The SPARC Architecture Manual

Total Page:16

File Type:pdf, Size:1020Kb

The SPARC Architecture Manual The SPARC Architecture Manual Version 8 Revision SAV080SI9308 The SPARC Architecture Manual Version 8 Revision SAV080SI9308 SPARC International Inc. 535 Middlefield Road, Suite 210 Menlo Park, CA 94025 415-321-8692 SPARC International, Inc. SPARC® is a registered trademark of SPARC International, Inc. The SPARC logo is a registered trademark of SPARC International, Inc. UNIX® and OPEN LOOK® are registered trademarks of UNIX System Labora- tories, Inc. Copyright © 1991,1992 SPARC International, Inc. − Printed in U.S.A. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in similar clauses in the FAR and NASA FAR Supplement. Contents Chapter 1 Introduction .......................................................................................................... 1 1.1. SPARC Attributes ........................................................................................................... 1 Design Goals ................................................................................................................... 1 Register Windows ........................................................................................................ 1 1.2. SPARC System Components .................................................................................... 2 Reference MMU ............................................................................................................ 2 Supervisor Software .................................................................................................... 2 Memory Model .............................................................................................................. 2 1.3. SPARC Compliance Definitions ............................................................................. 2 1.4. SPARC Features .............................................................................................................. 3 1.5. Conformability to SPARC ......................................................................................... 4 1.6. Fonts in Manual ................................................................................................................ 4 1.7. Notes ....................................................................................................................................... 5 1.8. Glossary ................................................................................................................................ 5 1.9. References ............................................................................................................................ 7 Chapter 2 Overview ................................................................................................................ 9 2.1. SPARC Processor ............................................................................................................ 9 Integer Unit (IU) ............................................................................................................ 9 Floating-point Unit (FPU) ....................................................................................... 10 Coprocessor (CP) .......................................................................................................... 10 2.2. Instructions .......................................................................................................................... 11 Load/Store ......................................................................................................................... 11 Alignment Restrictions ........................................................................................ 11 − v − Contents — Continued Addressing Conventions ..................................................................................... 11 Load/Store Alternate ............................................................................................. 11 Separate I&D Memories ...................................................................................... 12 Arithmetic/Logical/Shift .......................................................................................... 12 Control Transfer ............................................................................................................ 12 State Register Access ................................................................................................. 13 Floating-Point/Coprocessor Operate ................................................................. 13 2.3. Memory Model ................................................................................................................. 13 Input/Output ..................................................................................................................... 14 2.4. Traps ....................................................................................................................................... 14 Trap Categories .............................................................................................................. 14 Chapter 3 Data Formats ....................................................................................................... 17 Chapter 4 Registers ................................................................................................................. 23 4.1. IU r Registers ..................................................................................................................... 23 Windowed r Registers ................................................................................................ 24 Overlapping of Windows ......................................................................................... 24 Doubleword Operands ............................................................................................... 25 Special r Registers ........................................................................................................ 25 Register Usage ................................................................................................................ 25 4.2. IU Control/Status Registers ....................................................................................... 28 Processor State Register (PSR) ............................................................................. 28 PSR_implementation (impl) .............................................................................. 28 PSR_version (ver) ................................................................................................... 28 PSR_integer_cond_codes (icc) ........................................................................ 28 PSR_negative (n) ..................................................................................................... 28 PSR_zero (z) ............................................................................................................... 29 PSR_overflow (v) .................................................................................................... 