CHEMISTRY MODULE No. 30: Van-Vleck Equation Web Links

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Web links http://en.wikipedia.org/wiki/Magnetism http://electrons.wikidot.com/magnetism-iron-oxide-magnetite http://encyclopedia2.thefreedictionary.com/Lanthanides http://en.wikipedia.org/wiki/Lanthanide#Magnetic_and_spectroscopic http://www.radiochemistry.org/periodictable/la_series/L8.html Suggested Readings Miessler, G. L.; Tarr, D. A. (2003). Inorganic Chemistry (3rd ed.). Pearson Prentice Hall. ISBN 0-13-035471-6 Drago, R. S.Physical Methods In Chemistry. W.B. Saunders Company. ISBN 0721631843 (ISBN13: 9780721631844) Huheey, J. E.; Keiter, E.A. ; Keiter, R. L. ; Medhi O. K. Inorganic Chemistry: Principles of Structure and Reactivity.Pearson Education India, 2006 - Chemistry, Inorganic Carlin, R. L. Magnetochemistry. SPRINGER VERLAG GMBH. ISBN 10: 3642707351 / ISBN 13: 9783642707353 CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation SELWOOD, P. W. MAGNETOCHEMISIRY. Swinburne Press. ISBN 1443724890. Earnshaw, A. Introduction to Magnetochemistry Academic Press. ISBN 10: 1483255239 / ISBN 13: 9781483255231 Lacheisserie É, D. T. De; Gignoux, D., Schlenker, M. Magnetism CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation Time-Lines Timelines Image Description 1600 Dr. William Gilbert published the first systematic experiments on magnetism in "De Magnete". Source: http://en.wikipedia.org/wiki/William_ Gilbert_(astronomer) 1777 Charles-Augustin de Coulomb showed that the magnetic repulsion or attraction between magnetic poles varies inversely with the square of the distance r. http://en.wikipedia.org/wiki/Charles- Augustin_de_Coulomb 1819 Hans Christian Ørsted accidentally made the connection between magnetism and electricity discovering that a current carrying wire deflected a compass needle. http://en.wikipedia.org/wiki/Hans_Chr istian_%C3%98rsted CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation 1820 André-Marie Ampère discovered that the magnetic field circulating in a closed-path was related to the current flowing through the perimeter of the path. http://en.wikipedia.org/wiki/Andr%C3 %A9-Marie_Amp%C3%A8re 1820 http://en.wikipedia.org/wiki/Carl_Frie drich_Gauss Carl Friedrich Gauss; Jean-Baptiste Biot and Félix Savart, came up with the Biot–Savart law giving an equation for the magnetic field from a current-carrying wire. http://en.wikipedia.org/wiki/Jean- Baptiste_Biot http://www.appl- lachaise.net/appl/article.php3?id_articl e=682 CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation 1825 William Sturgeon invented the electromagnet. http://en.wikipedia.org/wiki/William_ Sturgeon 1831 Michael Faraday, found that a time- varying magnetic flux through a loop of wire induced a voltage, and others finding further links between magnetism and electricity. http://en.wikipedia.org/wiki/File:M_Fa raday_Th_Phillips_oil_1842.jpg 1831 Joseph Henry discovered electromagnetic induction independently of and at about the same time as Michael Faraday. In physics, and electronics, the henry (symbol H) is the SI derived unit of inductance. It is named after Joseph Henry. http://en.wikipedia.org/wiki/Joseph_H enry 1861 James Clerk Maxwell, a Scottish mathematical physicist, proposed a set of mathematical equations describing physical explanation of electricity and magnetism. http://en.wikipedia.org/wiki/James_Cl erk_Maxwell CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation 1880 E. Warburg produced the first hysteresis loop for iron. http://en.wikipedia.org/wiki/Emil_War burg 1885 Oliver Heaviside coined the term Magnetic permeability. http://en.wikipedia.org/wiki/Oliver_He aviside 1895 Pierre Curie proposed Curie law. http://en.wikipedia.org/wiki/Pierre_Cu rie 1905 Paul Langevin explained the theory of diamagnetism and paramagnetism. http://en.wikipedia.org/wiki/Paul_Lan gevin 1906 Pierre-Ernest Weiss proposed ferromagnetic theory. CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation http://theor.jinr.ru/~kuzemsky/pwbio.h tml 1920's John Hasbrouck Van Vleck developed the physics of magnetism with theories involving electron spins and exchange interactions; the beginnings of quantum mechanics. In 1932, He wrote a book on “Theory of Electric and Magnetic http://en.wikipedia.org/wiki/John_Has Susceptibilities”. brouck_Van_Vleck 1932 Louis Eugène Félix Néel suggested a new form of magnetic behavior called antiferromagnetism. In 1947, Néel discovered ferrimagnetism in some materials. http://en.wikipedia.org/wiki/Louis_N %C3%A9el Biographic sketch Description Image John Hasbrouck Van Vleck, an American Physicist and Mathematician He was cowinner of the 1977 Nobel Prize for his contributions in Physics. He got Nobel Prize for his fundamental theoretical investigations of the electronic structure of magnetic and disordered systems. His father, Edward Burr Van Vleck was a mathematician, and grandfather, John Monroe Van Vleck, was astronomer. J.H. Van Vleck established the fundamentals of the quantum mechanical theory of magnetism and the crystal CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation field theory. He is regarded as the Father of Modern Magnetism. During Second World War, he worked on radar at the Radiation Lab in Massachusetts Institute of Technology. He showed that at about 1.25 cm wavelength water molecules and 0.5 cm wavelength oxygen molecules in the atmosphere would lead to troublesome absorption. This was very useful information for military radar systems and for the new science of radioastronomy. Born 13 March 1899 Middletown, Connecticut Died 27 October 1980 Cambridge, Massachusetts Source: http://www.nobelprize.org/nobel_prizes/physics/laureates/1977/vleck-bio.html Did You Know? Rare Earth Garnets are complex oxides having the general formula A3B2X3O12. For rare earth garnets, A site is usually distorted cubic environment, however, B/X sites are octahedral & tetrahedral sites. The unit cell of Garnet contains approximately 128 atoms. Rare Earth Garnets show interesting magnetic properties. For example, 1. Yttrium iron garnet (YIG): Chemical composition Y3Fe2(FeO4)3, or Y3Fe5O12. It is a ferrimagnetic material with a Curie temperature of 550 K. YIG is used in microwave, optical, and magneto-optical applications. 2. Gadolinium Gallium Garnet (GGG): Chemical composition Gd3Ga5O12. It is a synthetic crystalline material of the garnet group, with good mechanical, thermal, and optical properties. It is used in fabrication of various optical components and as substrate material for magneto–optical films. 3. Terbium gallium garnet (TGG): Chemical composition Tb3Ga5O12.This is a Faraday rotator material with excellent transparency properties and is very resistant to laser damage. TGG can be used in optical isolators for laser systems, in optical circulators for fiber optic systems, in optical modulators, and in current and magnetic field sensors. CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No. 30: Van-Vleck equation .
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry

    Magnetism, Magnetic Properties, Magnetochemistry

    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
  • April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018

    April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018

    april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities.
  • UC San Diego UC San Diego Electronic Theses and Dissertations

    UC San Diego UC San Diego Electronic Theses and Dissertations

    UC San Diego UC San Diego Electronic Theses and Dissertations Title The new prophet : Harold C. Urey, scientist, atheist, and defender of religion Permalink https://escholarship.org/uc/item/3j80v92j Author Shindell, Matthew Benjamin Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The New Prophet: Harold C. Urey, Scientist, Atheist, and Defender of Religion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew Benjamin Shindell Committee in charge: Professor Naomi Oreskes, Chair Professor Robert Edelman Professor Martha Lampland Professor Charles Thorpe Professor Robert Westman 2011 Copyright Matthew Benjamin Shindell, 2011 All rights reserved. The Dissertation of Matthew Benjamin Shindell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page……………………………………………………………………...... iii Table of Contents……………………………………………………………………. iv Acknowledgements………………………………………………………………….
  • Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016

    Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016

    . Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016 Table of Contents Page 1-Mathematics Department Mathematics Programs 1 Diplomas Professional Diploma in Applied Statistics 2 Professional Diploma in Bioinformatics 3 M.Sc. Degree M.Sc. Degree in Pure Mathematics 4 M.Sc. Degree in Applied Mathematics 5 M.Sc. Degree in Mathematical Statistics 6 M.Sc. Degree in Computer Science 7 M.Sc. Degree in Scientific Computing 8 Ph.D. Degree Ph. D. Degree in Pure Mathematics 9 Ph. D Degree in Applied Mathematics 10 Ph. D. Degree in Mathematical Statistics 11 Ph. D Degree in Computer Science 12 Ph. D Degree in Scientific Computing 13 2- Physics Department Physics Programs 14 Diplomas Diploma in Medical Physics 15 M.Sc. Degree M.Sc. Degree in Solid State Physics 16 M.Sc. Degree in Nanomaterials 17 M.Sc. Degree in Nuclear Physics 18 M.Sc. Degree in Radiation Physics 19 M.Sc. Degree in Plasma Physics 20 M.Sc. Degree in Laser Physics 21 M.Sc. Degree in Theoretical Physics 22 M.Sc. Degree in Medical Physics 23 Ph.D. Degree Ph.D. Degree in Solid State Physics 24 Ph.D. Degree in Nanomaterials 25 Ph.D. Degree in Nuclear Physics 26 Ph.D. Degree in Radiation Physics 27 Ph.D. Degree in Plasma Physics 28 Ph.D. Degree in Laser Physics 29 Ph.D. Degree in Theoretical Physics 30 3- Chemistry Department Chemistry Programs 31 Diplomas Professional Diploma in Biochemistry 32 Professional Diploma in Quality Control 33 Professional Diploma in Applied Forensic Chemistry 34 Professional Diploma in Applied Organic Chemistry 35 Environmental Analytical Chemistry Diploma 36 M.Sc.
  • Supplementary Figure 1: Interconnected Multiplex with Six Nodes in Two Layers (A and D) and Corresponding Aggregated Networks (B and E)

