of. UNITED STATES .. DEPARTMENT OF ENERGY CONTRACT W-7405 -ENG. 36 . ... LA-8902-MS UC-32 Issued: July 1981 G- . VAX/VMS Benchmarking Larry Creel —. I . .._- -- ----- ,. .- .-. .: .- ,.. .. ., ..,..: , .. .., . ... ..... - .-, ..:. .. *._–: - . VAX/VMS BENCHMARKING by Larry Creel ABSTRACT Primary emphasis in this report is on the perform- ance of three Digital Equipment Corporation VAX-11/780 computers at the Los Alamos National Laboratory. Programs used in the study are part of the Laboratory’s set of benchmark programs.
    [Show full text]
  • VAX 4000 V96-2.3—10 Feb 1997
    TM VAX 4000 V96-2.3—10 Feb 1997 DIGITAL Systems and Options Catalog Product Description VAX 4000 systems provide commercial systems performance, high availability, and a compact footprint. They support a wide range of applications and options, including FDDI networks and Q-bus peripherals. System enclosure supports internal storage and Q-bus expansion through a B400X expansion cabinet. VAX 4000 systems come in three packages: Desktop Model 106A, Desktop/Deskside Model 108, and Pedestal/Deskside Model 505A/705A DSSI and Ethernet adapter chips—each driven by a 10-MIP on-chip RISC processor—are tightly integrated on the CPU module with direct access to memory. Digital's DSSI to SCSI HSD10 storage solutions replace DSSI RF36 disk technology in all VAX 4000 systems. Digital’s HSD10 DSSI-to-SCSI controller. mounted internally in system cabinet, supports standard RZxx SCSI storage on VAX 4000 systems while still supporting DSSI clustering. External StorageWorks HSD10 controllers are supported. VAX 4000 Model 106A offers performance of 10-ns NVAX chip. Systems achieve 215 transactions per second (TPS). With internal support for the HSD10, DSSI-to-SCSI controller, VAX 4000 customers can take advantage of low-cost, more flexible and open StorageWorks solutions. VAX 4000 Model 108 offers identical performance, is compatible with Model 106A, but is housed in a new Desktop/Deskside minitower enclosure. In addition, these systems offer enchancements in the memory and storage capacity, supporting up to 512 MB of standard SIMM memory and six storage devices in the system enclosure. VAX 4000 Model 505A and 705A offer 12 ns and 9 ns performance, respectively in a Q-bus Pedestal package.
    [Show full text]
  • I Txso C~T Dc~ 5 SPD / LETTER FC~R
    i DIGITAL Digital Equipm~t3t Corporation SOFTW~►,RE Digital Drive SILL OF MATERIALS Westminster, Massachusetts 01473-0471 Option Number Option Title Date Page ~ QA-10 OAA-W55.6 ~rAX FORTF~? V5.6 UPD TK5 0 28-Feb-91 1 of 1 ~TY PICK LOCATION PART NLJL~ER PART DESCRIPTION .~_ -.. 1 *FS* 36-28231-07 TRE~I~ZA~L S~~RCODE LABEL 1 *FS* 99-08545-02 BOOKT~IRAP 1 t UR) AQ-FP 8 6N-BN ~irAX FORTP~AN V5.6 BIN TK5 0 1 ~ DP ~ AV-PF4FA-TK SUP REPLACEMENT LETTER 1 EN-01044-07 SFT'WR PERFOF~!~ANCE REPORT FORM 1 ***** NS ~~~ QA-10 OAA-WZ 5.6 ~irAX FORTF~AN V5.6 UPD DOC 1 *FS* 36-28231-0? THEF~!zA,L P.~ARCODE LABEL 1 *FS* 99-08545-02 BOOKT~IRAP 1 (UR} AE-JF8?L-TE ~irAX FORTP►AN V5.6 SPD 2 5.16.3 6 1 - t~~ AE-LT36H-TE ~irAX FORTP;AN SSA 2 5.16.3 6 -A 1 SDP ) AE -1~tA,5 OA- TK SOFTWARE W TY ADDENDUM 1 tUR~ AV-N672V-TE V'AX FORTP►AN V5.6 PAD FIRS T 1 EN-02512-05 C~3LANGE OF ADDRESS CARD ilk.~ r~~i~li~ilpirfi~~ra~~reis~-~-~~~------~----~~~~ t~ii~~l~+~r~~~-~~~--~--~.r~.~ i Txso c~t Dc~ 5 SPD / LETTER FC~R : AV-PF4FA- TK October, 1990 d 9 Dear Service Customer, Enclosed is a software product update/maintenance release supplied as part of your software maintenance agreement. As part of its planned License Management Zbols program, Digital has initiated replacement of all Service Update PAKs (SUPs) for licensed software product with License Product Authorization Keys (PAKs).