29 PSR_carry (c) ............................................................................................................ 29 PSR_reserved ............................................................................................................. 29 PSR_enable_coprocessor (EC) ........................................................................ 29 PSR_enable_floating-point (EF) .................................................................... 29 − vi − Contents — Continued PSR_proc_interrupt_level (PIL) ..................................................................... 29 PSR_supervisor (S) ................................................................................................ 29 PSR_previous_supervisor (PS) ....................................................................... 29 PSR_enable_traps (ET) ........................................................................................ 29 PSR_current_window_pointer (CWP) ........................................................ 29 Window Invalid Mask Register (WIM) ........................................................... 30 Trap Base Register (TBR) ....................................................................................... 31 TBR_trap_base_address (TBA) ...................................................................... 31 TBR_trap_type (tt) ................................................................................................. 31 TBR_zero (0) ............................................................................................................. 31 Multiply/Divide Register (Y) ................................................................................. 32 Program Counters (PC, nPC) ................................................................................. 32 Ancillary State Registers (ASR) .......................................................................... 32 IU Deferred-Trap Queue ........................................................................................... 33 4.3. FPU f Registers ................................................................................................................. 33 Double
Recommended publications
  • Validated Products List, 1995 No. 3: Programming Languages, Database
    NISTIR 5693 (Supersedes NISTIR 5629) VALIDATED PRODUCTS LIST Volume 1 1995 No. 3 Programming Languages Database Language SQL Graphics POSIX Computer Security Judy B. Kailey Product Data - IGES Editor U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 July 1995 QC 100 NIST .056 NO. 5693 1995 NISTIR 5693 (Supersedes NISTIR 5629) VALIDATED PRODUCTS LIST Volume 1 1995 No. 3 Programming Languages Database Language SQL Graphics POSIX Computer Security Judy B. Kailey Product Data - IGES Editor U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 July 1995 (Supersedes April 1995 issue) U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director FOREWORD The Validated Products List (VPL) identifies information technology products that have been tested for conformance to Federal Information Processing Standards (FIPS) in accordance with Computer Systems Laboratory (CSL) conformance testing procedures, and have a current validation certificate or registered test report. The VPL also contains information about the organizations, test methods and procedures that support the validation programs for the FIPS identified in this document. The VPL includes computer language processors for programming languages COBOL, Fortran, Ada, Pascal, C, M[UMPS], and database language SQL; computer graphic implementations for GKS, COM, PHIGS, and Raster Graphics; operating system implementations for POSIX; Open Systems Interconnection implementations; and computer security implementations for DES, MAC and Key Management.
    [Show full text]
  • SPARC/IOBP-CPU-56 Installation Guide
    SPARC/IOBP-CPU-56 Installation Guide P/N 220226 Revision AB September 2003 Copyright The information in this publication is subject to change without notice. Force Computers, GmbH reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance, or design. Force Computers, GmbH shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, incidental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is provided "as is" and Force Computers, GmbH expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non−infringement. This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers, GmbH. Force Computers, GmbH assumes no responsibility for the use of any circuitry other than circuitry that is part of a product of Force Computers, GmbH. Force Computers, GmbH does not convey to the purchaser of the product described herein any license under the patent rights of Force Computers, GmbH nor the rights of others. CopyrightE 2003 by Force Computers, GmbH. All rights reserved. The Force logo is a trademark of Force Computers, GmbH. IEEER is a registered trademark of the Institute for Electrical and Electronics Engineers, Inc. PICMGR, CompactPCIR, and the CompactPCI logo are registered trademarks and the PICMG logo is a trademark of the PCI Industrial Computer Manufacturer’s Group.
    [Show full text]
  • Risc I: a Reduced Instruction Set Vlsi Computer
    RISC I: A REDUCED INSTRUCTION SET VLSI COMPUTER DAVID A. PATTERSON and CARLO H. SEQUIN Computer Science Division University of California Berkeley, California ABSTRACT to implement CISC is the best way to use this “scarce” resource. The Reduced Instruction Set Computer (RISC) Project investigates an alternatrve to the general trend toward computers wrth increasingly complex instruction sets: With a The above findings led to the Reduced Instruction Set proper set of instructions and a corresponding architectural Computer (RISC) Project. The purpose of the project is design, a machine wrth a high effective throughput can be to explore alternatives to the general trend toward achieved. The simplicity of the instruction set and addressing architectural complexity. The hypothesis is that by modes allows most Instructions to execute in a single machine cycle, and the srmplicity of each instruction guarantees a short reducing the instruction set, VLSI architecture can be cycle time. In addition, such a machine should have a much designed that uses the scarce resources more effectively shorter design trme. than CISC. We also expect this approach to reduce design time, the number of design errors, and the This paper presents the architecture of RISC I and its novel execution time of individual instructions. hardware support scheme for procedure call/return. Overlapprng sets of regrster banks that can pass parameters directly to subrouttnes are largely responsible for the excellent Our initial version of such a computer is called RISC I. performance of RISC I. Static and dynamtc comparisons To meet our goals of simplicity and effective single-chip between this new architecture and more traditional machines implementation, we placed the following “constraints” are given.