    Supplementary Figure 1: Interconnected Multiplex with Six Nodes in Two Layers (A and D) and Corresponding Aggregated Networks (B and E)

    Supplementary Figure 1: Interconnected multiplex with six nodes in two layers (A and D) and corresponding aggregated networks (B and E). The nodes are ranked by their eigenvector centrality in each layer separately, in the aggregated and in the whole interconnected structure (C and F). Case A, B and C. Nodes 1 and 3 have a key role in the multilayer, being bridges between the two layers. In a collaboration network they would represent scientists working on two different research areas who allow information to flow from one subject to the other. While nodes 1 and 3 gain centrality from their connections to \hubs" on different layers, they also gain centrality from their own counterparts in other layers, making them important in the multilayer network. In the aggregated network their versatility disappears, because the information is washed out by projecting on a single layer, where nodes 2 and 6 are still \hubs" but it is not possible to capture the importance of nodes 1 and 3 in bridging different areas. Case D, E and F. This example shows how aggregating the full information on a single network introduces a spurious symmetry between nodes 2, 3, 4 and 6 that is not present in the multilayer, except for 2 and 4. The resulting score in the aggregate is not able to capture the difference between these nodes (corresponding to a degeneration in the eigenspace) while it is evident that, for instance, node 6 is more central than node 3 because of its direct connection to node 1 { the \hub" { in layer 1.
  • Communications-Mathematics and Applied Mathematics/Download/8110

    Communications-Mathematics and Applied Mathematics/Download/8110

    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
  • CHEMISTRY MODULE No.31 : Magnetic Properties of Transition

    CHEMISTRY MODULE No.31 : Magnetic Properties of Transition

    Web links http://en.wikipedia.org/wiki/Magnetism http://wwwchem.uwimona.edu.jm/courses/magnetism.html https://www.boundless.com/chemistry/textbooks/boundless-chemistry-textbook/transition- metals-22/bonding-in-coordination-compounds-crystal-field-theory-160/magnetic-properties- 616-6882/ http://en.wikipedia.org/wiki/Transition_metal http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Crystal_Field_Theory/Crystal_Field_Theo ry/Magnetic_Properties_of_Coordination_Complexes Suggested Readings Miessler, G. L.; Tarr, D. A. (2003). Inorganic Chemistry (3rd ed.). Pearson Prentice Hall. ISBN 0-13-035471-6 Drago, R. S.Physical Methods In Chemistry. W.B. Saunders Company. ISBN 0721631843 (ISBN13: 9780721631844) Huheey, J. E.; Keiter, E.A. ; Keiter, R. L. ; Medhi O. K. Inorganic Chemistry: Principles of Structure and Reactivity.Pearson Education India, 2006 - Chemistry, Inorganic CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No.31 : Magnetic properties of transition metal ions Carlin, R. L. Magnetochemistry. SPRINGER VERLAG GMBH. ISBN 10: 3642707351 / ISBN 13: 9783642707353 SELWOOD, P. W. MAGNETOCHEMISIRY. Swinburne Press. ISBN 1443724890. Earnshaw, A. Introduction to Magnetochemistry Academic Press. ISBN 10: 1483255239 / ISBN 13: 9781483255231 Lacheisserie É, D. T. De; Gignoux, D., Schlenker, M. Magnetism Time-Lines Timeline Image Description s 1600 Dr. William Gilbert published the first systematic experiments on magnetism in "De Magnete". Source: http://en.wikipedia.org/wiki/William_Gilbert_(astronomer) CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No.31 : Magnetic properties of transition metal ions 1777 Charles-Augustin de Coulomb showed that the magnetic repulsion or attraction between magnetic poles varies inversely with the square of the http://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb distance r.
  • Department of Chemistry Faculty of Science