    [Show full text]
  • A Machine-Independent DMA Framework for Netbsd
    AMachine-Independent DMA Framework for NetBSD Jason R. Thorpe1 Numerical Aerospace Simulation Facility NASA Ames Research Center Abstract 1.1. Host platform details One of the challenges in implementing a portable In the example platforms listed above,there are at kernel is finding good abstractions for semantically- least three different mechanisms used to perform DMA. similar operations which often have very machine- The first is used by the i386 platform. This mechanism dependent implementations. This is especially impor- can be described as "what you see is what you get": the tant on modern machines which share common archi- address that the device uses to perform the DMA trans- tectural features, e.g. the PCI bus. fer is the same address that the host CPU uses to access This paper describes whyamachine-independent the memory location in question. DMA mapping abstraction is needed, the design consid- DMA address Host address erations for such an abstraction, and the implementation of this abstraction in the NetBSD/alpha and NetBSD/i386 kernels. 1. Introduction NetBSD is a portable, modern UNIX-likeoperat- ing system which currently runs on eighteen platforms covering nine processor architectures. Some of these platforms, including the Alpha and i3862,share the PCI busasacommon architectural feature. In order to share device drivers for PCI devices between different platforms, abstractions that hide the details of bus access must be invented. The details that must be hid- den can be broken down into twoclasses: CPU access Figure 1 - WYSIWYG DMA to devices on the bus (bus_space)and device access to host memory (bus_dma). Here we will discuss the lat- The second mechanism, employed by the Alpha, ter; bus_space is a complicated topic in and of itself, is very similar to the first; the address the host CPU and is beyond the scope of this paper.
    [Show full text]
  • HP Openvms Cluster Software SPD 29.78.27
    Software Product Description PRODUCT NAME: HP OpenVMS Cluster Software SPD 29.78.27 This Software Product Description describes Versions a mix of AlphaServer and VAX or AlphaServer and In- 6.2–1H3, 7.1–1H1, 7.1–1H2, 7.1–2, 7.2, 7.2–1, 7.2– tegrity server systems. In this SPD, this environment is 1H1, 7.2-2, 7.3, 7.3–1, 7.3–2, 8.2, 8.2–1 and 8.3 of the referred to as an OpenVMS Cluster system. following products: Systems in an OpenVMS Cluster system can share pro- • HP VMScluster Software for OpenVMS for Integrity cessing, mass storage (including system disks), and Servers other resources under a single OpenVMS security and management domain. Within this highly integrated en- • HP VMScluster Software for OpenVMS AlphaServers vironment, systems retain their independence because (through V8.3) they use local, memory-resident copies of the OpenVMS operating system. Thus, OpenVMS Cluster systems • HP VAXcluster Software for OpenVMS VAX (through can boot and shut down independently while benefiting V7.3) from common resources. • HP OpenVMS Cluster Client Software for Integrity Servers Applications running on one or more systems in an OpenVMS Cluster system can access shared resources • HP OpenVMS Cluster Client Software for Al- in a coordinated manner. OpenVMS Cluster soft- phaServers (part of NAS150) ware components synchronize access to shared re- sources, allowing multiple processes on any system in • HP OpenVMS Cluster Client Software for VAX the OpenVMS Cluster to perform coordinated, shared (through V7.3) (part of NAS150) data updates. Except where noted, the features described in this Because resources are shared, OpenVMS Cluster sys- SPD apply equally to Integrity server, AlphaServers and tems offer higher availability than standalone systems.