    [Show full text]
  • Computer Architecture and Assembly Language
    Computer Architecture and Assembly Language Gabriel Laskar EPITA 2015 License I Copyright c 2004-2005, ACU, Benoit Perrot I Copyright c 2004-2008, Alexandre Becoulet I Copyright c 2009-2013, Nicolas Pouillon I Copyright c 2014, Joël Porquet I Copyright c 2015, Gabriel Laskar Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being just ‘‘Copying this document’’, no Front-Cover Texts, and no Back-Cover Texts. Introduction Part I Introduction Gabriel Laskar (EPITA) CAAL 2015 3 / 378 Introduction Problem definition 1: Introduction Problem definition Outline Gabriel Laskar (EPITA) CAAL 2015 4 / 378 Introduction Problem definition What are we trying to learn? Computer Architecture What is in the hardware? I A bit of history of computers, current machines I Concepts and conventions: processing, memory, communication, optimization How does a machine run code? I Program execution model I Memory mapping, OS support Gabriel Laskar (EPITA) CAAL 2015 5 / 378 Introduction Problem definition What are we trying to learn? Assembly Language How to “talk” with the machine directly? I Mechanisms involved I Assembly language structure and usage I Low-level assembly language features I C inline assembly Gabriel Laskar (EPITA) CAAL 2015 6 / 378 I Programmers I Wise managers Introduction Problem definition Who do I talk to? I System gurus I Low-level enthusiasts Gabriel Laskar (EPITA) CAAL
    [Show full text]
  • Overview of the SPEC Benchmarks
    9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes.
    [Show full text]
  • LSU EE 4720 Homework 1 Solution Due: 3 March 2006
    LSU EE 4720 Homework 1 Solution Due: 3 March 2006 Several Web links appear below and at least one is long, to avoid the tedium of typing them view the assignment in Adobe reader and click. Problem 1: Consider these add instructions in three common ISAs. (Use the ISA manuals linked to the references page, http://www.ece.lsu.edu/ee4720/reference.html.) # MIPS64 addu r1, r2, r3 # SPARC V9 add g2, g3, g1 # PA RISC 2 add r1, r2, r3 (a) Show the encoding (binary form) for each instruction. Show the value of as many bits as possible. Codings shown below. For PA-RISC the ea, ec, and ed ¯elds are labeled e1, e2, and e3, respectively in the instruction descriptions. There is no label for the eb ¯eld in the instruction description of the add and yes it would make sense to use e0 instead of e1 but they didn't for whatever reason. opcode rs rt rd sa func MIPS64: 0 2 3 1 0 0x21 31 26 25 21 20 16 15 11 10 6 5 0 op rd op3 rs1 i asi rs2 SPARC V9: 2 1 0 2 0 0 3 31 30 29 25 24 19 18 14 13 13 12 5 4 0 OPCD r2 r1 c f ea eb ec ed d t PA-RISC 2: 2 3 2 0 0 01 1 0 00 0 1 0 5 6 10 11 15 16 18 19 19 20 21 22 22 23 23 24 25 26 26 27 31 (b) Identify the ¯eld or ¯elds in the SPARC add instruction which are the closest equivalent to MIPS' func ¯eld.