    Department of Chemistry Faculty of Science

    M.Phil./Ph.D. Syllabus DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE THE UNIVERSITY OF RAJSHAHI Syllabus for The Degree of Master of Philosophy (M.Phil.)/ Doctor of Philosophy (Ph.D.) in Chemistry Session: 2017-2018 Department of Chemistry, University of Rajshahi January, 2018 DEPARTMENT OF CHEMISTRY Syllabus for M. Phil / Ph.D. Courses The following courses each of 100 marks are designed for M..Phil / Ph.D. students as per ordinance passed by the Academic Council held on 17-18/10-98 (decision no. 37 of 196th Academic Council) and approved by the Syndicate at its 351st meeting held on 22/10/98. Course Number Course Title Chem 611 Physical Chemistry - X Chem 612 Physical Chemistry - XI Chem 613 Physical Chemistry - XII Chem 621 Organic Chemistry - VIII Chem 622 Organic Chemistry - IX Chem 623 Industrial Chemistry - II Chem 631 Inorganic Chemistry - IX Chem 632 Inorganic Chemistry - X Chem 633 Analytical Chemistry – II Chem 634 Bioinorganic Chemistry * Marks Distribution: (a) Close Book Examination : 75 (b) Class Assessment : 25 A student must complete two courses out of the above ten courses. The courses will be assigned to a research fellow on the recommendation of supervisor(s) and approved by the departmental Chairman / Academic Committee. 1 Course : Chem 611 Physical Chemistry-X Examination : 4 hours Full marks : 100 1. Physical Properties of Gases: Kinetic molecular theory, equation of states and transport phenomena of gases. 2. Chemical Thermodynamics: Thermochemistry, statistical thermodynamics, non-equilibrium or reversible thermodynamics. 3. Chemical Equilibria, Phase Rule and Distribution law. 4. Electrochemistry:Electrolytic conductance, electrolytic transference and Ionic equilibria. 5.
  • Edward B. Van Vleck 1863‐1943

    Edward B. Van Vleck 1863‐1943

    Remembering Van: Three Madison families and other tales “Van had many enthusiasms and loyalties, but none exceeded those he felt for the University of Wisconsin and its home, Madison.” 1 Charles Van Hise Born in 1857, Charles Van Hise was a distinguished geologist who had been elected to the National Academy of Sciences in 1902. In 1903, he was named President of the University of Wisconsin 2 In 1904, Van Hise recruited Charles Russell Bardeen, a member of the first class to graduate of the Johns Hopkins Medical School, to found a medical school at the University of Wisconsin John Bardeen is at the right hand end. His grandfather, Charles W Bardeen, is second from the left. 3 Charles Sumner Slichter 1864-1946 In 1906, Van Hise appointed Charles S. Slichter head of the math department. An applied mathematician with interests in flow of liquids through porous media, Slichter realized the department needed to strengthen the faculty in pure mathematics. 4 Edward B. Van Vleck 1863‐1943 Edward B Van Vleck, had earned a PhD in mathematics at Gottingen in1893, and was a member of the National Academy of Sciences. Slichter’s first action as department head was to recruit Van Vleck to bring strength in pure mathematics. 5 John Hasbrouck Van Vleck was born in 1899. His interest in trains began at a early age. Van attended his first Wisconsin football game at age 10.(Wisconsin vs Minnesota) It was the first game at which the band played the famous song “On Wisconsin”. As an undergraduate at Wisconsin, Van played flute In the band.
  • Report and Opinion 2016;8(6) 1

    Report and Opinion 2016;8(6) 1

    Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can
  • Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6

    Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6

    Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand Olivier Galangau, J González, Vincent Montigaud, Vincent Dorcet, Boris Le Guennic, Olivier Cador, Fabrice Pointillart To cite this version: Olivier Galangau, J González, Vincent Montigaud, Vincent Dorcet, Boris Le Guennic, et al.. Dys- prosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand. Magnetochemistry, MDPI, 2020, 6 (2), pp.19. 10.3390/magnetochemistry6020019. hal-02957777 HAL Id: hal-02957777 https://hal.archives-ouvertes.fr/hal-02957777 Submitted on 5 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License magnetochemistry Article Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand Olivier Galangau , Jessica Flores Gonzalez, Vincent Montigaud, Vincent Dorcet, Boris le Guennic , Olivier Cador and Fabrice Pointillart * Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France; [email protected]
  • Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A

    Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A

    Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre Botas, Dominique Luneau, Yannick Guari, Luis D. Carlos, Joulia Larionova To cite this version: Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre Botas, Dominique Luneau, et al.. Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry, MDPI, 2016, 2 (4), pp.41. 10.3390/magnetochemistry2040041. hal-01399122 HAL Id: hal-01399122 https://hal.archives-ouvertes.fr/hal-01399122 Submitted on 13 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. magnetochemistry Article Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova 1, Jérôme Long 1,*, Rute A. S. Ferreira 2, Alexandre M. P. Botas 2,3, Dominique Luneau 4, Yannick Guari 1, Luis D. Carlos 2 and Joulia Larionova 1 1 Institut Charles Gerhardt Montpellier, UMR 5253, Ingénierie Moléculaire et Nano-Objects, Université de Montpellier,