    [Show full text]
  • Validated Processor List
    NISTIR 4557 Programming Languages and Database Language SQL VALIDATED PROCESSOR UST Including GOSIP Conformance Testing Registers Judy B. Kailey Editor U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology National Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 April 1991 (Supersedes January 1991 Issue) U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director NIST > NISTIR 4557 Programming Languages and Database Language SQL VALIDATED PROCESSOR LIST Including GOSIP Conformance Testing Registers Judy B. Kailey Editor U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology National Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 April 1991 (Supersedes January 1991 Issue) U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director lib t TABLE OF CONTENTS 1. INTRODUCTION 1 1.1 Purpose 1 1.2 Document Organization 1 1.2.1 Language Processors 1 1.2.2 Contributors to the VPL 2 1.2.3 Other FIPS Conformance Testing Products 2 1.2.4 GOSIP Registers 2 1.3 FIPS Programming and Database Language Standards 3 1.4 Validation of Processors 3 1.4.1 Validation Requirements 3 1.4.2 Placement in the List 4 1.4.3 Removal from the List 4 1.4.4 Validation Procedures 4 1.5 Certificate of Validation 4 1.6 Registered Report 4 1.7 Processor Validation Suites 5 2. COBOL PROCESSORS 7 3. FORTRAN PROCESSORS 13 4. Ada PROCESSORS 21 5. Pascal PROCESSORS 35 6. SQL PROCESSORS 37 APPENDIX A CONTRIBUTORS TO THE LIST A-1 APPENDIX B OTHER FIPS CONFORMANCE TESTING B-1 APPENDIX C REGISTER OF GOSIP ABSTRACT TEST SUITES C-1 APPENDIX D REGISTER OF GOSIP MEANS OF TESTING D-1 APPENDIX E REGISTER OF GOSIP CONFORMANCE TESTING LABORATORIES E-1 .
    [Show full text]
  • Openvms DCL Dictionary: N–Z
    OpenVMS DCL Dictionary: N–Z Order Number: AA–PV5LG–TK April 2001 This manual provides detailed reference information and examples for Compaq OpenVMS DCL commands and lexical functions. Revision/Update Information: This manual supersedes the OpenVMS DCL Dictionary, Version 7.2. Software Version: OpenVMS Alpha Version 7.3 OpenVMS VAX Version 7.3 Compaq Computer Corporation Houston, Texas © 2001 Compaq Computer Corporation Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office. OpenVMS and Tru64 are trademarks of Compaq Information Technologies Group, L.P in the United States and other countries. Microsoft, MS-DOS, Visual C++, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and other countries. Intel, Intel Inside, and Pentium are trademarks of Intel Corporation in the United States and other countries. Motif, OSF/1, and UNIX are trademarks of The Open Group in the United States and other countries. All other product names mentioned herein may be trademarks of their respective companies. Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products.
