Ediacaran) of Earth – Nature’S Experiments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Sponge Evolution: a Review and Phylogenetic Framework
Available online at www.sciencedirect.com ScienceDirect Palaeoworld 27 (2018) 1–29 Review Early sponge evolution: A review and phylogenetic framework a,b,∗ a Joseph P. Botting , Lucy A. Muir a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China b Department of Natural Sciences, Amgueddfa Cymru — National Museum Wales, Cathays Park, Cardiff CF10 3LP, UK Received 27 January 2017; received in revised form 12 May 2017; accepted 5 July 2017 Available online 13 July 2017 Abstract Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath. -
The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. -
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Soil: Our Common Ground – a Humanities Perspective
Soil: our common ground – a humanities perspective Rebecca Lines-Kelly NSW Dept of Primary Industries, Wollongbar Agricultural Institute, Bruxner Highway Wollongbar 2477, Australia. Email [email protected] Abstract The story of soil is essentially the story of humanity. The words ‘earth and ‘ground’ are among the oldest in human language. Soil is the basis of our ancient religions, and of all our civilisations, and for the past 10,000 years its destruction has been the precursor of different civilisations’ downfall. All human communities have a cultural, sensual and spiritual attachment to the soil, but Western society has lost this attachment because of material prosperity, disconnection from the land, and a scientific culture that has fractured soil and its meaning, and in so doing, put it out of the reach of non-scientists’ understanding. As the repository of most soil knowledge, soil scientists have an important role in reconnecting people to soil. Introduction I came to soils late. Twelve years ago my journalism experience earned me a job producing soils information for farmers. My academic background had focussed on literature, drama and psychology. I knew nothing about soils, despite the fact that I had spent my childhood in the country, and my father was an agricultural scientist. My employers were unperturbed. We have more than enough information about soils, they said, but it is not accessible to farmers. We want you to make it easy to understand. So I set to work, and the most extraordinary thing happened. I fell in love with soil. There is no other way to explain it. -
Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities. -
Cambrian Explosion Remains an Enigma for Organic Evolution: the Ediacaran Fauna: Much Ado About Ancient Lichens?
HOME GODTUBE BOOKSTORE YOUTUBE ESSAYS PANORAMIO VIDEOS FAQ PHOTOS LINKS BLOG GENESIS WEEK The Cambrian Explosion Remains an Enigma for Organic Evolution: The Ediacaran Fauna: Much Ado About Ancient Lichens? Author: John Woodmorappe Subject: Geology Date: John Woodmorappe's Articles About John Woodmorappe According to the conventional evolutionary-uniformitarian time scale of Earth history, multicellular organisms first appeared in abundance about 550 million years ago, in the "Big Bang of Evolution," the Cambrian explosion. But (again, according to the conventional time scale) a handful of odd multicellular organisms existed before the astonishing explosion of new forms in the Cambrian. These organisms, from the so- called Ediacaran fauna, named after the town of Ediacara in southern Australia where their fossil remains were discovered in 1947, are said to be 600 million years old. Figure 1 shows one well-known Ediacaran form, Dickinsonia.1 Now a novel interpretation of these puzzling fossils is generating considerable controversy within the paleontological community. Some scientists (notably the German paleontologist Adolf Seilacher and Harvard's Stephen Jay Gould) have suggested that the Ediacaran fauna--known also as the Vendozoa or Vendobionta (from the Vendian geological period in which they occur)--were "failed experiments" in the evolution of multicellular animals. Unlike the Cambrian organisms, these odd designs left no ancestors.2 But the novel interpretation, from University of Oregon paleontologist Gregory Retallack, suggests -
Lessons from the Fossil Record: the Ediacaran Radiation, the Cambrian Radiation, and the End-Permian Mass Extinction
