Cephalonega, a New Generic Name, and the System of Vendian Proarticulata A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ediacaran) of Earth – Nature’S Experiments
The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E. -
Contributions to the Neoproterozoic Geobiology
Contributions to the Neoproterozoic Geobiology Bing Shen Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Department of Geosciences Shuhai Xiao (Chair) Robert Bodnar Michal Kowalewski J. Fred Read November 29, 2007 Blacksburg, Virginia Key words: Neoproterozoic, Ediacaran, Ediacara fossils, China, Disparity, Sulfur isotope, Carbon isotope Copyright 2007, Bing Shen Contributions to the Neoproterozoic Geobiology Bing Shen Abstract This thesis makes several contributions to improve our understanding of the Neoproterozoic Paleobiology. In chapter 1, a comprehensive quantitative analysis of the Ediacara fossils indicates that the oldest Ediacara assemblage—the Avalon assemblage— already encompassed the full range of Ediacara morphospace. A comparable morphospace range was occupied by the subsequent White Sea and Nama assemblages, although it was populated differently. In contrast, taxonomic richness increased in the White Sea assemblage and declined in the Nama assemblage. The Avalon morphospace expansion mirrors the Cambrian explosion, and both may reflect similar underlying mechanisms. Chapter 2 describes problematic macrofossils collected from the Neoproterozoic slate of the upper Zhengmuguan Formation in North China and sandstone of the Zhoujieshan Formation in Chaidam. Some of these fossils were previously interpreted as animal traces. Our study of these fossils recognizes four genera and five species. None of these taxa can be interpreted as animal traces. Instead, they are problematic body fossils of unresolved phylogenetic affinities. Chapter 3 reports stable isotopes of the Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Our new data indicate that carbonate associated sulfate (CAS) abundance decreases rapidly in the basal 34 cap dolostone and δ SCAS composition varies between +9‰ and +15‰ in the lower 2.5 34 m. -
Geobiological Events in the Ediacaran Period
Geobiological Events in the Ediacaran Period Shuhai Xiao Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA NSF; NASA; PRF; NSFC; Virginia Tech Geobiology Group; CAS; UNLV; UCR; ASU; UMD; Amherst; Subcommission of Neoproterozoic Stratigraphy; 1 Goals To review biological (e.g., acanthomorphic acritarchs; animals; rangeomorphs; biomineralizing animals), chemical (e.g., carbon and sulfur isotopes, oxygenation of deep oceans), and climatic (e.g., glaciations) events in the Ediacaran Period; To discuss integration and future directions in Ediacaran geobiology; 2 Knoll and Walter, 1992 • Acanthomorphic acritarchs in early and Ediacara fauna in late Ediacaran Period; • Strong carbon isotope variations; • Varanger-Laplandian glaciation; • What has happened since 1992? 3 Age Constraints: South China (538.2±1.5 Ma) 541 Ma Cambrian Dengying Ediacaran Sinian 551.1±0.7 Ma Doushantuo 632.5±0.5 Ma 635 Ma 635.2±0.6 Ma Nantuo (Tillite) 636 ± 5Ma Cryogenian Nanhuan 654 ± 4Ma Datangpo 663±4 Ma Neoproterozoic Neoproterozoic Jiangkou Group Banxi Group 725±10 Ma Tonian Qingbaikouan 1000 Ma • South China radiometric ages: Condon et al., 2005; Hoffmann et al., 2004; Zhou et al., 2004; Bowring et al., 2007; S. Zhang et al., 2008; Q. Zhang et al., 2008; • Additional ages from Nama Group (Namibia), Conception Group (Newfoundland), and Vendian (White Sea); 4 The Ediacaran Period Ediacara fossils Cambrian 545 Ma Nama assemblage 555 Ma White Sea assemblage 565 Ma Avalon assemblage 575 Ma 585 Ma Doushantuo biota 595 Ma 605 Ma Ediacaran Period 615 Ma -
Alcheringa: an Australasian Journal of Palaeontology
This article was downloaded by:[University Of Oregon] On: 3 September 2007 Access Details: [subscription number 770397526] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Alcheringa: An Australasian Journal of Palaeontology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t770322720 Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil Online Publication Date: 01 September 2007 To cite this Article: Retallack, Gregory J. (2007) 'Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil', Alcheringa: An Australasian Journal of Palaeontology, 31:3, 215 - 240 To link to this article: DOI: 10.1080/03115510701484705 URL: http://dx.doi.org/10.1080/03115510701484705 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
Science Journals — AAAS
RESEARCH EARLY ANIMALS years. For instance, hopanes are the hydrocarbon remains of bacterial hopanepolyols, whereas sat- urated steranes and aromatic steroids are diage- Ancient steroids establish netic products of eukaryotic sterols. The most common sterols of Eukarya possess a cholester- oid, ergosteroid, or stigmasteroid skeleton with the Ediacaran fossil Dickinsonia 27, 28, or 29 carbon atoms, respectively. These C27 to C29 sterols, distinguished by the alkylation as one of the earliest animals patternatpositionC-24inthesterolsidechain, function as membrane modifiers and are widely 1 1 2 3 distributed across extant Eukarya, but their rela- Ilya Bobrovskiy *, Janet M. Hope , Andrey Ivantsov , Benjamin J. Nettersheim , 3,4 1 tive abundances can give clues about the source Christian Hallmann , Jochen J. Brocks * organisms (24). Apart from Dickinsonia (Fig.1B),whichis The enigmatic Ediacara biota (571 million to 541 million years ago) represents the first one of the most recognizable Ediacaran fossils, macroscopic complex organisms in the geological record and may hold the key to our dickinsoniids include Andiva (Fig. 1C and fig. understanding of the origin of animals. Ediacaran macrofossils are as “strange as life on S1), Vendia, Yorgia, and other flattened Edia- another planet” and have evaded taxonomic classification, with interpretations ranging from caran organisms with segmented metameric marine animals or giant single-celled protists to terrestrial lichens. Here, we show that lipid bodies and a median line along the body axes, biomarkers extracted from organically preserved Ediacaran macrofossils unambiguously separating the “segments.” The specimens for clarify their phylogeny. Dickinsonia and its relatives solely produced cholesteroids, a Downloaded from this study were collected from two surfaces in hallmark of animals. -