    [Show full text]
  • Digital Technical Journal, Number 7, August 1988: CVAX
    Digital Technical Tournal Digital Equipment Corporation Managing Editor Richard W Beam Edltor Jane C. Dlak Pcoductloa St& Production Editor - Helen 1 Partenon Designer - Charlotte Bell Typographers -Jonathan M. Bohy Macgaret Burdine lllusultor - Deborah Kc~lcy Advisoiy Board Samuel H. Fuller, Chairman Robert M. Glorioso John W. McCredle Mahendra R. Patel F. Grant Saviers William D. Srrcckr Victor A. Vyssutsky The Digital Technical Journal is published by Digital Equipment Corporatloa, 77 Reed Road, Hudson, Magsachu~etts0 1749. Changes of address should be sent to Digital Equipment Corporation. attention: List Maintenance. I0 Forbes Road, Northboro, MA 01532 Please indude the address label wlth changes marked. Comments on the content of any paper arc welcomed. Write to the editor at Mall Stop HL02.3/K11 at the published~bpaddress. Comments can ahbe sent on the BNET to RDVAX: :BIAKEor on the ARPANET to B~%RDVAX.DE~DE~. Copyright @ 1988 Digital Equipment Corporation. Copying without fee is permitted provided that such copies are made for use in educational lnstltutions by faculty members and are nor distributed for commercial advantage. Abstncting with credit of Digital Equipment Corporation's authorship is permltted. Requests for other copies for a Pee may br made to Digiul Press of Digital Equipment Corporation. A11 rights reserved. The information in this journal is subject to change without notice and should not bc construed as a com- mltment by Digital Equipment Corporation. Digital Equipment Corpmtion assumes no responslbllity for any errors that may appcss in this document ISSN 0898.901X Documentatlcm Number EY-6742H-DP The following are wademarks of Digital Gquipmcnt Corporation: ALL.IN-I.
    [Show full text]
  • Chapter 1-Introduction to Microprocessors File
    Chapter 1 Introduction to Microprocessors Expected Outcomes Explain the role of the CPU, memory and I/O device in a computer Distinguish between the microprocessor and microcontroller Differentiate various form of programming languages Compare between CISC vs RISC and Von Neumann vs Harvard architecture NMKNYFKEEUMP Introduction A microprocessor is an integrated circuit built on a tiny piece of silicon It contains thousands or even millions of transistors which are interconnected via superfine traces of aluminum The transistors work together to store and manipulate data so that the microprocessor can perform a wide variety of useful functions The particular functions a microprocessor perform are dictated by software The first microprocessor was the Intel 4004 (16-pin) introduced in 1971 containing 2300 transistors with 46 instruction sets Power8 processor, by contrast, contains 4.2 billion transistors NMKNYFKEEUMP Introduction Computer is an electronic machine that perform arithmetic operation and logic in response to instructions written Computer requires hardware and software to function Hardware is electronic circuit boards that provide functionality of the system such as power supply, cable, etc CPU – Central Processing Unit/Microprocessor Memory – store all programming and data Input/Output device – the flow of information Software is a programming that control the system operation and facilitate the computer usage Programming is a group of instructions that inform the computer to perform certain task NMKNYFKEEUMP Introduction Computer
    [Show full text]
  • Alpha and VAX Comparison Based on Industry-Standard Benchmark
    Alpha and VAX Comparison based on Industry-standard Benchmark Results Digital Equipment Corporation December 1994 EC-N3909-10 Version 3.0 December 1994 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. Digital conducts its business in a manner that conserves the environment and protects the safety and health of its employees, customers, and the community. Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1 )(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227 7013. Copyright© 1994 Digital Equipment Corporation All rights reserved. Printed in U.S.A. The following are trademarks of Digital Equipment Corporation: AlphaServer, AlphaStation, AlphaGeneration, DEC, OpenVMS, VMS, ULTRIX, and the DIGITAL logo. The following are third-party trademarks: MIPS is a trademark of MIPS Computer Systems, Inc. TPC-A is a trademark of the Transaction Processing Performance Council. INFORMIX is a registered trademark of lnformix Software, Inc. OSF/1 is a registered trademark of the Open Software Foundation, Inc. ORACLE is a registered trademark of Oracle Corporation. SPEC, SPECfp92, and SPECratio are trademarks of Standard Performance Evaluation Corporation. MIPS is a trademark of MIPS Computer Systems, Inc. All other trademarks and registered
    [Show full text]