OUP CORRECTED PROOF – FINAL, 06/21/12, SPi CHAPTER 5 Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction S tephen Q . D ornbos, M atthew E . C lapham, M argaret L . F raiser, and M arc L afl amme 5.1 Introduction and altering substrate consistency ( Thayer 1979 ; Seilacher and Pfl üger 1994 ). In addition, burrowing Ecologists studying modern communities and eco- organisms play a crucial role in modifying decom- systems are well aware of the relationship between position and enhancing nutrient cycling ( Solan et al. biodiversity and aspects of ecosystem functioning 2008 ). such as productivity (e.g. Tilman 1982 ; Rosenzweig Increased species richness often enhances ecosys- and Abramsky 1993 ; Mittelbach et al. 2001 ; Chase tem functioning, but a simple increase in diversity and Leibold 2002 ; Worm et al. 2002 ), but the pre- may not be the actual underlying driving mecha- dominant directionality of that relationship, nism; instead an increase in functional diversity, the whether biodiversity is a consequence of productiv- number of ecological roles present in a community, ity or vice versa, is a matter of debate ( Aarssen 1997 ; may be the proximal cause of enhanced functioning Tilman et al. 1997 ; Worm and Duffy 2003 ; van ( Tilman et al. 1997 ; Naeem 2002 ; Petchey and Gaston, Ruijven and Berendse 2005 ). Increased species rich- 2002 ). The relationship between species richness ness could result in increased productivity through (diversity) and functional diversity has important 1) interspecies facilitation and complementary implications for ecosystem functioning during resource use, 2) sampling effects such as a greater times of diversity loss, such as mass extinctions, chance of including a highly productive species in a because species with overlapping ecological roles diverse assemblage, or 3) a combination of biologi- can provide functional redundancy to maintain cal and stochastic factors ( Tilman et al. -
Ca. 760-Million-Year-Old Sponge-Like Fossils from Namibia
Page 1 of 8 Research Article The first animals: ca. 760-million-year-old sponge-like fossils from Namibia Authors: One of the most profound events in biospheric evolution was the emergence of animals, 1 C.K. ‘Bob’ Brain which is thought to have occurred some 600–650 Ma. Here we report on the discovery of Anthony R. Prave2 phosphatised body fossils that we interpret as ancient sponge-like fossils and term them Karl-Heinz Hoffmann3 Anthony E. Fallick4 Otavia antiqua gen. et sp. nov. The fossils are found in Namibia in rocks that range in age Andre Botha5 between about 760 Ma and 550 Ma. This age places the advent of animals some 100 to 150 2 Donald A. Herd million years earlier than proposed, and prior to the extreme climatic changes and postulated Craig Sturrock6 stepwise increases in oxygen levels of Ediacaran time. These findings support the predictions Iain Young7 Daniel J. Condon8 based on genetic sequencing and inferences drawn from biomarkers that the first animals Stuart G. Allison2 were sponges. Further, the deposition and burial of Otavia as sedimentary particles may have driven the large positive C-isotopic excursions and increases in oxygen levels that have been Affiliations: inferred for Neoproterozoic time. 1Ditsong Museum, Northern Flagship Institution, Pretoria, South Africa Introduction 2Department of Earth Sciences, University of St Evidence for the early evolution of animals has been documented from three main fossil Andrews, St Andrews, UK assemblages of Ediacaran age (635–542 Ma). The first assemblage consists of phosphatised -
Mcmenamin FM
The Garden of Ediacara • Frontispiece: The Nama Group, Aus, Namibia, August 9, 1993. From left to right, A. Seilacher, E. Seilacher, P. Seilacher, M. McMenamin, H. Luginsland, and F. Pflüger. Photograph by C. K. Brain. The Garden of Ediacara • Discovering the First Complex Life Mark A. S. McMenamin C Columbia University Press New York C Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1998 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data McMenamin, Mark A. The garden of Ediacara : discovering the first complex life / Mark A. S. McMenamin. p. cm. Includes bibliographical references and index. ISBN 0-231-10558-4 (cloth) — ISBN 0–231–10559–2 (pbk.) 1. Paleontology—Precambrian. 2. Fossils. I. Title. QE724.M364 1998 560'.171—dc21 97-38073 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 9 8 7 6 5 4 3 2 1 p 10 9 8 7 6 5 4 3 2 1 For Gene Foley Desert Rat par excellence and to the memory of Professor Gonzalo Vidal This page intentionally left blank Contents Foreword • ix Preface • xiii Acknowledgments • xv 1. Mystery Fossil 1 2. The Sand Menagerie 11 3. Vermiforma 47 4. The Nama Group 61 5. Back to the Garden 121 6. Cloudina 157 7. Ophrydium 167 8. Reunite Rodinia! 173 9. The Mexican Find: Sonora 1995 189 10. The Lost World 213 11. A Family Tree 225 12. Awareness of Ediacara 239 13. Revenge of the Mole Rats 255 Epilogue: Parallel Evolution • 279 Appendix • 283 Index • 285 This page intentionally left blank Foreword Dorion Sagan Virtually as soon as earth’s crust cools enough to be hospitable to life, we find evidence of life on its surface. -
New High‐Resolution Age Data from the Ediacaran–Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion
Received: 14 June 2018 | Revised: 6 October 2018 | Accepted: 19 October 2018 DOI: 10.1111/ter.12368 PAPER New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion Ulf Linnemann1 | Maria Ovtcharova2 | Urs Schaltegger2 | Andreas Gärtner1 | Michael Hautmann3 | Gerd Geyer4 | Patricia Vickers-Rich5,6,7 | Tom Rich6 | Birgit Plessen8 | Mandy Hofmann1 | Johannes Zieger1 | Rita Krause1 | Les Kriesfeld7 | Jeff Smith7 1Senckenberg Collections of Natural History Dresden, Museum of Mineralogy Abstract and Geology, Dresden, Germany The replacement of the late Precambrian Ediacaran biota by morphologically disparate 2Département des Sciences de la Terre, animals at the beginning of the Phanerozoic was a key event in the history of life on University of Geneva, Genève, Switzerland ‐ 3Paläontologisches Institut und Museum, Earth, the mechanisms and the time scales of which are not entirely understood. A Zürich, Switzerland composite section in Namibia providing biostratigraphic and chemostratigraphic data 4 Bayerische Julius-Maximilians-Universität, bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to Lehrstuhl für Geodynamik und Geomaterialforschung, Würzburg, Germany 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID 5Department of Chemistry and TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran Biotechnology, Swinburne University of Technology, Melbourne (Hawthorne), biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fos- Victoria, Australia sils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extre- 6 Museums Victoria, Melbourne, Victoria, mely short duration of the faunal transition from Ediacaran to Cambrian biota within Australia less than 410 ka supports models of ecological cascades that followed the evolution- 7School of Earth, Atmosphere and Environment, Monash University, ary breakthrough of increased mobility at the beginning of the Phanerozoic. -
High Ecological Complexity in Benthic Ediacaran Communities
ARTICLES https://doi.org/10.1038/s41559-018-0663-7 High ecological complexity in benthic Ediacaran communities Simon A. F. Darroch 1*, Marc Laflamme2 and Peter J. Wagner3 A long-running debate over the affinities of the Neoproterozoic ‘Ediacara biota’ has led to contrasting interpretations of Ediacaran ecosystem complexity. A ‘simple’ model assumes that most, if not all, Ediacaran organisms shared similar basic ecologies. A contrasting ‘complex’ model suggests that the Ediacara biota more likely represent organisms from a variety of different positions on the eukaryotic tree and thus occupied a wide range of different ecologies. We perform a quantitative test of Ediacaran ecosystem complexity using rank abundance distributions (RADs). We show that the Ediacara biota formed complex-type communities throughout much of their stratigraphic range and thus likely comprised species that competed for different resources and/or created niche for others (‘ecosystem engineers’). One possible explanation for this pattern rests in the recent inference of multiple metazoan-style feeding modes among the Ediacara biota; in this scenario, different Ediacaran groups/clades were engaged in different methods of nutrient collection and thus competed for different resources. This result illustrates that the Ediacara biota may not have been as bizarre as it is sometimes suggested, and provides an ecological link with the animal-dominated benthic ecosystems of the Palaeozoic era. he terminal Neoproterozoic Ediacara biota (570–541 Ma) number of basic resource types being partitioned13. One class of represents the first major radiation of large, morphologically RAD models supposes that species in a community compete for complex multicellular eukaryotes. Given their position at the roughly the same resources. -
Palaeobiology and Diversification of Proterozoic-Cambrian Photosynthetic Eukaryotes
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1308 Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9389-9 UPPSALA urn:nbn:se:uu:diva-265229 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, 752 36, Uppsala, Friday, 11 December 2015 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Shuhai Xiao (Geosciences, Virginia Polytechnic Institute and State University). Abstract Agić, H. 2015. Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1308. 47 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9389-9. One of the most important events in the history of life is the evolution of the complex, eukaryotic cell. The eukaryotes are complex organisms with membrane-bound intracellular structures, and they include a variety of both single-celled and multicellular organisms: plants, animals, fungi and various protists. The evolutionary origin of this group may be studied by direct evidence of past life: fossils. The oldest traces of eukaryotes have appeared by 2.4 billion years ago (Ga), and have additionally diversified in the period around 1.8 Ga. The Mesoproterozoic Era (1.6-1 Ga) is characterised by the first evidence of the appearance complex unicellular microfossils, as well as innovative morphologies, and the evolution of sexual reproduction and multicellularity. For a better understanding of the early eukaryotic evolution and diversification patterns, a part of this thesis has focused on the microfossil records from various time periods and geographic locations.