    [Show full text]
  • Ross Technology RT6224K User Manual 1 (Pdf)
    Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Ross Technology RT6224K-200/512S at our website: Click HERE 830-0016-03 Rev A 11/15/96 PRELIMINARY Colorado 4 RT6224K hyperSPARC CPU Module Features D Based on ROSS’ fifth-generation D SPARC compliant — Zero-wait-state, 512-Kbyte or hyperSPARC processor — SPARC Instruction Set Architec- 1-Mbyte 2nd-level cache — RT620D Central Processing Unit ture (ISA) Version 8 compliant — Demand-paged virtual memory (CPU) — Conforms to SPARC Reference management — RT626 Cache Controller, Memory MMU Architecture D Module design Management, and Tag Unit — Conforms to SPARC Level 2 MBus — MBus-standard form factor: 3.30” (CMTU) Module Specification (Revision 1.2) (8.34 cm) x 5.78” (14.67 cm) — Four (512-Kbyte) or eight D Dual-clock architecture — Provides CPU upgrade path at (1-Mbyte) RT628 Cache Data Units module level (CDUs) Ċ CPU scaleable up to
    [Show full text]
  • SPARC Assembly Language Reference Manual
    SPARC Assembly Language Reference Manual 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc.
    [Show full text]
  • FUJITSU LIMITED Annual Report 2002
    FUJITSU LIMITED Annual Report 2002 FUJITSU LIMITED Annual Report 2002 Annual Report 2002 CONTENTS Consolidated Financial Highlights 1 To Our Shareholders 2 Solution Profiles 10 Environmental Activities 14 Social Contributions 15 Management 16 Five-Year Summary 18 Management’s Discussion and Analysis of Operations 19 Consolidated Balance Sheets 24 Consolidated Statements of Operations 26 Consolidated Statements of Shareholders’ Equity 27 Consolidated Statements of Cash Flows 28 Notes to Consolidated Financial Statements 29 Independent Auditors’ Report 46 Principal Subsidiaries and Affiliates 47 Consolidated Financial Highlights Yen U.S. Dollars (millions) (millions) Fujitsu Limited and Consolidated Subsidiaries (except per share data) (except per share data) Years ended March 31 2001 2002 2002 For the year: Net sales ¥5,484,426 ¥ 5,006,977 $37,646 Operating income 244,026 (74,426) (560) Income before income taxes and minority interests 157,564 (594,733) (4,472) Net income 8,521 (382,542) (2,876) Cash flows from operating activities 596,462 306,571 2,305 Per share (Yen and U.S. dollars): Earnings Basic ¥ 4.3 ¥ (193.0) $ (1.451) Diluted 4.3 (193.0) (1.451) Cash flows from operating activities 302.9 154.7 1.163 Cash dividends 10.0 5.0 0.038 Cash dividends to face value 20% 10%10% At year-end: Shareholders' equity ¥1,214,383 ¥ 853,756 $ 6,419 Total assets 5,200,071 4,595,804 34,555 Note: The U.S. dollar amounts above have been translated from yen, for convenience only, at the rate of ¥133 = US$1, the approximate Tokyo foreign exchange market rate on March 31, 2002.