Back Matter (PDF)
Index Acraman impact ejecta layer 53–4, 117, 123, 126–9, Aspidella 130–2, 425–7 controversy 300, 301–3, 305 acritarchs ecology 303 Amadeus and Officer Basins 119 synonyms 302 biostratigraphy 115–25, 130–2 Australia Australian correlations 130–2 Acraman impact ejecta layer 53–4, 117, 123, 126–9, composite zonation scheme 119, 131, 132 130–2, 425–7 India 318–20 carbon isotope chemostratigraphy 126–9 Ireland 289 correlations of Ediacaran System and Period 18, Spain 232 115–35 sphaeromorphid 324 Marinoan glaciation 53–4, 126 Adelaide, Hallett Cove 68 Australia, Ediacaran System and Period Adelaide Rift Complex 115–22, 425 Bunyeroo–Wonoka Formation transition correlations with Officer Basin 127 137–9, 426 dating (Sr–Rb) 140 Centralian Superbasin 118, 125 generalized time–space diagram, correlations composite zonation scheme 131 between tectonic units 120 correlation methods and results 125–32 location maps 116, 118 time–space diagram 120 SE sector cumulative strata thickness 139 Vendian climatic indicators 17 stratigraphic correlation with Officer Basin 127 See also Adelaide Rift Complex; Flinders Ranges Stuart Shelf drill holes, correlations 117 Avalonian assemblages, Newfoundland 237–57, Sturtian (Umberatana) Group 116, 138 303–7, 427 Umberatana Group 116, 138 Africa backarc spreading, Altenfeld Formation 44–5, 47–8 Vendian climatic indicators 17 Baliana–Krol Group, NW Himalaya 319 see also Namibia Barut Formation, Iran 434 Aldanellidae 418 Bayesian analysis algal metaphyta, White Sea Region 271–4 eumetazoans 357–9 algal microfossils, White -
Traces of Locomotion of Ediacaran Macroorganisms
geosciences Article Traces of Locomotion of Ediacaran Macroorganisms Andrey Ivantsov 1,* , Aleksey Nagovitsyn 2 and Maria Zakrevskaya 1 1 Laboratory of the Precambrian Organisms, Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia; [email protected] 2 Arkhangelsk Regional Lore Museum, Arkhangelsk 163000, Russia; [email protected] * Correspondence: [email protected] Received: 21 August 2019; Accepted: 4 September 2019; Published: 11 September 2019 Abstract: We describe traces of macroorganisms in association with the body imprints of trace-producers from Ediacaran (Vendian) deposits of the southeastern White Sea region. They are interpreted as traces of locomotion and are not directly related to a food gathering. The complex remains belong to three species: Kimberella quadrata, Dickinsonia cf. menneri, and Tribrachidium heraldicum. They were found in three different burials. The traces have the form of narrow ridges or wide bands (grooves and linear depressions on natural imprints). In elongated Kimberella and Dickinsonia, the traces are stretched parallel to the longitudinal axis of the body and extend from its posterior end. In the case of the isometric Tribrachidium, the trace is directed away from the margin of the shield. A short length of the traces indicates that they were left by the organisms that were covered with the sediment just before their death. The traces overlaid the microbial mat with no clear signs of deformation under or around the traces. A trace substance, apparently, differed from the material of the bearing layers (i.e., a fine-grained sandstone or siltstone) and was not preserved on the imprints. This suggests that the traces were made with organic material, probably mucus, which was secreted by animals in a stressful situation. -
A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ............................................................................................... -
Identification of Culture-Negative Fungi in Blood and Respiratory Samples
IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers. -
Of Time and Taphonomy: Preservation in the Ediacaran
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. -
The Early History of the Metazoa—A Paleontologist's Viewpoint
ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons. -
The Influence of Environmental Setting on the Community Ecology of Ediacaran Organisms
bioRxiv preprint doi: https://doi.org/10.1101/861906; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The influence of environmental setting on the community ecology of Ediacaran organisms 2 3 Emily G. Mitchell1, Nikolai Bobkov2,3, Natalia Bykova2,4, Alavya Dhungana,5, Anton 4 Kolesnikov2,6, 7, Ian R. P. Hogarth8,9 Alexander G. Liu10, Tom M.R. Mustill10,11, Nikita 5 Sozonov2,3, Shuhai Xiao4 and Dmitriy V. Grazhdankin2,3 . 6 7 [email protected] 8 9 1Department of Zoology, University of Cambridge, UK. 10 2Institute of Petroleum Geology and Geophysics, Novosibirsk, Russian Federation. 11 3Novosibirsk State University, Russian Federation. 12 4Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, United States. 13 5 Department of Earth Sciences, Durham University, UK. 14 6Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation. 15 7Department of Geography, Moscow Pedagogical State University, Moscow, Russian 16 Federation. 17 8Department of Chemical Engineering, University of Cambridge, UK. 18 9Current address: University College London, UCL Institute for Innovation and Public 19 Purpose, UK. 20 10Department of Earth Sciences, University of Cambridge, UK. 21 11Current address: Gripping Films, St. John's Church Road, London, England, E9 6EJ. 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/861906; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.