    [Show full text]
  • DE86 006665 Comparison of the CRAY X-MP-4, Fujitsu VP-200, And
    Distribution Category: Mathematics and Computers General (UC-32) ANL--85-1 9 DE86 006665 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Comparison of the CRAY X-MP-4, Fujitsu VP-200, and Hitachi S-810/20: An Argonne Perspcctive Jack J. Dongarra Mathematics and Computer Science Division and Alan Hinds Computing Services October 1985 DISCLAIMER This report was prepared as an account of work sponsored by an agency o h ntdSae Government. Neither the United States Government nor any agency of the United States employees, makes any warranty, express or implied, or assumes ancy thereof, nor any of their bility for the accuracy, completeness, or usefulness of any informany legal liability or responsi- process disclosed, or represents that its use would nyinformation, apparatus, product, or ence enceherinherein tooay any specificcomriseii commercial rdt not infringe privately owned rights. Refer- product, process, or service by trade name, trademak manufacturer, or otherwise does not necessarily constitute or imply itsenrme, r ark, mendation, or favoring by the United States Government or any ag endorsement, recom- and opinions of authors expressed herein do not necessarily st agency thereof. The views United States Government or any agency thereof.ry to or reflect those of the DISTRIBUTION OF THIS DOCUMENT IS UNLIMITE Table of Contents List of Tables v List of Figures v Abstract 1 1. Introduction 1 2. Architectures 1 2.1 CRAY X-MP 2 2.2 Fujitsu VP-200 4 2.3 Hitachi S-810/20 6 3. Comparison of Computers 8 3.1 IBM Compatibility
    [Show full text]
  • VME for Experiments Chairman: Junsei Chiba (KEK)
    KEK Report 89-26 March 1990 D PROCEEDINGS of SYMPOSIUM on Data Acquisition and Processing for Next Generation Experiments 9 -10 March 1989 KEK, Tsukuba Edited by H. FUJII, J. CHIBA and Y. WATASE NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS PROCEEDINGS of SYMPOSIUM on Data Acquisition and Processing for Next Generation Experiments 9 - 10 March 1989 KEK, Tsukuba Edited H. Fiflii, J. Chiba andY. Watase i National Laboratory for High Energy Physics, 1990 KEK Reports are available from: Technical Infonnation&Libraiy National Laboratory for High Energy Physics 1-1 Oho, Tsukuba-shi Ibaraki-ken, 305 JAPAN Phone: 0298-64-1171 Telex: 3652-534 (Domestic) (0)3652-534 (International) Fax: 0298-64-4604 Cable: KEKOHO Foreword This symposium has been organized to foresee the next generation of data acquisition and processing system in high energy physics and nuclear physics experiments. The recent revolutionary progress in the semiconductor and computer technologies is giving us an oppotunity to extend our idea on the experiments. The high density electronics of LSI technology provides an ideal front-end electronics such as readout circuits for silicon strip detector and multi-anode phototubes as well as wire chambers. The VLSI technology has advantages over the obsolite discrete one in the various aspects ; reduction of noise, small propagation delay, lower power dissipation, small space for the installation, improvement of the system reliability and maintenability. The small sized front-end electronics will be mounted just on the detector and the digital data might be transfered off the detector to the computer room with optical fiber data transmission lines. Then, a monster of bandies of signal cables might disappear from the experimental area.
    [Show full text]
  • 12 MULTICHIP MODULES (Mcms)
    12 MULTICHIP MODULES (MCMs) HISTORICAL PERSPECTIVE Virtually every large computer manufacturer, telecommunications products manufacturer, high volume consumer electronics manufacturer and aerospace products manufacturer is working on or considering designs that include multichip modules. There has been a dramatic increase in activity over the last five years, with entire conferences being dedicated to multichip modules. MCMs have gone through three phases in their growth. Phase one was the widespread use in mainframe and super computer products. Some examples of MCMs used for these high-end applications are shown in Figure 12-1. The primary driving force was performance. These systems were predominately ECL based, with relatively low inte- gration levels. The MCM implementation allowed the Òre-integrationÓ of the LSI chips into VLSI modules, while keeping the wiring delays small. Source: DEC Source: IBM Source: Motorola/Siemens Source: ICE, “Roadmaps of Packaging Technology” 22555 Figure 12-1. Early MCMs in ECL Mainframe Computers in the Mid 1980Õs INTEGRATED CIRCUIT ENGINEERING CORPORATION 12-1 Multichip Modules (MCMs) Using a conventional single chip package and circuit board interconnect strategy, the package and interconnects took up over 50% of the timing budget. Decreases in the chip delays could not have much impact on system performance without a significant decrease in the interconnect delays as well. The use of MCMs reduced the interconnect delays significantly. This is shown in Figure 12-2 com- paring the delays in the IBM 3033 with a CPU using single chip packages and four circuit boards, and the IBM 3081, the first mainframe that used the Thermal Conduction Module (TCM).
    [Show full text]